
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,005 |
تعداد دریافت فایل اصل مقاله | 3,580,078 |
مطالعه تاثیر تنش خشکی و قارچ های میکوریزا آربوسکولار بر برخی از ویژگیهای مورفولوژیکی و فیزیولوژیکی گیاه ترخون (Artemisia dracunculus) | ||
مجله ژنتیک و بهنژادی گیاهی | ||
دوره 1، شماره 1، فروردین 1403، صفحه 97-118 اصل مقاله (945 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22103/gpb.2024.23392.1013 | ||
نویسندگان | ||
نرگس حاتمی* 1؛ الهام مهرابی گوهری2؛ منصوره تشکری زاده3؛ ابراهیم صداقتی4 | ||
1استادیار، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران. | ||
2استادیار، بخش حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران. | ||
3استادیار، بخش جنگل و مرتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران. | ||
4دانشیار، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ولیعصر، رفسنجان، ایران. | ||
چکیده | ||
هدف: یکی از عوامل محیطی محدود کننده در رشد و توسعه پوشش گیاهی در مناطق مختلف ایران، تنش خشکی است که میتوان بهمنظور کاهش اثرات آن از روشهای زراعی مناسب مانند استفاده از کودهای زیستی شامل قارچهای میکوریزا آربوسکولار بهره برد. مواد و روشها: بهمنظور بررسی تأثیر قارچهای میکوریزا آربوسکولار بر رشد و عملکرد گیاه ترخون (Artemisia dracunculus) در شرایط تنش خشکی، پژوهشی بهصورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی، انجام شد. تیمارهای آزمایشی شامل تلقیح مخلوط دو گونه قارچ میکوریزا آربوسکولار Rhizophagus intraradices وRhizophagus irregularis و تیمار شاهد (بدون تلقیح قارچ میکوریزا) بهعنوان فاکتور اول و همچنین تنش خشکی در سه سطح (آبیاری بر اساس ۳۰، 60 و ۱۰۰ درصد ظرفیت زراعی) بهعنوان فاکتور دوم بودند. در این آزمایش برخی صفات مورفولوژیکی (ارتفاع ساقه، سطح برگ، طول ریشه، وزن خشک برگ، ساقه و ریشه) و فیزیولوژیکی (محتوای نسبی آب و میزان کلروفیل) گیاه مورد بررسی قرار گرفت. نتایج: نتایج حاصل نشان داد که خصوصیات رویشی با افزایش تنش خشکی بهطور معنیداری در تیمارهایی که قارچهای میکوریزا آربوسکولار تلقیح نشده بود کاهش یافتند ولی تلقیح با قارچ میکوریزا بهطور معنیداری باعث افزایش شاخصهای رشد رویشی گیاه ترخون در شرایط تنش خشکی در مقایسه با گیاهان تلقیح نشده گردید. اثرات میکوریزا و تنش خشکی بر محتوای نسبی آب و میزان کلروفیل نیز معنیدار بود و با افزایش تنش خشکی محتوای نسبی آب و میزان کلروفیل کاهش یافت ولی تلقیح گیاه با قارچ میکوریزا موجب افزایش معنیدار محتوای نسبی آب و کلروفیل در گیاه ترخون نسبت به تیمار بدون قارچ شد. همچنین اثر تنش خشکی و اثر تلقیح با قارچهای میکوریزا بر محتوای فسفر و پتاسیم برگها معنیدار بود. تنش خشکی باعث افزایش میزان پتاسیم و کاهش میزان فسفر شد ولی اثر متقابل تنش خشکی و تلقیح با قارچهای میکوریزا بر محتوای فسفر و پتاسیم برگها معنیدار نشد. نتیجهگیری: بهطور کلی نتایج نشان داد که قارچهای میکوریزا آربوسکولار سبب افزایش مقاومت به تنش خشکی در گیاه ترخون میگردد و استفاده از آنها برای پرورش گیاهان دارویی در سطح وسیع راهگشا است. | ||
کلیدواژهها | ||
تنش خشکی؛ شاخصهای رشدی؛ قارچ میکوریزا آربوسکولار؛ گیاهان دارویی | ||
مراجع | ||
Aghaei, K., Barzali, M., Jafarian, V., & Shekari, F. (2017). Some physiological and biochemical responses of tarragon plant to drought stress. Journal of Plant Process and Function Iranin Society of Plant Physiology, 6(19), 15-24. [In Persian] http://dorl.net/dor/20.1001.1.23222727.1396.6.19.13.1 Alsunuse, B. T. B., Al-Ani, M. A. M., Faituri, M., Ashilenje, D. S., Alawami, A. A., & Stahl, P. D. (2021). Effects of arbuscular mycorrhizal fungi on growth and phosphorus uptake of maize (Zea mays L.) at different levels of soil phosphorus and soil moisture. Journal of Dryland Agriculture, 7(3), 22-33. https://doi.org/10.5897/JODA2020.0063 Alves de Assis, R. M. A., Carneiro, J. J., Medeiros, A. P. R., de Carvalho, A. A., da Cunha Honorato, A., Carneiro, M. A. C., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2020). Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Industrial Crops and Products, 158, 10-16. https://doi.org/10.1016/j.indcrop.2020.112981 Anjam, H. R., Hosseinifarahi, M., & Abdipour, M. (2023). The application of arbuscular mycorrhizal fungi and putrescine on the vegetative characteristics, seed yield and essential oil of the medicinal plant cumin (Cuminum cyminum) under drought stress. Sustainable Agricultural Science Research, 3(3), 28-47. [In Persian]. https://doi.org/10.30495/sarj.2023.2001810.1166 Arpanahi, A. A., Feizian, M., Mehdipourian, G., & Khojasteh, D. N. (2020). Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. European Journal of Soil Biology, 100, 103217. https://doi.org/10.1016/j.ejsobi.2020.103217 Aslani, Z., Hasani, A., Rasouli Sadeghiani, M. H., Sefidkon, F., & Barin, M. (2011). Effect of two species of arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices) on growth, chlorophyll levels and phosphorus absorption in basil plant (Ocimum basilicum L.) under drought stress conditions. Iranian Journal of Medicinal and Aromatic Plants Research, 27(3), 471-486. [In Persian]. http://dx.doi.org/10.22092/ijmapr.2011.6388 Babaei, Kh., Moghaddam, M., Farhadi, N. & Ghasemi Pirbalouti, A. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 284(27),110-116. https://doi.org/10.1016/j.scienta.2021.110116 Bandurska, H. (2022). Drought stress responses: Coping strategy and resistance. Plants (Basel), 11(7), 922. https://doi.org/10.3390/plants11070922 Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1-15. https://doi.org/10.3389/fpls.2019.01068 Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Douira, A., El Modafar, C., Mitsui, T., Wahbi, S., & Meddich, A. (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in)organic adjustments. Plants, 9(1), 80. https://doi.org/10.3390/plants9010080 Chapman, B., Jones, D., & Jung, R. F. (1983). Processes controlling metal ion attenuation in acid mine drainage streams. Geochimica et Cosmochimica Acta, 47(11), 1957-1973. https://doi.org/10.1016/0016-7037(83)90213-2 Chaves, M. M., Costa, J. M., & Saibo, N. J. M. (2011). Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, 57, 49-104. https://doi.org/10.1016/B978-0-12-387692-8.00003-5 Cheng, H. Q., Giri, B., Wu, Q. S., Ying-Ning, Z., & Kuca, K. (2022). Arbuscular mycorrhizal fungi mitigate drought stress in Citrus by modulating root microenvironment. Archives of Agronomy and Soil Science, 68(9), 1217-1228. https://doi.org/10.1080/03650340.2021.1878497 Dadashi, D., Norouzi, M., Sabokdast, M., & Sarikhani, M. R. (2023). The effect of inoculation of growth-promoting bacteria Enterobacter sp. S16-3 on the morpho-physiological traits of rapeseed under drought stress. Journal of Crop Breeding, 15(46), 145-155. [In Persian]. https://doi.org/10.61186/jcb.15.46.145 Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science, 12, 699618. https://doi.org/10.3389/fpls.2021.699618 Franco, J. A. (2018). Root development under drought stress. Technology and Knowl. Transf. E-Bull, 2(6), 1-3. http://hdl.handle.net/10317/2075 Gerdemann, J., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the Br. Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0 Ghonjalipour Goshki, M., Abdollahi, F., & Sadeghi Lari, A. (2021). Effect of mycorrhiza fertilizer on physiological traits and economical yield of lettuce (Lactuca sativa L.) under water stress conditions. Journal of Vegetable Sciences, 5(9), 177-195. [In Persian] https://doi.org/10.22034/iuvs.2021.531386.1164 Golubkina, N., Logvinenko, L., Novitsky, M., & Zamana, S. (2020). Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants, 9(3), 375. https://doi.org/10.3390/plants9030375 Goshasbi, F., Heidari, M., Sabbagh, S. K., & Makarian, H. (2021). Effect of water deficit stress and bio and non-bio-fertilizers on flowering branches yield, photosynthetic pigments and concentration of macro elements in thyme (Thymus vulgaris L.). Iranian Journal of Field Crop Science, 52(2), 157-172. [In Persian] https://doi.org/10.22059/IJFCS.2020.293187.654660 Haghir Ebrahimabadi, A., Hatami, M., Karimzadeh Asl, K., & Ghorbanpour, M. (2018). Effect of mycorrhizal fungi and biophosphor fertilizer on growth features, yield and yield components, and essential oil constituents in Cuminum cyminum L. Journal of Medicinal Plants, 17(66), 74-90. [In Persian] https://doi.org/20.1001.1.2717204.2018.17.66.3.1 Hatami, N., Bazgir, E., Sedaghati, E., & Darvishnia, M. (2020). The symbiosis study of arbuscular mycorrhizal fungi with some annual herbaceous plants and morphological identification of dominant species of these fungi in Kerman Province. Biological Journal of Microorganism, 9(33). https://doi.org/10.22108/bjm.2020.120148.1242 Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Plant Nutrition, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516 Hu, Y., Xie, W., & Chen, B. (2020). Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture, 7(20), 1-14. https://doi.org/10.1186/s40538-020-00186-4 Jacob, H., & Clark, G. (2002). Methods of Soil Analysis. Part IV Physical Method. Soil Science Inc., Madison, Wisconsin, USA. pp 1692. Jajoo, A., & Mathur, S. (2021). Role of arbuscular mycorrhizal fungi as an underground savior for protecting plants from abiotic stresses. Physiology and Molecular Biology of Plants, 27, 2589-2603. https://doi.org/10.1007/s12298-021-01091-2 Khalid, K. A. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20, 289-296. Krüger, M., Stockinger, H., Krüger, C. & Schüßler, A. (2009). DNA‐based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 183, 212-223. https://doi.org/10.1111/j.1469-8137.2009.02835.x Lamian, A., Ladan Moghadam, A., & Mehrafarin, A. (2015). Changes of morpho-physiological traits, essential oil and methyl chavicol content of tarragon (Artemisia dracunculus) to mycorrhiza (Glomus intraradices) inoculation and salinity stress. Journal of Medicinal Plants, 14(56), 64-77. [In Persian] http://dorl.net/dor/20.1001.1.2717204.2015.14.56.12.9 Lamian, A., Naghdibadi, H., Mehrafarin, A., & Seifsahandi, M. (2017). Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracunculus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation under salinity. Acta Agriculturae Slovenica, 109(2), 215-227. https://doi.org/10.14720/aas.2017.109.2.06 Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94. https://doi.org/10.3390%2Fantiox8040094 Lotfi, M., Abbaszadeh, B., & Mirza, M. (2014). The effect of drought stress on morphology, proline content and soluble carbohydrates of tarragon (Artemisia dracunculus L.). Iranian Journal of Medicinal and Aromatic Plants, 30(1), 19-29. [In Persian] https://doi.org/10.22092/ijmapr.2014.5266 Mahajan, M., Kuiry, R., & Pal, P. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18(6), 100255. https://doi.org/10.1016/j.jarmap.2020.100255 Mazaraie, A., Sirousmehr, A. R., & Babaei, Z. (2017). Effect of mycorrhizal fungi on some morphological and physiological characteristics of milk thistle (Silybum marianum (L.) Gaertn.) under drought stress. Iranian Journal of Medicinal and Aromatic Plants, 33(4), 620-635. [In Persian] https://doi.org/10.22092/ijmapr.2017.107860.1877 Mehdikhani Moghadam, E. (2010). Important diseases of medicinal plants. Mashhad University, P: 292. [In Persian] Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biology, 12(4), 563-569. https://doi.org/10.1111/j.1438-8677.2009.00308.x Moghadasan, S., Safipour Afshar, A., & Saeid Nematpour, F. (2016). The role of mycorrhiza in drought tolerance of marigold (Calendula officinalis L.). Journal of Crop Ecophysiology, 9(4), 521-532. [In Persian] https://journals.iau.ir/article_518790_61526306f92517aecdfb9c8b5770411f.pdf Mumivand, H., Ebrahimi, A., Morshedloo, M. R., & Shayganfar, A. (2021). Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of tarragon (Artemisia dracunculus L.). Industrial Crops & Products, 164, 1-14. https://doi.org/10.1016/j.indcrop.2021.11338 Nabizadeh, E., Haghshenas, M., & Ahmadi, K. (2023). The effect of mycorrhizal fungus (Piriformospora indica) on the morphological, physiological, and biochemical traits of the medicinal plant Stevia (Stevia rebaudiana) under drought stress. Journal of Horticultural Science, 37(2), 453-465. [In Persian] https://doi.org/10.22067/jhs.2022.75337.1173 Nadiu, T., & Naraly, A. (2001). Screening of drought tolerance in green gram (Vigna radiate L. Wilczeek) genotypes under reducing soil moisture. Indian Journal of Plant Physiology, 6(2), 197-201. https://indianjournals.com/ijor.aspx?target=ijor:ijpp&volume=6&issue=2&article=017&type=pdf Negahban, V., Karimian, A. K., & Fayaz, F. (2020). The coexistence of mycorrhizal fungus on the Catharanthus roseus medicinal plant under the influence of drought stress. Journal of Medicinal Plants Biotechnology, 6(1), 14-26. [In Persian] https://jmpb.znu.ac.ir/article_241910.html Oehl, F., Jansa, J., de Souza, F. A., & da Silva, G. A. (2011). Cetraspora helvetica, a new ornamented species in the Glomeromycetes from Swiss agricultural fields. Mycotaxon, 114(1), 71-84. https://doi.org/10.5248/114.71 Oliveira, T. C., Cabral, J. S. R., Santana, L. R., Tavares, G. G., Santos, L. D. S., Paim, T. P., Muller, C., Guimaraes Silva, F., Costa, A. C., Souchie, E. L., & Mendes, G. C. (2022). The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Scientific Reports, 12, 9044. https://doi.org/10.1038/s41598-022-13059-7 Ortiz, N., Armada, E., Duque, E., Roldan, A., & Azcon, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. https://doi.org/10.1016/j.jplph.2014.08.019 Philips, J. M., & Hyman, D. S. (1970). Improved procedures clearing root and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Mycological Research, 55(1), 158-161. https://doi.org/10.1016/s0007-1536(70)80110-3 Rahimi, A., Dovlati, B., & Amirnia, R. (2020). Saied Heydarzade. Effect of application of mycorrhizal fungus and Azotobacter on physiological characteristics of Trigonella foenum-graecum L. under water stress conditions. Iranian Journal of Plant Biology, 11(4), 1-18. https://doi.org/10.22108/ijpb.2019.116384.1149 Ritchie, S. W., & Nguyen, H. T. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111. https://doi.org/10.2135/cropsci1990.0011183x003000010025x Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: Causes, consequences, and tolerance. In Drought Stress Tolerance in Plants (pp. 1-16). https://doi.org/10.1007/978-3-319-28899-4_1 Sanayei, S., Barmaki, M., Ebadi Khazine Gadim, A., & Torabi Giglou, M. (2020). Effect of drought stress and inoculation of mycorrhizal fungi and Pseudomonas spp. on some morpho-physiological characteristics of Roselle (Hibiscus sabdariffa L.). Agricultural Science and Sustainable Production, 30(2), 71-89. [In Persian]. https://dorl.net/dor/20.1001.1.24764310.1399.30.2.5.8 Sanayei, S., Barmaki, M., Ebadi Khazine Gadim, A., & Torabi Giglou, M. (2020). Effect of drought stress and inoculation of mycorrhizal fungi and Pseudomonas spp. on some morpho-physiological characteristics of Roselle (Hibiscus sabdariffa L.). Journal of Agricultural Science and Sustainable Production, 30(2), 71-89. [In Persian]. https://dorl.net/dor/20.1001.1.24764310.1399.30.2.5.8 Schenck, N. C., & Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi. Synergistic Publications Gainesville, Florida, USA. Sedaghati, E., Ahmadzadeh, M., Sabri-Rise, R., Rahimi, A., Hatami, N., & Mohammadi Mirik, A. A. (2021). The effect of application of arbuscular mycorrhizal fungi with some microorganisms and chemical compounds on the antioxidant enzymes activity and phenolic compounds of corn under drought stress. Iranian Journal of Plant Biology, 13(48), 53-76. [In Persian] https://ijpb.ui.ac.ir/article_26392.html Selahvarzi, Y., & Kamali, M. (2022). Investigation of drought resistance of tarragon (Artemisia dracunculus L.) under different levels of titanium nanoparticles. Environmental Stresses in Crop Sciences, 15(1), 173-184. [In Persian] https://doi.org/10.22077/escs.2020.3571.1876 Sonar, B. A., Kamble, V. R., & Chavan, P. D. (2013). Native AM fungal colonization in three Hibiscus species under NaCl induced salinity. Journal of Pharmaceutical and Biological Sciences, 5(6), 7-13. Song, H. (2005). Effects of VAM on host plant in the condition of drought stress and its mechanisms. Electronic Journal of Biology, 1(3), 44-48. Verma, P., Saxena, R., & Tomar, R. S. (2016). Rhizobacteria: A promising tool for drought tolerance in crop plants. In Proceedings of International Conference on Recent Advances in Biotechnology (pp. 116-125). https://www.researchgate.net/publication/301683349_Rhizobacteria_A_Promising_Tool_for_Drought_Tolerance_in_Crop_Plants Walker, C. (1999). Methods for culturing and isolating arbuscular mycorrhizal fungi. Mycorrhiza News, 11(2), 2-4. Wu, Q. S., Xia, R. X., & Zou, Y. N. (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44(1), 122-128. https://doi.org/10.1016/j.ejsobi.2007.10.001 Zare Hassanabadi, M., Dashti, M., & Akhondi, M. (2020). The effect of two species of arbuscular mycorrhiza fungi on the activity of antioxidant enzymes and morphophysiological characteristics of Mentha pulegium L. in drought stress. Technology of Medicinal and Aromatic Plants of Iran, 2(2), 83-99. [In Persian] https://doi.org/10.22092/MPT.2020.127803.1049 Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., Wang, Y., & Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17(24), 1-13. https://doi.org/10.1186/s12870-017-0974-x | ||
آمار تعداد مشاهده مقاله: 115 تعداد دریافت فایل اصل مقاله: 124 |