
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,068 |
تغییرات بیوشیمیایی و فعالیت برخی آنزیمهای مهارکننده ROS در پاسخ به تنش شوری در گیاه کینوا | ||
مجله ژنتیک و بهنژادی گیاهی | ||
دوره 1، شماره 1، فروردین 1403، صفحه 119-140 اصل مقاله (1.14 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22103/gpb.2024.23068.1003 | ||
نویسندگان | ||
سیده ساناز رمضانپور* 1؛ حسن سلطانلو1؛ سید ابراهیم سیفتی2؛ سحر سادات حسینی3 | ||
1دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2استادیار، گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران. | ||
3دانش آموخته دکتری، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
چکیده | ||
هدف: کینوا با نام علمی Chenopodium quinoa گیاهی هالوفیتی است که توانایی زنده ماندن در شرایط شور را دارد. در این مطالعه با بررسی پاسخهای فیزیولوژیکی و بیوشیمیایی یک رقم تجاری و پرکاربرد کینوا نسبت به سطوح مختلف تنش شوری آب دریا اطلاعات نوینی در جهت کاهش اثرات منفی تنش شوری بر خصوصیات رشدی و عملکردی و استفاده از این اطلاعات در برنامههای بهنژادی این گیاه ارائه شده است. مواد و روشها: بهجهت بررسی تجمع برخی اسمولیتها (گلایسینبتائین و پرولین)، پراکسید هیدروژن (H2O2) و مالوندیآلدئید (MDA) و فعالیت برخی آنزیمهای آنتیاکسیدانت دخیل در تنش شوری شامل کاتالاز، پراکسیداز، پلیفنل اکسیداز و سوپر اکسید دیسموتاز، ژنوتیپ تیتیکاکا کینوا تحت تاثیر دو سطح شوری dSm-1 9/6 و dSm-1 8/13 بههمراه شاهد در چهار تکرار با استفاده از آزمایش فاکتوریل در قالب طرح کاملاً تصادفی کشت و پس از اعمال تیمار شوری، در بازههای زمانی از شش ساعت تا هشت روز، نمونه برگی تهیه شد. نتایج: بر اساس نتایج حاصله میزان تجمع پراکسیدهیدروژن در شوری dSm-1 8/13 به مراتب بالاتر (P ≤0.001) از dSm-1 9/6 بود. به دنبال افزایش سوپراکسیدهیدروژن و تولید ROS، میزان پراکسیداسیون لیپیدها نیز افزایش یافت و شاخص مالوندیآلدئید نیز در هر دو سطح شوری طی روزهای تنش افزایش (P ≤0.001) نشان داد. نتیجهگیری: بهطور کلی نتایج این تحقیق نشان داد که گیاه کینوا با افزایش تجمع اسمولیتها و همچنین افزایش فعالیت آنزیمهای آنتیاکسیدان میتواند از بروز تنش اکسیداتیو و ایجاد خسارت به گیاه در شرایط تنش شوری جلوگیری نماید. گیاه کینوا قادر است با فعال نمودن پاسخهای بیوشیمیایی و آنزیمی با تنش شوری مقابله نموده و با برقراری هموستازی سلولی مانع خسارات بیشتر تنش شوری شود. | ||
کلیدواژهها | ||
آنتی اکسیدانت؛ پرولین؛ تیتیکاکا؛ شوری؛ کینوا | ||
مراجع | ||
Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429. https://doi.org/10.1016/j.gfs.2020.100429 Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50(1), 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601 Ashraf, M. J. B. A. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003 Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060 Bromham, L. (2015). Macroevolutionary patterns of salt tolerance in angiosperms. Annals of Botany, 115(3), 333-341. https://doi.org/10.1093/aob/mcu229 Chisari, M., Barbagallo, R. N., & Spagna, G. (2007). Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. Journal of Agricultural and Food Chemistry, 55, 3469-347. https://doi.org/10.1021/jf063402k Cramer, G. R. (2002). Response of absisic acid mutant of Arabidopsis to salinity. Functional Plant Biology, 29, 561-567. https://doi.org/10.1071/PP01132 De Oliveira Oliveira Junkes, C. F., Neis, F. A., de Costa, F., Yendo, A. C. A., & Fett-Neto, A. G. (2019). Environmental factors impacting bioactive metabolite accumulation in brazilian medicinal plants. Brazilian Medicinal Plants, 11, 109-134. Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experiment Botany, 55(396), 307-319. https://doi.org/10.1093/jxb/erh003 Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115(3), 327-331. https://doi.org/10.1093/aob/mcu267 Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016 Gniazdowska, A., Krasuska U., & Bogatek, R. (2010). Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 232(6), 1397-1407. https://doi.org/10.1007/s00425-010-1262-2 Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383 Golden, T. R., Hinerfeld, D. A., & Melov, S. (2002). Oxidative stress and aging: beyond correlation. Aging Cell, 1(2), 117-123. https://doi.org/10.1046/j.1474-9728.2002.00015.x Greive, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary-amino compounds. Plant Soil, 70, 303-307. https://doi.org/10.1007/BF02374789 Hamanaka, R. B., & Chandel, N. S. (2009). Mitochondrial reactive oxygen species regulate hypoxic signaling. Current Opinion in Cell Biology, 21(6), 894-899. https://doi.org/10.1016/j.ceb.2009.08.005 Heidarvand, L., Maali Amiri, R., Naghavi, M. R., Farayedi, Y., Sadeghzadeh, B., & Alizadeh, K. H. (2011). Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian Journal of Plant Physiology, 58(1), 157-163. https://doi.org/10.1134/S1021443711010080 Hosseini, S. S., Ramezanpour, S. S., Soltanloo, H., & Seifati, S. E. (2023). RNA‑seq analysis and reconstruction of gene networks involved in response to salinity stress in quinoa (cv.Titicaca). Scientific Reports, 13, 7308. https://doi.org/10.1038/s41598-023-34534-9 Hu, Y., Ge, Y., Zhang, C., Ju, T., & Cheng, W. (2009). Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation, 59, 51-61. https://doi.org/10.1007/s10725-009-9387-7 Jacobsen, S. E., Mujica, A., & Jensen, C. R. (2003). The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors. Food Reviews International, 19(12), 99-109. https://doi.org/10.1081/FRI-120018872 Jacobsen, S. E. (2017). The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science, 203(6), 603-613. https://doi.org/10.1111/jac.12228 Jaleel, C. A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R., & Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedling under salt stress. South African Journal of Botany, 73(2), 190-195. https://doi.org/10.1016/j.sajb.2006.11.001 Katsuhara, M., Otsuka, T., & Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sciences, 169(2), 369-373. https://doi.org/10.1016/j.plantsci.2005.03.030 Khalofah, A., Migdadi, H., & El-Harty, E. (2021). Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants, 10(4), 719. https://doi.org/10.3390/plants10040719 Kiamoghadam, M. R. & Bagherieg-Najjar, M. B. (2012). Analysis of some physiological and biochemical parameters in AtrecQl4A mutant plants under salinity stress. Journal of Plant Production Research, 16, 115-132. https://dorl.net/dor/20.1001.1.23222050.1388.16.1.9.4 Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138(2), 882-897. https://doi.org/10.1104/pp.105.062257 Maehly, A. C., & Chance, B. (1955). Assay of catalases and peroxidases. Methods in enzymology, 2, 764-775. https://doi.org/10.1002/9780470110171.ch14 Mckersie, D. B., & Leshem, Y. (1994). Stress and stress coping in cultivated plants. Biologia Plantarum, 37, 380. https://doi.org/10.1007/978-94-017-3093-8 Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reeducates in cotton under salt stress. Brazilian Journal of Plant Physiology, 15(2), 12-21. https://doi.org/10.1016/S0098-8472(02)00058-8 Meng, X., Li, B., Liu, J., & Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and post-harvest coating during storage. Food Chemistry, 106, 501-508. https://doi.org/10.1016/j.foodchem.2007.06.012 Minami, M., & Yoshikawa, H. (1979). A simplified assay method of superoxide dismutase activity for clinical use. Clinica Chimica Acta, 92(3), 337-342. https://doi.org/10.1016/0009-8981(79)90211-0 Mirmohammadi meybodi, A. M., & Ghareyazi, B. (2002). Physiological and genetic aspects of plant salinity stress. Isfahan University of Technology. Iran [In Persian] Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9 Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043. https://doi.org/10.1093/jxb/erj100 Nayyar, H. (2003). Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany, 50(3), 253-264. https://doi.org/10.1016/S0098-8472(03)00038-8 Ngo, T., & Lenhoff, M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105, 389-397. https://doi.org/10.1016/0003-2697(80)90475-3 Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3 Olmos, E., Jimenez-Perez, B., Roman-Garcia, I., & Fernandez-Garcia, N. (2024). Salt-tolerance mechanisms in quinoa: Is glycinebetaine the missing piece of the puzzle? Plant Physiology and Biochemistry, 206, 108276. https://doi.org/10.1016/j.plaphy.2023.108276 Peltzer, D., Dreyer, E., & Polle, A. (2002). Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 40(2), 141-150. https://doi.org/10.1016/S0981-9428(01)01352-3 Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 126(1), 445-462. https://doi.org/10.1104/pp.126.1.445 Pradedova, E. V., Isheeva, O. D., & Salyaev, R. K. (2011). Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russian Journal of Plant Physiology, 58(2), 210-217. https://doi.org/10.1113/expphysiol.2009.050526 Rios-Gonzalez, K., Erdei, L., & Lips, S. H. (2002). The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science, 162(6), 923-930. https://doi.org/10.1016/S0168-9452(02)00040-7 Reguera, M., Conesa, C.M., Gil-Gómez, A., Haros, C.M., Pérez-Casas, M.Á., Briones-Labarca, V., Bolaños, L., Bonilla, I., Álvarez, R., Pinto, K., & Mujica, Á. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. Peer Journal, 6, e4442. Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3), 407-421. Shen, B., Jensen, R. G., & Bohnert, H. J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiology, 115(2), 527-532. https://doi.org/10.1104/pp.115.2.527 Sindhu, R., & Khatkar, B. (2019). Pseudocereals: nutritional composition, functional properties, and food applications. In: Food Bioactives. New Jersey: Apple Academic Press, 129–147 Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Effects of different irradiance levels on some antioxidant enzymes and on malondealdehyde content during rewatering in olive tree. Plant Science, 166(2), 293-302. https://doi.org/10.1016/j.plantsci.2003.09.018 Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., & Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oriza sativa L.) differential response in salt tolerant and sensitive varieties. Plant Science, 165, 1411-1418. https://doi.org/10.1016/j.plantsci.2003.08.005 Vanderauwera, S., Suzuki, N., Miller, G., Van De Cotte, B., Morsa, S., Ravanat, J. L., Hegie, A., Triantaphylides, C., Shulaev, V., Van Montagu, M. C., & Van Breusegem, F. (2011). Extranuclear protection of chromosomal DNA from oxidative stress. Proceedings of the National Academy of Sciences, 108(4), 1711-1716. https://doi.org/10.1073/pnas.1018359108 Wang, X., Bai, J., Wang, W., Zhang, G., Yin, S., & Wang, D. (2021). A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. Environmental Geochemistry and Health, 43(3), 1109–1122. https://doi.org/10.1007/s10653-020-00569-4 | ||
آمار تعداد مشاهده مقاله: 119 تعداد دریافت فایل اصل مقاله: 124 |