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ABSTRACT. The zip (commutative) rings, introduced by Faith and Zel-
manowitz, generated a fruitful line of investigation in ring theory. Re-
cently, Dube, Blose and Taherifar developed an abstract theory of zipped-
ness by means of frames. Starting from some ideas contained in their
papers, we define and study the zip and weak zip algebras in a semidegen-
erate congruence-modular variety V. We obtain generalizations of some
results existing in the literature of zip rings and zipped frames. For exam-
ple, we prove that a neo-commutative algebra A € V is a weak zip algebra
if and only if the frame RCon(A) of radical congruences of A is a zipped
frame (in the sense of Dube and Blose). We study the way in which the
reticulation functor preserves the zippedness property. Using the reticu-
lation and a Hochster’s theorem we prove that a neo-commutative algebra
A €V is a weak zip algebra if and only if the minimal prime spectrum
Min(A) of A is a finite space.

Keywords: Semidegenerate congruence-modular variety, Neo-commutative
algebra, Admissible morphisms, Zipped frames, Zip and weak zip alge-
bras.
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1. Introduction

The zip (commutative) rings were introduced by Faith in [9] and Zelmanowitz
in [29]. This type of rings was defined by means of the notion of faithful ideal:
a commutative ideal I of a commutative ring R is faithful if its annihilator is
the zero ideal. R is said to be a zip ring if any faithful ideal of R includes a
finitely generated faithful ideal. Using the notion of a weakly faithful ideal in
a commutative ring, Ouyang defined in [25], [26] a more general class of rings,
named weak zip rings.

Dube and Blose proved in [7] a nice characterization of reduced zip rings: ”a
reduced ring R is a zip ring if and only if the frame RId(R) of its radical ideals
has the property that every dense element of this frame is above a compact
dense element”. Based on this property, the two authors defined the zipped
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frames and developed an abstract zippedness theory in the frame setting. The
paper contains abstract versions of several results on zip rings. The general
theory of zipped frames is applied to study the weak zip rings.

A new topological characterization of reduced zip rings is obtained in the
recent paper [8] of Dube and Taherifar: a reduced ring R is a zip ring if and
only if the minimal prime spectrum Min(R) is finite. A new class of rings is
introduced in [8]: a ring R is a czip ring if each faithful ideal of R includes a
countably generated faithful ideal. The countably zipped frames are introduced
and it is proven that a reduced ring is a czip ring if and only if the frame RId(R)
is countably zipped.

The paper [12] concerns the zipped and weakly zipped quantales, structures
that generalize the zipped frames. Meanwhile, the weakly zipped quantales
provide an abstract theory for weak zipped rings.

In this paper we shall define the zip and weak zip algebras in a congruence-
modular variety V. Due to the commutator theory [10], we can define a notion
of prime congruence of an algebra A of V and a notion of radical congru-
ence of A (see [1]). The most important results of the paper are obtained for
neo-commutative algebras of a semidegenerate congruence-modular variety V.
These algebras generalize the neo-commutative rings, defined by Kaplansky
in [21]. A ring R is neo-commutative if the product of two finitely gener-
ated ideals is finitely generated. Then an algebra in A € V is said to be
neo-commutative if the set of compact congruences of A is closed under the
commutator operation.

We do not work with all the morphisms of algebras in V. We will consider
only the admissible morphisms, i.e. the morphisms u : A — B such that the
inverse image of any prime congruence of B is a prime congruence of A (cf.
[14]). The category NV of neo-commutative algebras of V and their admissible
morphisms is the most appropriate framework for our results.

Now we shall describe the content of the paper. Section 2 presents the defini-
tion of the commutator operation in a congruence-modular variety V and some
of its basic properties (cf. [10]). We remind the definition of a semidegenerate
variety (cf. [22]) and we define the neo-commutative algebras. Then we define
the prime congruences of an algebra A of V and the topology of the prime
spectrum Spec(A) (cf. [1]). Section 3 contains some notions and elementary
facts in the frame theory (cf. [20], [27]). Particularly, we recall from [7] the
definition of zipped frames and some results in their theory (cf. [7], [8]).

Section 4 deals with the frame of radical congruences and the admissible
morphisms. We recall from [1], [14] a result that describes the radical p4(0) of a
congruence  of a neo-commutative algebra A € V, where V is a semidegenerate
congruence-modular variety. We define a covariant functor (-)? from NV to the
category C'oh Frm of coherent frames and coherent frame morphisms. We study
how this functor is used to establish some connections between properties of
admissible morphisms and properties of the corresponding frame morphisms.
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Starting from the notion of weak annihilator of an ideal of a commutative
ring [26], [25], in Section 5 we define the weak annihilator congruences of an
algebra A € V, where V is a congruence-modular variety. We prove that the
set Annih,,(A) of weak annihilator congruences of A is a complete Boolean
algebra that coincides with the Booleanization of the frame RCon(A).

The zip algebras and the weak zip algebras in a congruence-modular variety
are defined in Section 6. The main theorem of this section says that for each
neo-commutative algebra A in a semidegenerate congruence-modular variety,
A is a weak zip algebra if and only if RCon(A) is a zipped frame. We mention
that this result is a generalization of Theorem 5.4 of [7]: a commutative ring
R is a weak zip ring iff the frame RId(R) is zipped.

The reticulation L(A) of a neo-commutative algebra A in a semidegenerate
congruence-modular variety V was defined in [13]. L(A) is a bounded distribu-
tive lattice whose prime spectrum is homeomorphic with the prime spectrum
of the algebra A. In fact, the reticulation defines a covariant functor from NV
to the category of bounded distributive lattices (see [14]). This functor is a ve-
hicle for transferring results from lattices to algebras and vice-versa (see [15]).
In Section 7 we study how the reticulation functor preserves the zippedness.
We prove that an algebra A € NV is a weak zip algebra if and only if L(A) is
an ideal zip lattice. Some consequences of these results are obtained. For ex-
ample, we prove that A € NV is a weak zip algebra if and only if the minimal
spectrum Min(A) is a finite space. This topological characterization of the
weak zip algebras extends a result of Dube and Taherifar for zip rings (see [8]).

2. Preliminaries

Throughout this paper we shall assume that the algebras have a fixed sig-
nature 7. We refer to [6] as the standard text of universal algebra.

Let A be an algebra and Con(A) the complete lattice of its congruences;
Ay is the bottom element of Con(A) and V4 is the top element of Con(A).
If X C A? then Cga(X) will be the congruence of A generated by X; if
X ={(a,b)} with a,b € A then Cga(a,b) will denote the (principal) congruence
generated by {(a,b)}. Con(A) is an algebraic lattice: the finitely generated
congruences of A are its compact elements. K (A) will denote the set of compact
congruences of A. We observe that K(A) is closed under finite joins of Con(A)
and Ay € K(A).

For any 6 € Con(A), A/0 is the quotient algebra of A w.r.t. 6; if a € A then
a/0 is the congruence class of a modulo 6. We shall denote by pg : A — A/0
the canonical surjective 7 - morphism defined by pg(a) = a/0, for all a € A.
For any subset X of A? we have (Cga(X)V0)/0 = Cga/e(X/0); in particular,
(Cgala,b) v 0)/0 = Cgase(a/8,b/0), for all a,b € A.

Thus K(A/0) = {(a Vv 0)/0la € K(A)} = pe(K(A)).

Let V be a congruence-modular variety of 7 - algebras. Following [10],
p.31, the commutator is the greatest operation [-, | 4 on the congruence lattices
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Con(A) of members A of V such that for any surjective morphism f : A — B
of V and for any «, 8 € Con(A), the following conditions hold

(1) [a,Bla Canp.

(2) [, Bla v Ker(f) = fH([f(aV Ker(f)), f(BV Ker(f))]s)-
For all congruences a, 3,6 of A, by using (2) we obtain the equality:

(3) ([, Bla Vv 0)/0 = [(aV 0)/0,(5V 0)/0)as6-

The commutator operation is commutative, increasing in each argument and
distributive with respect to arbitrary joins. If there is no danger of confusion
then we write [«, ] instead of [a, 8] 4.

Proposition 2.1. [10] For any congruence-modular variety V the following
are equivalent:

(1) V has the Horn - Fraser property: if A, B are members of V then
the lattices Con(A x B) and Con(A) x Con(B) are isomorphic;

(2) [VA,VA] =Vau, forall A€ V;

(8) [0,Val=0, forall AcV and 0 € Con(A).

Following [22], a variety V is semidegenerate if no nontrivial algebra in V
has one - element subalgebras. By [22], a variety V is semidegenerate if and
only if for any algebra A in V, the congruence V 4 is compact.

Proposition 2.2. [1] If V is a semidegenerate congruence-modular variety
then for each algebra A in'V we have [V, V4] =Va4.

Let A be a semidegenerate congruence-modular algebra. Therefore one can
define on the complete lattice Con(A) a residuation operation ( = implication)
a — B = V{yl[a,7] € B} and an annihilator operation at+ = a4 = a —
Ax = V{7|le,y] = Aa}. The implication — fulfills the usual residuation
property: for all a, 8,7 € Con(A), & C § — v if and only if [a, f] C 7. We
shall use without mention some elementary facts of residuation theory [11].

Remark 2.3. By using Propositions 2.1 and 2.2 we remark that the struc-
ture (Con(A),V, A, [, -], —, A4, Va4) is a commutative and integral complete {
- groupoid (see [5]). In fact, (Con(4),V,N, [, ]a,A4, Va4) is a multiplicative
- ideal structure (= mi - structure) in the sense of [16]. Thus all the results
contained in [16] hold for the particular mi - structure Con(A).

For the rest of the section we fix an algebra A in a semidegenerate congruence-
modular variety V.

Following [21], a ring R is neo-commutative if the product of two finitely
generated ideals of R is a finitely generated ideal. In [17], this notion was
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generalized to a universal algebra framework: an algebra A of the semidegen-
erate congruence-modular variety V is said to be neo-commutative if K(A) is
closed under commutator operation. We say that the algebra A has principal
commutators if the set PCon(A) of principal congruences of A is closed un-
der commutator operation (see [1]). If A has principal commutators then A is
neo-commutative.

Lemma 2.4. Assume that A is neo-commutative. If 6 € Con(A) then A/0 is
a neo-commutative algebra of V.

Proof. Recall that any compact congruence of A/f has the form (a V 0)/6,
where « is a compact congruence of A. Using (3) it follows that K(A/0) is
closed under the commutator operation. O

For all congruences a, f € Con(A) and for any integer n > 1 we define by in-
duction the congruence [, 8]™: [, B]' = [a, 8] and [a, 8" = [[a, B]", [, B]™].
By convention, we set [, a]® = a.

Lemma 2.5. [13] Assume «, 3 € Con(A). Then [a, )" = [[a, B], [o, B]]7,
for any integer n > 0.

Let v : A — B be an arbitrary morphism in V and u* : Con(B) — Con(A),
u® : Con(A) — Con(B) are the maps defined by u*(8) = u~(3) and u®(a) =
Cyp(f(a)), for all & € Con(A) and 3 € Con(B). Thus u® is the left adjoint of
u*: for all @ € Con(A), 8 € Con(B), we have u®(«a) C 8 iff a C u*(5).

Following [10], p.82 or [1], p.582, a congruence ¢ € Con(A) —{V s} is prime
if for all a, 8 € Con(A), [a, f] C ¢ implies o« C ¢ or B C ¢. Let us introduce
the following notations: Spec(A) is the set of prime congruences and Max(A)
is the set of maximal elements of Con(A). If § € Con(A) — {V 4} then there
exists ¢ € Max(A) such that § C ¢ (because V4 is a compact congruence).
By [1], the inclusion Max(A) C Spec(A) holds. We shall denote by Min(A)
the set of minimal prime congruences of A. Then Min(A) C Spec(A) and any
prime congruence of A includes a minimal prime congruence.

For any § € Con(A) we denote V4(6) = V(0) = {¢ € Spec(A)|§ C ¢} and
Da() = D(0) = Spec(A) —V(0). If a,8 € Con(A) then D(a) N D(B) =
D([e, 8]) and V(a) UV (B) = V([a, 5]). For any family (6;);er of congruences
we have | J;c; D(0;) = D(V,;c; 0:) and ;c; V(0;) = V(V;c; 0i). Thus Spec(A)
becomes a topological space whose open sets are D(6),0 € Con(A). We remark
that this topology extends the Zariski topology (defined on the prime spectra
of commutative rings) and the Stone topology (defined on the prime spectra
of bounded distributive lattices). The properties of Spec(A) were intensively
studied by Agliano in [1]. We mention that the family (D(a))aex(4) is a basis
of open sets for the topology of Spec(A). We remark that the sets Max(A)
and Min(A) can be considered as subspaces of Spec(A).

3. Frames

The monographies [20] and [27] are the standard references on frames.
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Let L be a frame and K(L) the set of its compact elements. L is said to
be algebraic if any element a of L is a join of compact elements (in particular,
a=\{ce K(L)|c <a}). An algebraic frame L is coherent if the top element
1 is compact and K (L) is closed under finite meets. The polar of an element a
of L is defined by at = a4 = \/{b € Lla Ab = 0}. The set Pol(L) of polars
of L is a complete Boolean algebra, named the Booleanization of L (cf. [3]).
An element a € L is dense if at = 0. According to Definition 2.2 of [7], an
algebraic frame L is a zipped frame if for any dense element a € L there exists
a compact dense element ¢ such that ¢ < a.

If L, M are frames then a function f : L — M is a frame morphism if it
preserves the arbitrary joins and the finite meets (in particular, f(0) = 0).
A frame morphism f : L. — M is coherent if L, M are algebraic frames and
f(K(L)) € L(M). Let us denote by Frm the category of frames and frame
morphisms. CohFrm will be the category of coherent frames and coherent
frame morphisms. Any frame morphism f : L — M admits a right adjoint
fe: M — L: forallae Land b€ M, a < f,(b) if and only if f(a) <b. Then
f« preserves the arbitrary meets.

A frame morphism f : L — M is dense if for any element a of L, f(a) =0
implies a = 0; f is dense if and only if f,(a) = 0. By Lemma 1.6 of [24], a
frame morphism f : L — M is injective if and only if f, : M — L is surjective.
A frame morphism f : L — M is x-dense if for any element b of M, f,(b) =0
implies b =0

Several results existing in the literature of zip rings can be generalized to
zipped frames (see [7], [8]). We recall some of them:

e If h: L — M is a dense and x-dense coherent frame morphism then L is
a zipped frame iff M is a zipped frame;

e Any algebraic frame satisfying the ascending chain condition on polars is
zipped.

4. The frame of radical congruences

Let A be an algebra in a congruence-modular variety V. According to [1],
p.582, the radical p(6) = pa(f) of a congruence 6 € Con(A) is defined by
pa(0) = N{¢ € Spec(A)|60 C ¢}; if @ = p(0) then 0 is a radical congruence. We
shall denote by RCon(A) the set of radical congruences of A. The algebra A
is semiprime if p(As) = Aa.

Lemma 4.1. [1], [18] For all congruences a, 8 € Con(A) the following hold:

(1) a € p(a);
(2) plan B) = p([a, B]) = p(er) N p(B);
(8) pla) =Va iffa =Vyu;

(
(
(4) plaV B) = p(p(a) vV p(B));
(5) plp(e)) = p(a);
(6) p(a)Vp(B)=Vaiff aVpB=Va;
(7) p([a, a]™) = p(«), for all integers n > 0.
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Recall that for an arbitrary family («;);er of congruences of A, the following

equality holds: p( \/ ;) = p(\/ p(c;)). Then one can introduce the arbitrary
i€l el

joins in RCon(A): if (a;)ier € RCon(A) then we denote \/ai = p(\/ ;).
iel i€l

Thus (RCon(A), \/JW,p(AA),VA) is a frame (see [1]). It is easy to see that
K(RCon(A)) = {pa(a)la € K(A)}.

Let us fix a semidegenerate congruence-modular variety V. If A is a neo-
commutative algebra of V then RCon(A) is a coherent frame.

The following proposition extends a well-known result in ring theory (cf.
Proposition 1.4 of [2]). It was proved in [1] for algebras with principal commu-
tators (the present form is Lemma 6.13 of [13]).

Proposition 4.2. Assume that the algebra A is neo-commutative. Then for
any congruence 0 of A the following equality holds:

p(0) = \{a € K(A)|[a,a]™ C 0, for some n > 0}.

Particularly, we have p(Aa) = \/{a € K(A)|[o, a]® = A g, for somen > 0}.

Let 6 be a congruence of A. By using Proposition 4.2, for each compact
congruence « of A, the following equivalence holds: a C p(6) if and only if
[a, a]™ C 0, for some integer n > 0. The algebra A is semiprime if and only if
for any oo € K(A) and for any integer n > 0, [a, a]" = A4 implies a = A 4.

Definition 4.3. [14] A morphism u : A — B of the variety V is said to be
admissible if f*(Spec(B)) C Spec(A).

We know from [14] that any surjective morphism of V is admissible and
the composition of admissible morphisms is an admissible morphism. We shall
denote by NV the category whose objects are the neo-commutative algebras of
V and whose morphisms are the admissible morphisms.

Lemma 4.4. [14] For any u: A — B of V the following are equivalent:
(1) w is an admissible morphism;
(2) For all compact congruences «, 8 of A we have pp(u®([a, 8]a)) =
pa([ut(a), u*(B)]B);
(8) For all compact congruences a, 8 of A we have pp(u®([a, fla)) =
pp(u®(a)) N pp(u®(B)).

Proof. (1) < (2) By Theorem 4.13 of [14].

(2) & (3) By Lemma 4.1(2). O

Corollary 4.5. If u is an admissible morphism of V then pp(u®([o, ;) =
pB(u*(a)), for each integer n > 0 and for each a € K(A).

Proof. In order to prove the equality of the corollary we shall use the induction
on n. If n = 1 then by using Lemma 4.4(3) we obtain pp(u®([a, a)) =
pe(u (@) Npp(u®(a)) = pe(u®(a)), for each a € K(A).
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Assume that the equality holds for an integer n > 0 and for each o € K(A).
We have to prove that pp(u®([a, a]’s™)) = pp(u®(a)), for each a € K(A).

By Lemma 2.5, [a, ]’y = [[a,a]a, [, @] 4], hence, using the induction
hypothesis one gets:
pe(u ([o; o) i) = pp(us ([0, ol a, [o, ala]R)) = pB(us([a; ala)) = pr(u®(@)).
|

Let u : A — B be an admissible morphism of V. For any 8§ € RCon(A)
denote u”(6) = pp(u®(f)). Thus u?(0) € RCon(B) for each § € RCon(A), so
one gets a function u” : RCon(A) — RCon(B).

Let us fix two neo-commutative algebras A, B € V and an admissible mor-
phism v : A — B of V. Then one can apply Proposition 4.4 for computing
the radicals in the algebras A, B. The following theorem is a universal algebra
generalization of a result proven by Martinez in the context of commutative
ring theory (see Proposition 4.1 of [24]).

Theorem 4.6. u” : RCon(A) — RCon(B) is the unique coherent frame mor-
phism such that the following diagram is commutative:

u
Con(A) » Con(B)
PA PB
uP
RCon(A) > RCon(B)
FIGURE 1

Proof. Firstly we shall prove that for each § € Con(A) we have pp(u®(6)) =
p(u* (p4(0))). From 8 C pa(6) we obtain ps(u®(6))  p(u® (p4(0)).

In order to check the converse inclusion pg(u®(pa(0))) C pp(u®(9)) let us
consider a compact congruence [ of B such that 8 C pp(u®(pa(d))). By
Proposition 4.2 there exists an integer n > 0 such that [3, 5]™ C u®(pa(9)).

Since 8 = V{a € K(A)la C 0} and u® preserves the joins we get the
following equality:

u*(p(0)) = V{u*(a)la € K(4),a C 6},

Since A is a neo-commutative algebra [3, 5] is a compact congruence of B
so there exists an integer m > 1 and ¢1,...,¢, € K(A) such that [8,5]" C
Vit u®(ay) and a; C 6, for i = 1,...,m. Recall that the map u® preserves
the joins. If o = \/[", o; then a € K(A), a C 6 and 3, 8]" C u®(«), hence
[8,8]™ C u®(f). In virtue of Proposition 4.2 we get 8 C pp(u®(d)), hence
pe(®(p(9))) C pp(u®(M)). It follows the equality pp(u®(8)) = pp(u®(p(9))),
therefore the diagram is commutative.

Now we shall prove that u” is a frame morphism. Let (6;);c; be a family
of radical congruences of A. According to the diagram’s commutativity the
following equalities hold:
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w(\ 0) = w(pa(\ 0)) = pi(u*(\ 6)) = p(\ w(6)) = \/ w(00).
icl iel il il il

Then u” preserves the arbitrary joins. Let 6, ¢ be two radical congruences of
A, 80 0 = pa(), e = pa(B) for some o, B € Con(A). Then 0 Ne = pa([a, B]a)
(cf. Lemma 4.1(2)). By hypothesis, u is an admissible morphism, hence, by
using the diagram’s commutativity and Lemma 4.4(c), the following equalities
hold:

w(®02) = w(pale, Bla)) = pa(ut ([, B1a)) = ps(u®(a)) N pi(u(8)) =
w(pa()) N u(pa(B)) = uP(6) N uP (2).

Then u” preserves the finite meets, so it is a frame morphism. Let 6 be
a compact element of the coherent frame RCon(A), so 8 = pa(a) for some
a € K(A). We know that u® preserves the compact congruences, hence u®(«)
is a compact congruence of B. By the commutativity of the diagram we have
uP(0) = u(p()) = pp(uP (). Thus u”(0) is a compact element of the frame
RCon(B), hence uf is a coherent frame morphism. The unicity of u” follows
by using the diagram’s commutativity.

O

Remark 4.7. Let A, B,C be three neo-commutative algebras of the variety V
and f : A - B, g : B — C two admissible morphisms of V. Using the
commutative diagram of Theorem 4.6 we obtain (g o f)? = g” o f?. Thus the
assignments A — RCon(A) and u — u” define a covariant functor (-)? : NV —
CohFrm.

Lemma 4.8. Let u : A — B be a morphism of the category NV. If € is a
radical congruence of B then u*(g) is a radical congruence of A.

Proof. We have to prove that ps(u*(e)) = u*(e). Let o be a compact con-
gruence of A such that a C pa(u*(g)), hence there exists an integer n > 0
such that [a, a]™ C u*(e) (by Proposition 4.2). By the adjointness property it
follows that u®([or, a]™) C €, hence pp(u®([a, a]™)) C pp(e) =e.

In accordance with Corollary 4.5, pp(u®([o, &]™)) = pp(u®(a)), so we get
u®(a) C pp(u®(a)) C e. In virtue of the adjointness property we get a@ C u*(e),
so pa(u*(€)) € u*(e). The converse inclusion is obvious, so we conclude that
pa(u*(e)) = u*(e), therefore u*(e) is a radical congruence of A.

0

According to the previous lemma, for each morphism v : A — B of NV one
can consider the function u*|grcon(p) : RCon(B) — RCon(A).

Proposition 4.9. For each morphism u : A — B of the category NV we have
(uP)s = u*|gcon(B) (it means that u*|gcon(p) is the right adjoint of the frame
morphism u” ).

Proof. Let 0 be a radical congruence of A and € a radical congruence of B.
Using the adjointness property for u® and u* the following equivalences hold:
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u”(0) Ceiff pp(u®(9)) Ceiff u*(9) Ceiff 0 C u*(e).
We conclude that u*|gcon(p) is the right adjoint of the frame morphism u”.
|

Corollary 4.10. Let u : A — B be a morphism of NV. Then the following
assertions are equivalent:

(1) uP is a dense frame morphism;

(2) u*(pp(AB)) = pa(Aa).
Proof. Recall that pa(A4) (resp. pp(Ap)) is the bottom element of the frame
RCon(A) (resp. RCon(B)). According to Proposition 4.9, u” is a dense frame
morphism iff (1), (p5(Ap)) = pa(Aa) iff u*(p5(Ap)) = pa(Aa).

(|

Recall from [7] that a ring morphism f : R — @ is inverse-dense if for each
radical ideal J of Q, f~1(J) = Nil(R) implies J = Nil(Q). We extend this
notion to a universal algebra setting: the morphism u : A — B is inverse-dense
if for each radical congruence x of B, u*(x) = pa(A,) implies x = pp(Ap).
Corollary 4.11. Let u : A — B be a morphism of NV. Then the following
assertions are equivalent:

(1) w: A— B is an inverse-dense morphism;
(2) uf : RCon(A) — RCon(B) is a x-dense frame morphism.
Proof. The desired equivalence follows by using Proposition 4.9. ]

Let us consider the surjective morphism pa = p,,(a,) : A = A/pa(Aa),
so pa(a) =a/pa(Ay), for any a € A. We know that p4 is a morphism of the

category NV, so, by Theorem 4.6, we can take the coherent frame morphism
phy : RCon(A) — RCon(A/pa(Aa)).

Lemma 4.12. For each § € RCon(A), p(0) =0/pa(Aa).

Proof. For each § € RCon(A) we have p%(0) = 0/pa(Aa), hence p/)(0) =
Paspaa)(PA(0)) = pajpaan)(0/pa(Ba)) = pa(0)/pa(Ba) = 0/pa(Aa).
(|

Corollary 4.13. p’) is a lattice isomorphism.

Given a morphism u : A — B of V we define a map v : A/pa(Aa) —
B/pp(Apg) by setting v(a/pa(Aa)) =u(a)/pp(Ap), for any a € A.

Lemma 4.14. v is the unique morphism of V such that the following diagram
18 commutative:

A > B

pba pB

A/pa(Aa) ~ B/pp(AB)
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FIGURE 2

Corollary 4.15. v is an admissible morphism.

Proof. Firstly, we remark that the map p% | spec(a) : Spec(A) — Spec(A/pa(Aa))
is a homeomorphism. Let ¢ be a prime congruence of the algebra B/pg(Apg).
Using the commutative diagram of Lemma 4.14 we get p% (v*(¢)) = v* (pE(¥)).
Denote ¢ = p%(v*(v)) = uw*(pi(¢)), hence v*(¢p) = p%(¢). Since u and
pp are admissible morphisms we get ¢ € Spec(A). It follows that v*(y) €
Spec(A/pa(A,)), hence v is an admissible morphism.

]

Remark 4.16. A/pa(Aa) and B/pp(Ap) are neo-commutative algebras in V.
Therefore, in virtue of Corollary 4.15, it follows that v is a morphism of the
category NV.

Lemma 4.17. Ifu : A — B is a morphism of NV then the following are
equivalent:

(1) u is inverse-dense;
(2) v°: RCon(A/pa(Aa)) — RCon(B/pp(Ag)) is a dense frame mor-
phism.

Proof. 1t is easy to prove that the following diagram is commutative:

uP
RCon(A) > RCon(B)
n s
VP
RCon(A/,,(a4)) > RCon(B/,,(ap))
FIGURE 3

According to Corollary 4.13 and the commutativity of the diagram, it fol-
lows that p/) and pf, are lattice isomorphisms. Corollary 4.11 implies that u
is inverse-dense iff u” is a x-dense frame morphism iff v is a *-dense frame
morphism.

O

Lemma 4.18. If u : A — B is a morphism of NV then the following are
equivalent:

(1) w*(pp(AB)) = pa(Aa);

(2) u” is a dense frame morphism;

(3) v* is a dense frame morphism.
Proof. (1) < (2) By Corollary 4.10.

(2) © (3) By the commutativity of the diagram from the proof of Lemma
4.17. O
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5. Weak annihilator congruences

This section deals with the weak annihilator congruences for algebras in a
congruence-modular variety. This notion generalizes the weak annihilators of
ideals in commutative rings (see [25], [26]).

In order to obtain this general notion, we will present the definition of weak
annihilator of an ideal I in a commutative ring R. Recall that the annihilator
of I is defined by Anngr(I) = {a € Rlaz = 0 for each = € I}. According
to [25], [26], the weak annihilator of I is defined by

Anng (I) = {a € Rlaz € Nil(R) for each z € I},

where Nil(R) is the nilradical of the ring R. Anng(I) and Anng,,(I) are
ideals of the ring R.

Now we shall extend these two notions (the annihilator and the weak anni-
hilator) to the congruences of an algebra A in a congruence-modular variety
V. For any congruence 6 of the algebra A, the weak annihilator of 6 is the
congruence §1v =60 — ps(Aa). If A is a semiprime algebra then 6+ = §-+.
A congruence of the form #++ is named a weak annihilator congruence. The
set of weak annihilator congruences of A will be denoted by Annih,,(A).

Let R be a commutative ring and I an ideal of R. The congruence of R
associated with I is denoted by 6;. Then the weak annihilator congruence of 6;
coincides with the congruence associated with Annpg (1) : 9%” = Oanng..(1)-

Theorem 5.1. Assume that A is a neo-commutative algebra of V and 0, x are
two congruences of A. Then the following hold

(1) If € RCon(A) then §1rcona) = glw;

(2) If 6 C x then x*v C 0tw;

(3) 0 C GLwLw ; flw — oj_wJ_wJ_w}.

(4) 6% = (pa(O) .

Proof. The theorem follows by imitating in every detail the proofs of Proposi-
tions 4.1(3) and Lemma 4.2 of [12]. O

The properties (1)-(4) of the previous theorem are generalizations of some
results on the weak annihilators in ring theory (see Lemmas 5.2 and 5.3 of [7];
the quantale versions of these lemmas can be found in [12]).

Now we shall use Theorem 5.4 to prove that Annih,(A) is a complete
Boolean algebra. In fact, we shall prove that the complete Boolean algebras
Annih,,(A) and Pol(RCon(A)) coincide.

Corollary 5.2. If A is a neo-commutative algebra of V then Annih,,(A) =
Pol(RCon(A)).

Proof. Recall the following facts:

e By definition, the Booleanization Pol(RCon(A)) of the frame RCon(A) is
{etrcon|e € RCon(A)};

e For any ¢ € RCon(A) we have etrcon(a) = gtw (cf. Theorem 5.1(1));

e For any 0 € Con(A) we have 8-+ = (pa(0))*= (cf. Theorem 5.1(4)).
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Therefore the following equalities hold: Annih,,(A) = {610 € Con(A)} =
{(pa(0))*+]0 € Con(A)} = {etv|e € RCon(A)} = {etroond|e € RCon(A)} =
Pol(RCon(A)).

0

Let (0;);cr be a family of weak annihilator congruences of A. Let us denote:
Lier 0 = (Viep 05) 7. We remark that | |,., 0; € Annihy,(A). In virtue of
the definition of the weak annihilator congruences we can find a family (¢;);er
of congruences of A such that 6; = ;- for each i € I. Then we get

Nicr 0 =Nicr EiLw = Vier ei)t

It follows that ()., 0; € Annih,(A). We conclude that Annih,,(A) is closed
under the infinite operations | | and .

Lemma 5.3. For each family (0;)ic; of weak annihilator congruences of the
neo-commutative algebra A we have | |;; 0; = (\/ g;) L roon) LrCon(A)

i€l
Proof. In accordance with Theorem 5.1,(1) and (4), the following equalities
hold:

Uies = (Vaer 605 = (pa(Vigs 0)) et = (\/ i) oo = (] iyt neoncar e,

iel il
g

Theorem 5.4. If A is a neo-commutative algebra of V then the set Annih,,(A)
of weak annihilator congruences of A is endowed with a structure of complete
Boolean algebra such that

e the meet of any family (0;)icr € Annihy(A) is (e 0i;

e the join of any family (0;)icr € Annihy(A) is | J;c; 0;.

Proof. We know that the set Pol(RCon(A)) of polars of the frame RCon(A)
is a complete Boolean algebra with the property that the meet (resp. the join)

icl 97, (resp. (\/ ei)lRC(J"L(A)LRCU‘IL(A)).
icl

Then the theorem follows by applying Corollary 5.2 and Lemma 5.3.

of a family (0;);er C Pol(RCon(A)) is

O

6. Zip and weak zip algebras

This section concerns the principal notions of this paper: the zip algebras
and the weak zip algebras. They will be defined by means of the faithful
congruences and the weakly faithful congruences, respectively.

Let R be a commutative ring and I an ideal of R. Following [9], [29], [25]
we say that

o [ is faithful if Anng(I) is the zero ideal of R;

o [ is weakly faithful if Anng () is the nilradical Nil(R) of R;
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e R is a zip ring if for each faithful ideal J of R there exists a faithful finitely
generated ideal K of R such that K C J;

e R is a weak zip ring if for each weakly faithful ideal J of R there exists a
weakly faithful finitely generated ideal K of R such that K C J.

Now we shall generalize these notions to a universal algebra framework. Let
A be an algebra in a congruence-modular variety ¥V and 6 a congruence of A.
Then we say that

e 0 is a faithful congruence if - = A4;

e 0 is weakly faithful if 1~ = p(A4);

e A is a zip algebra if for each faithful congruence 6 of A there exists a
faithful compact congruence « of A such that o C 0;

e A is a weak zip algebra if for each weakly faithful congruence 6 of A there
exists a weakly faithful compact congruence « of A such that o C 6.

A congruence 6 of a semiprime algebra A is faithful if and only if it is weakly
faithful. Then a semiprime algebra A is a zip algebra if and only if it is a weak
zip algebra.

Let us fix a neo-commutative algebra A in a semidegenerate congruence-
modular variety V.

Lemma 6.1. For any 0 € Con(A) the following assertions are equivalent:
(1) 6 is weakly faithful;
(2) pa(8) is a dense element of the frame RCon(A).

Proof. (1) = (2) Assume that 6 is weakly faithful, so 0+ = pa(Aa). pa(6)
is an element of RCon(A). Then, by using Theorem 5.1,(1) and (4), it follows
that (pa(8))trcon = (pa(f))*» = 6+v = ps(Aa), hence pa(f) is a dense
element of the frame RCon(A).

(2) = (1) Assume that p4(0) is a dense element of the frame RCon(A).
We apply Theorem 5.1,(4) and (1): 0+« = (pa(0))te = (pa(8))trconc) =
pA(A4). Then 6 is a weakly faithful congruence. O

Corollary 6.2. If A is semiprime then 0 is faithful if and only if pa(0) is a
dense element of the frame RCon(A).

Theorem 6.3. The following assertions are equivalent:

(1) A is a weak zip algebra;
(2) RCon(A) is a zipped frame.

Proof. (1) = (2) Assume that A is a weak zip algebra. Let ¢ be a dense
element of the frame RCon(A), so € = pa(6), for some congruence 6 of A. By
Lemma 6.1, 0 is a weakly faithful congruence of A. Then there exists a weakly
faithful compact congruence a of A such that @ C . Denote 5 = pa(«), so
B € K(RCon(A)) and f is a dense element of the frame RCon(A) (cf. Lemma
6.1). It is clear that 8 C e, so RCon(A) is a zipped frame.

(2) = (1) Assume that RCon(A) is a zipped frame. Let 6 be a weakly
faithful congruence of A, so pa(f) is a dense element of the frame RCon(A)
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(cf. Lemma 6.1). Thus 8 C pa(f), for some dense compact element S of
RCon(A), therefore there exists an integer n > 0 such that [5, 8] C 6 (by
Proposition 4.2). We recall that K(RCon(A)) = {pa(x)|x € K(A)}, so one
can find a compact congruence « of A such that 8 = p(«a), hence 3 is weakly
faithful (cf. Lemma 6.1). We remark that [a, )™ C [8,6]" C 6 and [a, a]” €
K(A) (because A is neo-commutative). According to Lemma 4.1(7) we have
pa(lo,a]™) = pa(a). Therefore, by using Lemma 5.1(4) the following hold:

(lon ™) = (pa(la, a]™)-e = ata = pa(An).

Thus [a, a]™ is weakly faithful, hence A is a weak zip algebra. O

If we apply Theorem 6.3 to a commutative ring R then we obtain Theorem
5.4 of [7]: R is a weak zip ring if and only if the frame RId(R) of radical ideals
of R is a zipped frame.

Corollary 6.4. If A is semiprime then the following assertions are equivalent:
(1) A is a zip algebra;
(2) RCon(A) is a zipped frame.

Let S be a subset of Con(A). We say that the algebra A of V satisfies the
ascending chain condition on S if for any ascending chain 8; C 6, C --- C 0y C

- in S there exists a positive integer n such that 8,, = 0,1, for all positive
integers k.

Proposition 6.5. If A satisfies the ascending chain condition on its weak
annihilator congruences then A is a weak zip algebra.

Proof. By hypothesis, A satisfies the ascending chain condition on Annih,,(A).
From Corollary 5.2 we know that Annih,,(A) = Pol(RCon(A)), so the frame
RCon(A) satisfies the ascending chain condition on its polars. Then, using
Corollary 3.1 of [7], it follows that RCon(A) is a zipped frame. According to
Theorem 6.3, A is a weak zip algebra.

d

A €V is said to be a noetherian algebra if it satisfies the ascending chain
condition on Con(A). According to Proposition 6.5, any noetherian algebra
is a weak zip algebra. In particular, any finite algebra A € V is a weak zip
algebra.

Let us fix a morphism u : A — B of the category NV of neo-commutative
algebras of the variety V.

Theorem 6.6. Assume that u : A — B is an inverse-dense morphism and
u*(pp(AB)) = pa(Aa). The following are equivalent:

(1) A is a weak zip algebra;

(2) B is a weak zip algebra.

Proof. In virtue of Corollaries 4.10 and 4.11, u” is a dense and x-dense coherent
frame morphism. Applying Theorem 4.13 of [7], it follows that the frame
RCon(A) is zipped if and only if the frame RCon(B) is zipped. Therefore, by
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using Theorem 6.3, the following equivalences hold: A is a weak zip algebra iff
RCon(A) is a zipped frame iff RCon(B) is a zipped frame iff B is a weak zip
algebra.

|

Corollary 6.7. Assume that u : A — B is an inverse-dense morphism and
uw (pp(AB)) = pa(Aa). If A and B are semiprime then A is a zip algebra if
and only if B is a zip algebra.

7. Preserving the zippedness by reticulation

The reticulation L(A) of a neo-commutative algebra A in a semidegenerate
congruence-modular variety, introduced in [13], generalizes the reticulation of a
ring [20], [28]. L(A) is a bounded distributive lattice whose ideals are strongly
connected with the congruences of A. This allows us to transfer some results
from ideals of L(A) to the congruences of A and vice-versa. In this section we
shall study how the reticulation relates the weak zip algebras and the ideal zip
lattices (a notion defined in a similar way to the zip rings).

Let us fix a semidegenerate congruence-modular variety V and A a neo-
commutative algebra of V. Then the set K(A) of compact congruences of A is
closed under the commutator operation and V4 € K(A), so one can consider
the algebraic structure (K(A),V,[-,:],A4,Va).

We shall recall from [13] the construction of the reticulation L(A) of A.
Consider the following equivalence relation on K(A): for all o, 5 € K(A),
a = B if and only if p(a) = p(B). Let & be the equivalence class of o« € K(A)
and 0 = A4,1 = V4. Then = is a congruence of the algebraic structure
(K(A),V,[,],Aa,Va) so the quotient set L(A) = K(A)/= is a bounded dis-
tributive lattice, named the reticulation of the algebra A (see [13]). We shall
denote by A4 : K(A) — L(A) the function defined by Aa(a) = &, for all
a € K(A). We remark that for all a, 8 € K(A) we have Ay () = Aa(B) if and
only if p(a) = p(B).

Let L be a bounded distributive lattice and Id(L) the set of its ideals.
Consider the following topological spaces:

e the prime spectrum Specrq(L) of L, i.e. the set of prime ideals of L,
endowed with the Stone topology;

e the minimal prime spectrum Minry(L) spectrum of L, i.e. the set of
minimal prime ideals of L, endowed with the restriction of the Stone topology.

For all 8 € Con(A) and I € Id(L(A)) we shall denote

0* = {da(a)|la € K(A),a C O} and I, = \/{a € K(A)|Ma(a) € T}.

Thus 6* is an ideal of the lattice L(A) and I, is a congruence of A. In this
way one obtains two order - preserving functions (-)* : Con(A4) — Id(L(A))
and (+). : Id(L(A)) — Con(A).

Lemma 7.1. [18] For all 6 € Con(A), o € K(A) and I € Id(L(A)) the
following hold:
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(1) a C I iff \a(a) € I;

(2) (07)« = p(0) and (I.)" = I;

(3) 0* = (p(6))* and p(L.) = L.;

(4) If 6 € Spec(A) then (0*). = 6 and 0* € Specrq(L(A)).
(5) If I € Specra(L(A)) then I, € Spec(A);

According to the previous lemma one can consider the order - preserving
functions w : Spec(A) — Specra(L(A)) and v : SpecraL((A)) — Spec(A), de-
fined by u(¢) = ¢* and v(P) = P, for all ¢ € Spec(A) and P € Specrq(L(A)).

The following two propositions emphasize a strong connection between the
congruence theory in the algebras of V, the ideal theory in bounded distributive
lattices and the frame theory. The results of this section will be proven by using
these propositions.

Proposition 7.2 ([13], Proposition 11). The maps u : Spec(A) — Specra(L(A))
and v : Specrq(L(A)) — Spec(A) are homeomorphisms, inverse to one another.

Proposition 7.3 ( [13], Proposition 14). The maps (-)*|rcon(a) : RCon(A) —
Id(L(A)) and ()« : Id(L(A)) = RCon(A) are frame isomorphisms, inverse to
one another.

Let L be a bounded distributive lattice. An ideal I of L is dense if its
annihilator Ann(I) = {a € Lla Az =0 for any = € I} is the zero ideal of L. L
is an ideal zip lattice if for any dense ideal I of L there exists a € I such that
the principal ideal (a] is a dense ideal of L.

Lemma 7.4. A bounded distributive lattice L is an ideal zip lattice if and only
if the frame Id(L) of ideals of L is a zipped frame.
Theorem 7.5. If A is a neo-commutative algebra of V then the following are
equivalent:

(1) A is a weak zip algebra;

(2) The reticulation L(A) of A is an ideal zip lattice.

Proof. By Lemma 7.1(3), we observe that the following diagram is commuta-
tive:

ON
Con(A) > Id(L(A))

RCon(A)

FIGURE 4

We know from Proposition 7.3 that the map (-)* : RCon(A) — Id(L(A)) is
a frame isomorphism, therefore, by using Theorem 6.3 and Lemma 7.4 we get
the equivalence of the following properties:
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e A is a weak zip algebra;
e RCon(A) is a zipped frame;
e [d(L(A)) is a zipped frame;
e L(A) is an ideal zip lattice.
(|

Corollary 7.6. If A is a semiprime neo-commutative algebra of V then the
following are equivalent:

(1) A is a zip algebra;

(2) L(A) is an ideal zip lattice.

Lemma 7.7. The reticulations L(A) and L(A/pa(A4)) of the neo-commutative
algebras A and A/pa(A4) are isomorphic lattices.

Proof. By Proposition 7.6 of [13], the lattices L(A/pa(A4)) and L(A)/(pa(Aa))*
are isomorphic. According to Lemma 7.1(3) we have (pa(Aa))* = (Ax)* =
{A 4}, therefore we get the following lattice isomorphisms:

L(A/pa(Aa)) =~ L(A)/(pa(Aa))" = L(A)/{As} ~ L(A). 0

Theorem 7.8. If A is a neo-commutative algebra of V then the following are
equivalent:

(1) A is a weak zip algebra;
(2) A/pa(Aa,) is a zip algebra.

Proof. 1t is clear that A/pa(A4) is a semiprime algebra. Therefore by us-
ing Theorem 7.5, Lemma 7.7 and Corollary 7.6 it follows that the following
properties are equivalent:

e A is a weak zip algebra;

e L(A) is an ideal zip lattice;

e L(A/pa(Aa)) is an ideal zip lattice;

e A/pa(A4) is a zip algebra. O

An important theorem of Hochster [19] asserts that for any distributive
lattice L there exists a reduced commutative ring R such that the lattices L
and L(R) are isomorphic.

Applying the Hochster theorem to the reticulation L(A) of the neo-commutative
algebra A one can find a reduced commutative ring R such that the reticula-
tions L(A) and L(R) are isomorphic lattices.

Lemma 7.9. If A is a neo-commutative algebra of V then the following are
equivalent:

(1) A is a weak zip algebra;
(2) R is a zip ring.

Proof. Taking into account that R is a reduced ring and applying Theorem 7.5
and Corollary 7.6 we obtain the following equivalences: A is a weak zip algebra
iff L(A) is a zip lattice iff L(R) is a zip lattice iff R is a zip ring. O
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Theorem 7.10. Let A be a neo-commutative algebra of V. Then the following
are equivalent:

(1) A is a weak zip algebra;
(2) The minimal prime spectrum Min(A) of A is a finite space.

Proof. Recall from [8] the following topological characterization of reduced zip
rings: a reduced ring @ is a zip ring if and only if the minimal prime spectrum
Min(Q) of @ is finite.

Let R be a reduced ring such that L(A) and L(R) are isomorphic lattices
(the existence of R is ensured by the Hochster theorem). Applying Proposition
7.2 to the algebra A and the ring R the following hold:

e Min(A) and Minrq(L(A)) are homeomorphic spaces;

e the minimal prime spectrum Min(R) of R and Minsq(L(R)) are homeo-
morphic spaces.

It follows that Min(A) and Min(R) are homeomorphic spaces. Therefore,
using Lemma 7.9 and the previous remarks, we obtain the equivalence of the
following properties:

e A is a weak zip algebra;

e R is a zip ring;

o Min(R) is a finite space;

e Min(A) is a finite space.

Proposition 7.11. Let A, B be two neo-commutative algebras of V such that
the direct product A X B has no skew congruence. Then A X B is a weak zip
algebra if and only if A, B are weak zip algebras.

Proof. By the Hochster theorem one can find two reduced commutative rings
R, @ such that L(A) ~ L(R) and L(B) ~ L(Q). In accordance with Proposition
5.1 of [13] we get the following lattices isomorphisms:

L(Ax B)~L(A) x L(B) ~ L(R) x L(Q) ~ L(R x Q).

By Lemma 7.9, A (resp. B) is a weak zip algebra if and only if R (resp. Q)
is a zip ring.

Therefore, by using Theorem 7.5 and Proposition 1.1(b) of [23], the following
properties are equivalent:

e A x B is a weak zip algebra;

e (A x B) is an ideal zip lattice;

e L(R x Q) is an ideal zip lattice;

e R X @ is a zip ring:

e R () are zip rings;

e A, B are weak zip algebras.
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8. A final discussion

This paper proposes a universal algebra setting for extending some defini-
tions and results of zip ring theory. The main notions of this theory can be
generalized to algebras in a congruence-modular variety (due to the commu-
tator operation that ensures good properties for prime congruences, radical
congruences, etc. (cf. [1]). For developing the general theory we chose as
framework the category NV, whose objects are the neo-commutative algebras
of a semimodular congruence-modular variety V and the morphisms are the
admissible morphisms of V (in the sense of [14]).

A reason for this choice is that several proofs use Proposition 4.2, proven
in [1] for algebras with principal commutators and in [13] for neo-commutative
algebras. The quasi-commutative algebras were introduced in [17] as univer-
sal algebra generalizations of the Belluce quasi-commutative rings [4]. They
include the neo-commutative algebras and are characterized as algebras of V
that admit a reticulation [18]. We don’t know if the property formulated in
Proposition 4.2 holds in a quasi-commutative algebra, but it would be inter-
esting if some results of this paper remain valid in this more general context.
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