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ABSTRACT. In the present paper, we investigate the eigenvalues of an el-
liptic differential operator on compact Riemannian manifolds with bound-
ary and derive a general inequality for these eigenvalues. Applying this
inequality, we give universal estimates for eigenvalues on compact do-
mains of complete submanifolds in an Euclidean space, and of complete
manifolds admitting special functions. Finally, we find universal bounds
on the (k + 1)-th eigenvalue on such objects in terms of the first k eigen-
values independent of the domains.
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1. Introduction

Let (M™, g) be a Riemannian manifold with local coordinate system {x;}} ;.
The most important geometric operator on M is the Laplace-Beltrami operator
which is defined by

~ Jdetg > 0i(\/det g g7 0;) = " (2:0; — T'};0%)
ij=1

where 9; = %, (") = (gi;)~" and Ffj are the Christoffel symbols of the
Riemannian metric g = (g;;). The Riemannian measure dy on (M, g) is defined
by du = v/det gdxz' A ... A dz™. Throughout this paper, the integrations on M
are always taken with respect to du. Suppose that 2 is a bounded domain in

a Riemannian manifold M. Since the equation

/va A= / w(A2 = A,

Q

holds for all functions v such that vanish on 92, we infer the operator A% — A
is a self-adjoint and hence its eigenvalues are real and discrete. If A; is the
first non-zero eigenvalue of the operator A2— A and A;, i = 1,2,--- is the i-th
eigenvalue of the operator A2 — A then we can write

O<A1SA2S"'.
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Obtaining a nice estimate of the eigenvalues of a geometric operator is very
important in mathematics and physics. We will focus our attention on this
problem. Payn et al. [12] established that the inequality

k
4
1 A — A < — Ay, BE=1,2,---.
o Ay
holds for the Dirichlet eigenvalues of the Laplace operator on {2 C R™. Recently,
many interesting generalizations of (1) have been obtained. For instance, in [16]
Yang proved the following inequality

k
4
D (Aksr = M) (Agpr — (14 E)Ai) <0, fork=1,2,--,
i=1
for Dirichlet eigenvalues of the Laplace operator on 2 C R™. Then Harrell et
al. [7] extended the Yang’s inequality of Dirichlet eigenvalues of the Laplacian
as follows
b 4 n?
D Mk = M) < = > (Agr — A (A + < H5),

=1 i=1

3

on bounded domain 2 in a complete Riemannian manifold M™ isometrically
immersed in RY, where H is the mean curvature vector field of M™ and Hy =
supg |H|. Also, Wang and Xia in [15] studied eigenvalues of the clamped plate
problem

2
@) u=2% =0 on N,

{Azu =Au in Q,
ov

and proved

k

k 2
Z(Ak+1 —A)* < % {Z(Akﬂ —Ay)? (”QHg +(2n+ 4)Af)}

i=1

1
k 2
x {Z(Ak+1 CAD(AAT n2H§)} .
i=1
Here A is called the eigenvalue of the clamped plate problem and A;, ¢ =
1,2,... is the i-th eigenvalue of the problem (2). When M is the unit n-
sphere, Chen et al. [3] obtained the above inequality. Also, when M is an
n-dimensional hypersurface in R**!, Harrell [6] established the last inequality.
Payn et al. showed [12] that the eigenvalues of the problem (2) for Q C R”
satisfy

k
3 Akl,AkSM Aiy k=1,2,---.
+ k2
n
1=1
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Then, Hile and Yeh [9] obtained the following inequality as a generalization of

3);

b 3 n2ks k m:
L > A; ,
;Ak+1_/\i ~ 8(n+2) Z

i=1
and Cheng and Yang [4] provided the estimate

k

k 1
1 8(n+2)\?1 1
Apy1— z ;Ai < () Z Z (Ai(Apy1 — N9))2 .

n2 ,
=1

Also, see [14] for the study of the spectral geometry. The goal of this article is
to further investigate the relation between the spectrum of the operator A2 — A
and the local differential geometry of submanifolds of arbitrary codimension.
Suppose that 2 is a connected bounded domain with smooth boundary 92 in
a Riemannnian manifold M™ with n > 2 and v is the outward unit normal
vector field of 9f).

Motivated by the above works and [1], in our paper we investigated the Dirchelet
eigenvalues of the operator A2 — A on Riemannian manifolds. We will use
Yang’s method to give a general inequality for these eigenvalues. Then we de-
rive universal inequalities for them on compact domains of complete submani-
folds in Euclidean space and of complete manifolds admitting special functions
which include the Hadamard manifolds with Ricci curvature bounded below.
Also, we compute universal inequalities for them on a class of warped product
manifolds containing the hyperbolic space and manifolds admitting spherical
eigenmaps. Our main results are as follows.

Theorem 1.1. Suppose that M™ is a complete Riemannian manifold and 2 is
a bounded domain with a smooth boundary in M. Suppose that v is the outward

unit normal of 0. Let A;, i =1,---, be the i-th eigenvalue of the problem
(A2 - A)f=Af inQ,
(4) of
f=%5=0 on 082,
where A is a constant and
(A% = A)fi = Aifi in Q,
(5) fi=%=0 on 09,

Jo fifi =0ij, Vi j=1,--- k.

Then for every smooth function h : Q — R, every positive integer k and any
60 >0, we get

(6)

k k k

Z(Ak+1*Ai)2/in2|Vh|2 < 5Z(Ak+1Ai)ZQﬁZW/Q(Vh-Vfﬁ
1=1 =1

i=1

fidh
2

)2
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where
¢ = / [f2(AR)? + 4(|VR.V fi]* + w;ARVR.V £;) — 2fi|VRPAf; + f2VR|?] .
Q

Theorem 1.2. Suppose that M™ is a complete Riemannian manifold and )
is a bounded domain with a smooth boundary in M. Let A;, i =1,---, be the
i-th eigenvalue of the problem (4).

i) Let M be isometrically immersed in R™ and H be its mean curvature vector.
Then

]
=
s
=
AN

S|

{i Apsr — (4A2 +nH0)}2
(8) {Xk: Apsr — (nHO (44 20)A2 + n) }2 ,

where Hy = supq, |H|.
it) Let M be a minimal submanifold in R™, then

S

=, <.
I Mw i M»
= =

k
Z(Ak-H —A)? < {

i=1

9) X {

i11) Let there exists a function ¢ : 0 — R and a constant Ay such that

(Agy1 — Ai)Af}

(Ar1 — A;)? ((4+2n)A2—|—n)}2.

(10) Vo[ =1, |Ag] < Ag, on

then

k k 2
Z(AkJrl < {Z Agy1 — (A% +1+ 6/\2 +4A0A} )}
i=1

k 2
(11) X {Z(Ak+1 —A)(2AF + A0)2} .

i=1
iv) Let there exists a constant By and a function ¢ : Q — R with

(12) |v’l/1| = 17 AQ/J = BOa on Qa
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then

1
2

k k
Z(Ak—H -A)? < {Z(Ak+1 —Ay)? (1 - Bj + 6A¢2>}
=1 =1

k 3
(13) X {Z(Ak-i-l —Ai)(4A7 — Bg)} :

i=1

v) Let there exists an eigenmap u = (ug, Uz, ,Ums1) : 8 — S™(1) such that
m—+1

(14) Aua:uumazl,...’erl,Zui:L
a=1

for some constant i, then

k
Z(Ak+1*Ai)2 < {

i=1

(Agy1 — A,;)2 (H +1+ 6A§> } 2

-

=1

k 2
(15) X {Z(Ak-H —A)(4A7 + M)} :

i=1

vi) Let there exists 1 functions ¢q : Q@ — R with

(16) <V¢a7v¢5> = 6(1,87 A¢(¥ = Oa on Qa aaﬁ = 1) e alv
then
(17)

k k L 2 k . 2
D (Mg —A)* <2 {Z(Ak-i-l = A)P(1+ GAf)} {Z(Ak-i-l - Az‘)Af} :
i=1 i=1 i=1

Corollary 1.3. Suppose that 2 is a bounded domain with a smooth boundary
in a complete Riemannian manifold M™.

i) Let M be isometrically immersed in R™ and H be its mean curvature vector,
then

(18) Ak+1 < Ak+1 + \/ai+1 - bk+17

where
k k
ag+1 = ;;Af + ﬁ Z;Ai (4Ai% +nH§) (an + 4+ 2n)A§ + n) ,
and

A +

brt1 =

“-

k
1 1 1 1
- T > (4A§ + an) (nH§ +(4+2m)A7 + n) :
=1 i=1
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where Hy = supg, |H|.
i1) Let M be a minimal submanifold in R™, then

(19) Aks1 < 1+ /4y — dit,

where

k k
1 4 é

and
1 il 2 k 1 1
din =1 oMt pa AP (4207 £n).

i11) Let there exist a constant Ay and a function ¢ : Q@ — R with

(20) Vol =1, |[A¢| < Ag, on Q,
then
(21) Apy1 < topr + 4/t — Wi,
where
1 k 1 k 1 1
o= 3 AR+ EZ (2AF + Ap)? (A§+1+6Af+4AOA§),
i=1 i=1

and
k k
wk+1:%ZAi Z2A4+AO 2 (A3 + 14647 +440A7 ).
=1

iv) Let there exists a constant By and a function ¢ : Q — R with

(22) Vol =1, A =Bo, on Q,
then
(23) Apy1 < Appr +1/ A7, — Brya,
where
1 1

Ak+1:%; AZ 4 EZ (4AF — (1—B0+6A>
and ) )

By = 7 ZA + 5 Z (4AF — B2) (1- B3 +6A%)
v) Let there exist an eigenmap u = (ul, Uy oy Umg1) + = S™(1) such that

m—+1
(24) Auazuua7a:17...,m+17 Zui:
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for some constant u, then

(25) A1 < Crq1 + \/CI%—H — D,

where
1 1< .
c,m:%z A2 4 %Z (A} +p) (14607,
=1 =1
and
1 k 1 k 1 1
Dyi1 = EZA 37, <4A3+u>(u+1+6A5)~

vi) If there exists functions ¢, : Q0 — R such that

(26) (Voo,Vdg) =008, Do =0, on Q, a,f=1,..,1,
then
(27) Apr1 < D1 + /T — Wit
where
1 4L s
Thi1 = E;A?#-E;Az (1+6A )
and
1 2 ¢ 1 L
Wk+1:%§: %Z J(1+67).

2. Proofs of the main results
By similar methods as in [1,9,15], we use Yang’s method to give a general

inequality for eigenvalues.

Proof of Theorem 1.1. For i =1,...,k, let ¢; :  — R be the functions
which are given by ¢; = hu; — Zle rijf; where, r;; = fQ hfif;. We have
®iloa = 7‘ o =0 and

/fl¢j:07 V’L,]Zl,,k
Q

The Rayleigh-Ritz inequality yields

Jo #1(A% — Ao

(28) At < 5T

Letting
(29) pi = ARAfi +2VRVAS; + A(f;Ah) + 2A(V f;.Vh) — fiAh —2Vh.V f;,
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we obtain

/Q Hi(A% — A)g,

/Qqsi

/Q¢i(A2 — A)(hfi)

k
(A* = A)(hf;) — ijAjfj]

/ O ARAS + hA?fi + 2Vh - VAS; + A(f:Ah)
Q

F2A(Vfi.Vh) — fidh — hAf; — 2Vh - Vfi]

k
hfipi — Ti'/ ‘pH—/ hA; fidi
/sz f ; ! szf] Q
k
hfipi — Ti'/f‘pi+Ai/¢i
/Q ; o Q
k
= [ ntwi= Yo [ gmens [ 6
/Q ; ot Q

k
b +Z7‘ijfj]
j=1

Therefore
k
(30) A¢i<A2—A>¢i = Ml = Y rgsis + i
j=1

where
(31) 4 = / hfipi, sij = / fipi-

Q Q
Multiplying both sides of (A% — A)f; = A; f; by hf;, we arrive at
(32) hfj(A* = A)fi = N f; fi,
changing ¢ and j, we conclude
(33) hfi(A% = A)f; = Ajhf;fi.
Using (32) and (33), we find
(34) (Aj = Ai)rij = si5-

Observe that

/ hfi [A(fiAh) +2A(Vf; - Vh) +2Vh-VAf; + AhAfZ}
Q

= [ @R + 4090 VAP + ARV VE) - 25 VHPAL],
Q
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and
hf;iVh-Vfi = — | fiV(hfiVh)
Q Q
. / F2VRP? - / SV, Vh - / f2hAh,

Q Q Q
thus
(35) /ththi:—l/ ff|Vh|2—1/ f2hAh,

Q 2 Q 2 Q

and
(36)

g :/ [J2(ARY +4( VRV L + FARVR- Vf) = 2£|VAPAS + f2VAE).
Q

Hence, from (28) and (30) we get

k
(37) Aillill* =D rigsis + 4 = A |l

j=1
Plugging (34) into (37), we infer
k
(38) (Aps1 — Aol < @ + Z(Ai — Aj)rs
j=1

Set ti; = fQ fj (Vh -Vfi+ %) We have tij = —tj; and

(39) /0—2@ (Vh-Vfi + fiﬁh) = /QfEIVhF +22k:rijtij.
j=1

Multiplying equation (39) by (A1 —A;)? and applying the Schwarz inequality
for any 6 > 0, we conclude

k
(40)(Ak+1 — Ay)? (/ﬂ FEVR? + 22%‘%‘)
j=1

Ah &
= (Apy1 — Ay)? /Q —2¢; (Vh Vfi+ ! 7~ Ztijfj)
=1

Apyr — A, Ah
< 8(usr = Ao P+ PR [ on v L0
J

1

A —AZ' zAh a
= 6(Akir — AP lgu? + Bt = RO (/Qmw i Ji2hye —;%) ~
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Substituting (38) into (40), summing over ¢ from 1 to k, and using r;; = rj;,
tij = _tjia we infer

k
1) S (e = A7 [ VA - 2 3™ (Mo — A (A — Ayt
=1

7,7=1
k k
<OY (M1 — D)2 +6 > (Mpgr — Ag)*(Ay — Aj)rf,
i=1 ij=1
k k
(Ags1 — Ay) / | Jidh, (Agr1—Ni) o
+;75 (VR Vit 555) ”275 2.
Hence,
k k
S (Aesr - / PIVEE < 63 (Aksr — Ana:
=1 =1
k
(A1 — Ai) / JiAh
+> 5 Q(Vh Vit 75)
i=1
V3 L)
(42) - ijZ:1(Ak+l - Ai)( O(A; — Aj)rij — %tij) ,

which implies (6).

Proof of Theorem 1.2. Assume that {f;}3°; satisfy (5).
i) We denote the standard coordinate functlons of R™ by yo, @ = 1,--- ,m.
Inserting h = y, in (6) and summing over «, we obtain

m

k m
D (A - Z/ flVyal® < 52 Arpr =AY s
i=1

(Apyr — Ay) &
(13) b3 (e =00 5 [ (90 1+
i=1 a=1
If the manifold M is isometrically immersed in R™ then
(44) > IVyal? =n,
a=1
(45 > [ AVl =,
a=1"%
(46) Ay, o Ym) = (Ayr, ..., Ay,,) = nH,
(47) D (Vya - V) =D (Viilya))? = Vil

a=1 a=1
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and

(48) i AyaVyo - Vi = i AyaV fi(ya) =nH.V f; = 0.
Hence, " -

(49) i @ = i /Q [f?(Aya)Z +4(IVYa - Vil* + fiAyaVya - V i)

a=1

20| VyaPAS; + 121V gl
- /(nuf\H|2+4|Vfi|2—aniAfi>+n,
Q

and substituting (44)-(48) into (43), we conclude

k k
nY (App1—A)° < 6 (Apgr— Ai)2/Q {nu§|H|2 +4|Vfi|? - znfiAfi]
i=1 =1

k k
Aps1 — A 2|H|?
(50) +n5Z(Ak+1—Ai)2+27( o )/ (IVJZ-QJr”fZJ1 | )
i=1 i=1 Q2
Also,
[ lavse—mpan] = - [ [wafi+ensag)
Q Q
— (4t / finf;
< (4+2n) ( ) ( Amz)
< (4+2n) ( Afl +|szl2>
< (4+2m)AZ,
which yields
k k
nY (App1—A)° < 6 (Apgr — (nHO+(4+2n)A )+n52 Apgr — Ay)?
3 i=1 i=1
k
A/c+1 3 ”H02
(51) +; (A )

In the last inequality, we have applied |H| < Hp and

/QIVﬁI2 = —/inAfi < A7



148 S. Azami, M. Zohrevand, Gh. Fasihi-Ramandi

Taking

J= Zf:l(Ade — A ) (A2 nH2 ) 1
R Qn)Af +n)

one gets (8).
ii) Let M be a minimal submanifold of R™, then Hy = 0, and (8) yields (9).
iii) Applying h = ¢ into (6) and using Schwarz inequality and (1.3), it follows
(52)

k

> (A=A <5Z Apr1—Aq) qﬁZAk%A)/ (wm fM),

i=1 = i=1

and

53w = [ [£80F+4(T0- VAP + A0S

20| VOPAS: + 21V

< A1+ [ [A09AE + Al fIVED - 2641)
Thus,
k k
S (e~ A2 < 63 (A (A3+1+ / [4<|Vfi|2+Ao|fi||Vfi>—2fiAfi])
=1 =1
k 2
w3 B2 [ (op s anlgws + 282 ).
1=1
‘We have
X . 2 7_ 12 %
/Q\lelvle < (/Qf> (/ vm) —(/Qsz)
= (_ szfz>
Q
< (/fo)“(/ﬂmfiff
< (/Q(Afi)uvm?)“
< A



Some inequalities for eigenvalues of an elliptic... — JMMR Vol. 14, No. 1 (2025) 149

then
k k . .
S Ak —A)7 < 83 (A — A’ (Ag +1+6A? +4A0A§)
=1 =1
k
(Apt1 —Ag) 1 Ao
+; 5 (A + )
Taking

§= Zf:l(Ak+1 —AN) (A + %)2
S (At = A0)2 (A3 +1+6A7 +440A])

we have (11).

iv) Applying h = 1 into (6) and using (22), we get

(54)
Zk:(A _A4)2<5§:(A _A)? +Zk:(/\k+1—/\>/ (v vf,+f¢Bo>2
— k+1 i) > £ k+1 i) i 2 S o i B s
and

63w = [ [P0V TR+ LBV V)
2l VYPAS + VP
< Bi+1+ [ [0(VAP + £BV6-Vh) - 2581
Q

we have [, fiVi-Vf;=—1 [ f2A¢)p = -8 then

k

k
S Ak —A)? < 63 (Apr — Ay (1 — B+ 6A§)
=1 =1
k
A — Az 1 B?
_"_Z( k+15 )(AQ_TO)
=1

Taking

s ) T e — A - )
Z?:l(AkHFI - Ai)2 (1 _ B(Q) + GAE)

we obtain (13).

v) Suppose that u = (ug,ug, -, Ums1) : & = S™(1) satisfies in (24). Taking

twice Laplacian of both sides of the equation Zgjll u2 = 1 and using the
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condition At = e, o =1,--- ,m + 1, we get Z;";l |Vug|? = p. Applying

h = u,, into (6) and summing over « from 1 to m + 1, we get

m—+1

(Apg1 — Ay)? Z Qi
a=1

N

k
p Z(Ak+1 e
=1 7

m+1

_ A 2,2
Qe 28 [ (37 1o 01+ 25,
a=1

(56) + ; 1

V-1

©
I
—

and
m+1 m—+1

BT > e = >, /Q |:fi2(Aua)2+4(|vua'vfi|2+fiAuavua -V fi)
a=1 a=1

—2u|Vua PAf; + f21V fa?].

Taking the divergence of equation Y742 = 1 we have 3.7 4, Vu, = 0,
then Au, = pu, implies that

m+1 m—+1
> fidugVug - Vi =p > fia Ve - Vi =0,
a=1 a=1

also, we can write

m+1 m+1
DN WATCNEED S WA
a=1"7% a=1"7% Q

and
m—+1 m—+1

S, [V VAP <Y [ 1Vul ViR = [ 94,
a=1 Q a=1 Q Q

Since — [, fi\f; < A? and [, [Vfi|? = — [, filf; < A? we deduce

1
@i < p 4 6uA? + p.

Therefore

=1
k
A 7A1 1
+ZM(A2 ),

7

We get (15) by taking

Nl

Z§:1(Ak+1 —AN)(AZ + ay
Zf:l(Ak+1 —A\)? (,u +14 GAE)
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vi) Applying h = y, into (6) we conclude

k k k
Apry — A,
(58) > (Akr1—Ay)> <6 Z(AkH—Ai)?qﬁZ% / (Véa V)2,
i=1 i=1 i=1 £
and
69 a= [ [1900 VAP - 208+ ] < 14 00
Q
Hence,
k k (Apss — A 2
Z(AkJrl <5Z (Aks1 — 1+6)\2)+Z%A2.
i=1 =1

We obtain (17) by conmdermg

5= { Yo (Aksn — AjA? }2
S (At — A)2(1+6A7)

From [10], we have the following lemma.

Lemma 2.1. Suppose that {a;}",, {b;}™,, and {c¢;}*, are decreasing, in-
creasing, and increasing sequences of monnegative real numbers, respectively.
Then

Proof of Corollary 1.3. i) {(Ar+1 —A; )} , is a decreasing sequence
and { (4AZ-% + an) } and { (nHO (4+ 2n)A2 + n) } are increasing se-
i=1 i=1
quences, then from (60), we have

k k
{Z(Ak+1 —A) (4A§ + nﬂg) } {Z(A,H1 — A2 (an 4 (4+20)A2 + n) }
i=1 =1
k k
< {Z(AkH } {Z Apst — (4A2 + nHO) (nﬂg +(4+2n)A7 + n)} .

=1 =1

From (8), it follows

k k
S (Aps1—Ay) < % {Z(Ak+1 —A) (4Af + an) (an +(4+2n)A? + n)} .
=1 1=

Solving the last inequality with respect to Agy1, we obtain (18).

ii) Let M be a minimal submanifold of R™, we have Hy = 0. Then (18) leads
o (19).

Similarly, we can prove iii)-vi).
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Now, we recall from [5] some examples of complete Riemannian manifolds
with functions as in Theorem 1.2.

Example 2.2. Suppose that M is an n-dimensional Hadamard manifold with
bounded Ricci curvature of below by —(n — 1)K for some K > 0. Let v :
[0,400) = M be a unit speed geodesic with d(v(s),v(t)) =t — s for any t >
s > 0. For the Busemann function by corresponding to geodesic v given by

by (@) = Tim (d(z, (1)) ~ 1)

we have |Vb,| =1 ( [2,8]). Also, from [13, Theorem 3.5] we get |Aby| <
(n—1)VK on M. Thus, any Hadamard manifold with Ricci curvature bounded
below supports function satisfying (1.3).

Example 2.3. Suppose that (N,ds%;) is a complete Riemannian manifold and
(M = R x N,g = dt? + f2(t)ds%), is a Riemannian manifold where f is a
positive smooth function defined on R with f(0) = 1. Then (M,g) is called
warped product and denoted by M = R x N and M is a complete Riemannian
manifold. Set f = e~ and consider the warped product M = R x,—:+ N.
Consider ¢p : M — R by ¢(t,x) = t. From [5], we have |V¢| =1 and A =
n — 1, then ¢ satisfies the conditions (22).
Let H™ be the n-dimensional hyperbolic space with constant curvature —1. Using
the upper half-space model, H" is defined by R = {(x1,--- , )|y > 0} with
metric
ds? — dz? + - ~2~ + d:ci'

x’l’b
The map ¢ : R x,—« Rt — H" given by ¢(t,z) = (x,€!) is an isometry.
Therefore H™ admits a warped product model, H" = R x,—. R*71.

Example 2.4. Any compact homogeneous Riemannian manifold admits eigen-
maps to some unit sphere with the first positive eigenvalue of the Laplacian

([11]).

Example 2.5. Suppose thta N is a complete Riemannian manifold and M =
R x N = {(z1,-+ ,21,2)|(x1,- ,21) € RY, 2 € N} is the product of Rl and
N endowed with the product metric. Consider functions ¢, : M — R, a =
1,2,---,1, defined by ¢po(x1,--+ ,21,2) = 2o. The functions {¢o}.,_, satisfy
(26).
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