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ABSTRACT. A Frobenius group is a transitive permutation group on a
finite set, such that no non-trivial element fixes more than one point and
some non-trivial element fixes a point. Using character theory, it is proved
that the Frobenius kernel is a normal subgroup of its Frobenius group. In
this paper, we present some group-theoretical proofs that the Frobenius
kernel is a subgroup of its Frobenius group under certain conditions.
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1. Introduction

Suppose G is a Frobenius group consisting of permutations of a set 2. A
subgroup H of G fixing a point of €2 is called a Frobenius complement. The
identity element together with all elements not in any conjugate of H form
a normal subgroup called the Frobenius kernel K. The Frobenius group G
is the semidirect product of K and H. Both Frobenius kernel and Frobenius
complement have very restricted structures.

J. G. Thompson in 1960 proved that the Frobenius kernel K is a nilpotent
group [16]. If H has an even order, then K is abelian. The Frobenius comple-
ment H has the property that every subgroup whose order is the product of 2
primes is cyclic; this implies that its Sylow subgroups are cyclic or generalized
quaternion groups. A finite group is a Frobenius complement if and only if it
has a faithful, finite-dimensional representation over a finite field in which non-
identity group elements correspond to linear transformations without nonzero
fixed points. The Frobenius kernel K is uniquely determined by G as it is the
Fitting subgroup, and the Frobenius complement is uniquely determined up to
conjugacy. In particular, a finite group G is a Frobenius group in at most one
way.

Definition 1.1. Let G be a finite group acting on a set € with || > 1. Then
G is called a Frobenius group if

(a) G acts transitively on €,
(b) Go # 1 for any a € Q,
(c) GaNGg=1foralla,f €, a#p.
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Let H = G, for some a € ). Then for any 3 € €, the group G is conjugate
to Gq, in other words, Gg = GY = HY for some g € G. Therefore, let

F = G\ U HY be the set of elements of G that don’t fix any element of Q.
geG
We define

K=Fu{l}=(@\U )1,

The subgroup H is called a Frobenius complement, and the set K is called the
Frobenius kernel of G.

It is easy to prove that Ng(H) = H, and thus,
|K|=I|G|+1—(|H|)[G: H|—1=[G: H] =n.

Therefore, |G| = |K||H|, and H N K = 1. An equivalent definition of a Frobe-
nius group is as follows.

Definition 1.2. G is called a Frobenius group with complement H if
14#HSG
and HN HY =1 for all g € G\ H.

It was proved by G. Frobenius in 1901 that the Frobenius kernel K is a
normal subgroup of G [5]. The proof by Frobenius uses the character theory
of finite groups. But since 1901, many attempts have been made to prove the
normality of K without using character theory. Of course, K contains the unit
element 1 and is a normal subset of G , but the difficulty lies in proving that
K is closed under multiplication. A Fourier-analytic proof is given in [15].

2. Character Theory

Furthere proofs of the normality of K in G can be found in references such
as [3], [4], 6], [8], [9], and [10], where character theory is utilized.

Theorem 2.1. If G is a Frobenius group with complement H and kernel K,
then K is a normal subgroup of G.

Proof. This proof is a modification of the proof in [10]. Define the function

¥ :G— C by
H .f ( K'
¥(g) ——{| o if g ’

0, otherwise.

Since K is a normal subset of G, 9 is a class function on G. We will prove 1
is a character of G with kery = K, thus proving K < G.
Let x € Irr(G). We will show that C,, with the following definition, is a
non-negative integer,
1 1 1
Cy= b0 ¥) = 2 SA() = 0 X x@IH| = - 3 x(@).
G| G| ek

reEK
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If x = 1¢ the trivial character of G, then (x, 1) = 1. So assume x # lg. Since

G- K= |J (H-1)9 is a disjoint union of n conjugates of H — 1, (x, 1¢g) is
geG

zero, and we have

0=(x,1¢) = |G|Zx

geG

:ﬁ 2 X \H|ZX

heH—-1 zeK

x| Gy
= (x#, 1) = Tt +
\H| — |H]
We conclude Cy = x(1) — |H|(x#,1u), so |H| divides C), — x(1). Therefore,
1 equals a linear combination of irreducible characters of G with integer coef-
ficients.

Now we have

1= (o) = g £ ROP+ g o)l
where
L WP = (1) - X
H] v ’ )

is a non-negative rational number. By Cauchy—Schwartz inequality,

> Ix(@) = (Z x(@)))*

rzeK reK
with equality if and only if |X(a:)| = x(1) for all z. Moreover,
25 K@) > cy
Naek

with equality if and only if x(z) is a real number with the same sign for all x.
Therefore,

x(1)?, | C%

1> ({xu,xu) — K |)+@ (*)

But

CY = x(1)? = (Cy = x(1)(Cx +x(1))
is divisible by |H|. Therefore, the right-hand side of (x) is a positive integer,

1

and consequently, we must have equality. Thus C, = — >_ |x(z)| = x(1) is
Nyeek

the degree of x, proving that kery = K < G. O
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In [2], we obtained some character-theoretic properties of the finite Frobenius
groups as follows. Recall that G is a Frobenius group with complement H
and kernel K, G = KH, K N H = 1, where K is a normal subgroup of G,
n =[G : H|. G acts on the set of cosets of H as a transitive permutation group
of degree n, and the number of orbits of H on this set is called the rank of G
and is denoted by s.

Proposition 2.2. Let x be the permutation character of H acting on K by
conjugation. Then x = spyg + 1y, where pg and 1y are the regular and the
identity characters of H, respectively.

Proposition 2.3. Let G be a Frobenius group with kernel K as a subset. If
all elements of K commute, then K is a normal subgroup of G.

Proof. K is a normal subset of G with identity, and G acts on it by conjugation.
Let n be the permutation character associated with this action. For g € G,
n(g) is the number of k € K such that k9 = g~ 1kg = k. We have n(1) = |K],
and if g £ 1 and k? = k, then k € Cg(g) N K = Ck(g). Since G = Kggc HY,

we distinguish the following cases.
Case 1. If g # 1 and g € K, then k9 = k implies k € Ck(g), so we conclude

n(g9) = |Ck(g)|-

Case 2. If g #1 and g € |J HY, then g belongs to some conjugate of H.
geG
So, without loss of generality, we can take g € H. Then k9 = k implies

g=g* € HN H* which implies k € HN K = 1. Then n(g) = 1. Therefore,
|K|7 if g = ]-a
n(g) =41, if1#ge{H"|zeG},
|CK(9)|’ if 175gEK.

By assumption, all elements of K commute, hence
K|, if g€ K,
n(g) = . .
1, ifl#ge{H”|xe€G}.

Now we see that kern = K < G. ]

3. Group Theory

As mentioned earlier, there is no group-theoretic proof establishing the
Frobenius kernel as a subgroup in general. However, in some special cases,
there exists a proof, which we will present here. If G is a Frobenius group with
complement H and kernel K, then Ng(H) = H and |K| =[G : H].

Lemma 3.1. If N is a normal subgroup of G such that G = NH and NNH =
1, then N < K.
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Lemma 3.2 (Burnside). If G is a finite group and P is a Sylow p-subgroup of
G such that Ng(P) = Cq(P), then P has a normal complement in G, in other
words, there exists N < G such that G = NP and NN P =1.

Proof. See [13] page 137, section 6.2, proposition 6.2.9. O

Theorem 3.3. Let G be a Frobenius group with complement H and kernel K.
Assume that H is an abelian p-group. Then K is a normal subgroup of G.

Proof. From the fact that Ng(H) = H and the fact that H is abelian, we
obtain

H = Ng(H)>Cg(H) > H.

Therefore, Ng(H) = Cg(H). But (|H| : [G : H]) = 1, from which it follows
that H is a Sylow p-subgroup of G. Now by Burnside’s theorem (Lemma 3.2),
H has a normal complement N in G, in other words, G = NH, NN H =1,
and N < @G. It follows that N = K. O

Corollary 3.4. Let G be a finite Frobenius group with complement H and
kernel K. Suppose H is centralized by a Sylow p-subgroup of G. Then K JG.

Proof. By assumption, H < Cg(P), where P is a Sylow p-subgroup of G. If
1# x € H, then Cg(x) < H. Therefore Cq(P) < H, then

Ca(P) = H = Ng(P).

Now, by Burnside’s theorem, there exists a normal subgroup N < G such that
G = NP. Therefore, [N| =[G : P].

By Lemma 3.1, if N < K, then |N| =[G : P] < |K| = [G : H]. Therefore,
|P| > |H|. This implies P = H. By Theorem 3.3, K < G. O

Another group-theoretical proof under different conditions exists, which we
mention below. If 2 | |H|, there is an elementary proof that K < G due to
Bender [12]. The fact is also proved in [1] page 172.

Theorem 3.5. Let G be a Frobenius group with a complement H and kernek
K. If H has even order, then K is a normal subgroup of G.

Proof. Let t be an element of order 2 in H and g € G\H. Then either
a=t-g ltg=1tt9 = [t, g

is in K, or there exists z € G such that 1 # a € H*. If a € H”, then
a€ H*NH**NH*. Since a’ = a~' = a'9, we have H* = H** = H*"’  where
t,t9 € H®. If H* = H contradicts that t € H and t9 ¢ H. Therefore, {t9 € K
if ge G\H. Let {g1, - ,gn} be a transversal of H in G, where n = [G : H].
We have

HO = 195 = 190 = 195 = 919 = t = g9ig; " € H.
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The elements ¢t9!, - - - | tt9~ are pairwise distinct, so K = {t91¢,--- ,t9~t}. Now
we show that K < G. For 9, there exists g, such that t9i* = tt9s. Therefore,

(£199) (££99) = t(£91£)t95 = t(tt9)t9 = 9195 = ({1995 )g, € K9 = K.
tt9 € K for g € G\H. O
If a Frobenius complement H is solvable, then K is a subgroup of G.

Theorem 3.6. [14] If G is a Frobenius group with a solvable complement,
then the Frobenius kernel is a normal subgroup of G.

In [7] related results are obtained.

H acts on K — {1} by conjugation without a fixed point, creating orbits of
size |H|. Therefore, |H| divides |K| — 1, implying (|H|,|K]|) = 1. If K < G,
then K is a Hall-subgroup of G. Also, H is a Hall subgroup of G.

Looking at the Frobenius group G as a transitive permutation group on the
set Q with || =n, H = G, for some a € Q. Then || =[G : H|. The number
of orbits of H on  is called the rank of G, denoted by r = rank(G). Each

nontrivial H-orbit has size |H|, and there are s = such orbits. Therefore,

n—
]
n—1
rank(G)=14+s=1+ ——.
]

If » < 3, then K < G by using elementary group theory [11]. The proof
utilizes the fact that H is a Hall subgroup of G, and for every prime p dividing
|K| =n =[G : H], the Sylow p-subgroups of G are contained in K. Thus, for
small rank, a consequence of the Sylow theorem implies K < G. In particular,

if [G : H] is a prime power n, then K is a Sylow subgroup of G.

4. Properties of the Frobenius Kernel

Suppose G is a Frobenius group with complement H and kernel K. Assume
K QG, G = HK, and G has a unique kernel. If K is solvable, then H is
nilpotent. Thompson showed that K is always nilpotent. Any subgroup of H
of order p? or pq, where p and ¢ are distinct primes, is cyclic. If P € Syl,(H),
where p # 2, then P is cyclic. If p = 2, then P is cyclic or generalized
quaternion. K has an automorphism without fixed points. If |H| is even, then
K is abelian.
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