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Abstract. Just as we humans use many different types of inferential pro-

cedures to help us understand things or to make decisions, there are many
different fuzzy logic inferential procedures, including similarity-based ap-

proaches. Similarity measures can be seen not only as a general notion but

also as a particular family of fuzzy relations which play crucial roles for
the motivation and the whole design of similarity-based reasoning. In the

context of similarity-based reasoning, several issues merit concern. One

is the representation of implication relation and two is the composition of
a fuzzy implication relation with an observed system fact. The others are

continuity and robustness of these systems which are the soul that must

be inherited in the newly setup frameworks. Therefore, the purpose of
this study is to introduce a new similarity-based approximate reasoning

system which is based on introducing a new class of similarity measure on

the space of LR-fuzzy numbers. Therefore, first, a new class of similar-
ity measures is introduced between fuzzy sets. The similarity measure is

needed in order to activate rules which are in terms of linguistic variables.
Second, it is proved that the proposed measures satisfy the properties of

the axiomatic definition as well as the other properties by a theorem.

Next, we validate the effectiveness of the proposed similarity measure in
a bidirectional approximate reasoning system in order to provide a non-

linear mapping of fuzzy input data into fuzzy output data. Finally, using

existing experimental data from Uniaxial Compressive Strength (UCS)
testing, the fuzzy inference system constitutive model is produced to de-

scribe the influence of joint geometry (joint location, trace length and

orientation) on the UCS of rock. The numerical results will show that
the proposed model based on similarity-based approximate reasoning sys-

tems has better performance compared with the Mamdani fuzzy inference

systems and the multivariate regression.

Keywords: Approximate reasoning system, Fuzzy modeling, Similarity
measure, Statistical learning.
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1. Motivation and Introduction

Statistical learning theory provides the theoretical basis for many of to-
day’s machine learning algorithms and is arguably one of the most developed
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branches of artificial intelligence in general. Providing the basis of new learn-
ing algorithms, however, was not the only motivation for developing statistical
learning theory but drawing valid conclusions/patterns from empirical data.
Therefore, in recent years, the problem of modeling and prediction from ob-
served data has been one of the most commonly encountered research topics
in data analysis. A simple way to describe a system is the regression analysis
which is used in determining the best fitted model for describing and forecasting
the relationship between input-output variables [1].

Conventional linear regression models would be usual when both indepen-
dent and dependent variables are treated as real numbers. However, in real
situations, regression variables may be given as non-numerical entities such as
linguistic variables. Real-world problems usually encounter uncertainty that
would be due to

• impreciseness,
• incompleteness,
• vagueness,
• judgments,
• ambiguousness associated with the data,
• not knowledge-based data, and/or
• stochastic nature of an event’s results.

Except the last one, all the first six uncertainties are based on fuzzy logic [30].
Therefore, due to vague essence and uncertainties in many real life problems,
it would be better to use a fuzzy modeling approach under uncertainty. Fuzzy
regression analysis studies the relationship between a response variable and a
set of explanatory variables in complex systems involving imprecise data and/or
imprecise relationships. Most of the researches that have been done on the topic
of fuzzy regression analysis can be classified in the following categories:

• The class of possibilistic methods [38,41,42,52].
• The class of distance methods [10,14,15].
• The class of heuristic methods [3, 4, 11].

Remark 1.1. It should be noted that, in contrast to what happens in the real
case for the above items, the numerical fitting problem and the statistical es-
timation problem for the linear regression are different in the fuzzy case. The
reason is that the lack of linearity of the space of fuzzy data makes that con-
sidering or not the data generation process lead to different restrictions in the
minimization problem [3,4,7]. Therefore, in many real-world situations, where
the complexity of the physical system calls for the development of a more
general viewpoint, the estimation of the model is concerned with some new
techniques. Therefore, some novel soft modeling techniques in fuzzy environ-
ment needs to be proposed by combining soft concepts (such as fuzzy logic,
fuzzy inference systems, artificial neural networks), the possibilistic concepts,
least-squares and least-absolutes estimation methods together [10]. So, during
recent years, these methods have provided quantitative recommendations for
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design and it is shown that in some cases these combined techniques provide
results with greater accuracy than the conventional methods. These methods
yet provide quantitative recommendations for design and their results perform
slightly better than the conventional method [8, 28].

Statistical learning is involved in a wide range of basic and higher-order cog-
nitive functions and is taken to be an important building block of virtually all
current theories of information processing [27, 39]. In the last two decades, a
large and continuously growing research community has therefore focused on
the ability to extract embedded patterns of regularity in time and space [20].
For instance, Berk [5] investigated statistical learning from a regression perspec-
tive. Xu and Zeevi [48] introduced a principled framework dubbed “uniform
localized convergence” and characterized sharp problem-dependent rates for
central statistical learning problems. Imam et al. [25] investigated air quality
monitoring using statistical learning models for a sustainable environment. [43]
classified quantum measurements using statistical learning. Cox et al. [13] revis-
ited the effects of selective attention and animacy on visual statistical learning.
Using kernel-based statistical learning theory, Fiedler et al. [19] considered the
situation when the number of input variables goes to infinity. MacDonell [32]
considered the impact of sampling and rule set size on generated fuzzy inference
system predictive accuracy. Atanasove et al. [2] presented a succinct derivation
of the training and generalization performance of a variety of high-dimensional
ridge regression models using the basic tools of random matrix theory and
free probability. Feng et al. [18] studied the nonparametric modal regression
problem systematically from a statistical learning viewpoint. Zhang [53] in-
vestigated the mathematical analysis of machine learning algorithms. Wagner
et al. [45] provided a similarity-based inference engine for non-singleton fuzzy
logic systems. Dvořák et al. [17] studied similarity-based reasoning fuzzy infer-
ence systems from the point of view of extensionality. Mazandarani and Li [33]
by proposing fractional fuzzy inference system, considered a new generation of
fuzzy inference systems. Hothorn [24] provided CRAN task view of machine
learning and statistical learning (see also [27]). Sharifani and Amini [40] pro-
vided a review of the methods and applications of machine learning and deep
learning, including their strengths and weaknesses, as well as their potential
future directions.

Finally, this paper concerns a new soft estimation problem in fuzzy mod-
eling. In recent years, analytical approaches using fuzzy logic have become
increasingly popular due to their ability to provide some impressive advan-
tages over more conventional analytical approaches. Since the inception of
fuzzy logic techniques, their application to problems in various fields (includ-
ing decision making [16], control theory [36], pattern recognition and artificial
intelligence) has become popular due to the ability of fuzzy logic techniques to
handle semi-quantitative datasets or datasets with significant uncertainty [31].
Fuzzy logic is a theory developed to relate classes of objects without sharply
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defined boundaries in which membership of an object to a class is a matter
of degree [33]. Fuzzy logic system approaches allow greater understanding of
the origin of dependence between variables, allow modification of sensitivity in
analysis, provide greater flexibility in analysis and are better able to tolerate
imprecise or chaotic data [44]. Additionally, they can be used in combination
with conventional analytical techniques and are based on simplistic and under-
standable linguistic variables. The mapping of the output of the fuzzy modeling
from the given inputs is formulated by the basic fuzzy operator, known as the
fuzzy inference system (FIS) [30]. Several different types of fuzzy models exist,
with some of the more popular including the Mamdani-, Sugeno-, Tsukamoto-
and Singleton-type models [37]. Despite its success in various systems, re-
searchers have indicated certain drawbacks in the mechanism of Compositional
Rule of Inference (CRI) in the forward approximate reasoning systems [6]. In
the context of CRI, several issues merit concern. One is the representation of
implication relation and two is the composition of a fuzzy implication relation
with an observed system fact. The others are continuity and robustness of
these systems which are the soul that must be inherited in the newly setup
frameworks. By continuity and robustness, we mean that changes in the out-
put variable must be in balance with the changes in the input variable. By
robustness, we also mean that the model performs consistently on target and
is relatively insensitive to uncontrollable noise factors. It is usually assumed
that noise factors are uncontrollable in the field, but can be controlled during
model development for purposes of a designed experiment.

This motivated us to use the similarity-based approximate reasoning method
in modeling fuzzy input-output variables. Notice, in similarity-based reason-
ing schemes, from a given fact, the desired conclusion is derived using only
a measure of similarity between A (the antecedent of the rules) and A∗ (the
given fact). This makes the similarity-based approximate reasoning satisfies
reversibility property and provides forward and backward similarity-based ap-
proximate reasoning systems. Therefore, the aim of the present paper is to
study the forward and backward similarity-based approximate reasoning sys-
tems to construct a model between input-output linguistic variables. In this
regard, first a notion of similarity measure between fuzzy numbers will be re-
called. In general, since fuzzy logic system is a nonlinear mapping of input data
into outputs, therefore, in this paper, we use this technique to provide a model
between fuzzy input-output data. We shall use similarity-based approximate
reasoning systems because we want the input value of the rules to be linguistic,
i.e. the output linguistic variable is predicted by the input linguistic variable
(not with a crisp value like in the Mamdani fuzzy inference systems). The re-
sults of a comparative applied numerical example will show that the proposed
model based on similarity-based approximate reasoning systems has ability to
closely approximate a wide variety of processes, from the Mamdani fuzzy in-
ference systems and the traditional methods such as multivariate regression.
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This paper is organized as follows. In Section 2, a new definition and rel-
evant properties with respect to similarity measures between fuzzy sets will
be proposed and discussed. In Section 3, based on the similarity measures,
a new approach to develop a similarity-based approximate reasoning model
is proposed to describe the relationship between input-output linguistic vari-
ables. Also, two illustrative examples will be presented here. A comparative
study is provided in Section 4 showing the fact that the proposed modeling
technique performs better than the Mamdani fuzzy inference systems and the
multivariate regression. In Section 5, some final remarks conclude the paper.

2. A similarity measures between fuzzy sets

Similarity-based reasoning systems consider the notion of similarity as cru-
cial for their motivation and the whole design. However, similarity can be seen
not only as a general notion but also as a particular family of binary fuzzy rela-
tions modeling a fuzzy equality [9,12,22,23]. Therefore, this section deals with
the well-known notion of similarity measures between fuzzy sets and proposes
a variety of similarity measures for fuzzy sets. Moreover, it proves that the
proposed measures satisfy the properties of the axiomatic definition for simi-
larity measures. For practical reasons, we then combine the proposed similarity
measures with Yang and Shih’s [49] algorithm for clustering fuzzy data.

2.1. Preliminary concepts. A fuzzy set Ñ of the universal set X is defined

by its membership function Ñ(x) : X → [0, 1] [50]. In this paper, we consider

R (the real line) as the universal set. We denote by Ñα = {x ∈ R : Ñ(x) ≥ α}
the α-level set (α-cut) of the fuzzy set Ñ , for every α ∈ (0, 1], and for α = 0,

Ñ0 is the closure of the set {x ∈ R : Ñ(x) > 0}.
Definition 2.1. The LR-fuzzy number Ñ = (a, b; l, r)LR with central values of
the interval [a, b] ⊂ R, left and right spreads l ∈ R+, r ∈ R+, decreasing left and
right shape functions L : R+ → [0, 1], R : R+ → [0, 1], with L(0) = R(0) = 1,
has the following membership function and α-cut

Ñ(x) =





L(a−xl ) if x ≤ a,
1 if a < x ≤ b,
R(x−br ) if x ≥ b.

Ñα = [a− L−1(α)l, b+R−1(α)r], α ∈ [0, 1].

Remark 2.2. In practice, it is usually preferred to use simple shapes for func-
tions L and R such as L(x) = R(x) = max{1− x, 0}. We denote by F(R), the
set of all LR-fuzzy numbers of R.

Definition 2.3 ( [30]). The following operators on B̃, C̃ ∈ F(R) will be used
in the sequel.

(1) Equality: Ã = B̃ ⇔ Ã(x) = B̃(x), ∀x ∈ R.

(2) Inclusion: Ã ⊆ B̃ ⇔ Ã(x) ≤ B̃(x), ∀x ∈ R,
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(3) Inclusion: Ã ⊆ B̃ ⇔ Ãα ⊆ B̃α, ∀α ∈ [0, 1].

(4) Complement: Ãc(x) = 1− Ã(x), ∀x ∈ R.

(5) Union: (Ã ∪ B̃)(x) = max{Ã(x), B̃(x)}, ∀x ∈ R.

(6) Intersection: (Ã ∩ B̃)(x) = min{Ã(x), B̃(x)}, ∀x ∈ R.

Definition 2.4. Let Ã, B̃, C̃ ∈ F(R), then S : F(R) ⊗ F(R) → R is a
similarity measure between fuzzy sets if satisfies the following:

(1) S(Ã, B̃) ∈ [0, 1].

(2) S(Ã, B̃) = S(B̃, Ã).

(3) S(Ã, B̃) = 1 if and only if Ã = B̃.

(4) If Ã ⊆ B̃ ⊆ C̃, then S(Ã, C̃) ≤ min{S(Ã, B̃), S(B̃, C̃)}.

2.2. Similarity measure. Let Ã, B̃ ∈ F(R). The similarity measure S :
F(R)⊗F(R)→ R is defined as follows [23]

S(Ã, B̃) = f

(∫ 1

0

|Ãα4B̃α|dα
)
,

where

(1) Ãα4B̃α = Aα ∪Bα −Aα ∩Bα,

(2) |Ãα4B̃α| is the length of the interval Ãα4B̃α ∈ R,
(3) f : R+ → [0, 1] with the condition f(0) = 1 is a decreasing function

(for instance, f(x) = 1−x
1+x , f(x) = 1

1+xp or f(x) = e−x
p

, p > 0).

Theorem 2.5. Let Ã, B̃, C̃ ∈ F(R), then S : F(R)⊗F(R)→ R satisfies the
following:

(1) S(Ã, B̃) ∈ [0, 1].

(2) S(Ã, B̃) = S(B̃, Ã).

(3) S(Ã, B̃) = 1 if and only if Ã = B̃.

(4) If Ã ⊆ B̃ ⊆ C̃, then S(Ã, C̃) ≤ min{S(Ã, B̃), S(B̃, C̃)}.
(5) S(Ã ∩ B̃, Ã ∪ B̃) = S(Ã, B̃).

(6) S(Ãc, B̃c) = S(Ã, B̃).

(7) S(Ã ∩ C̃, B̃ ∩ C̃) ≥ S(Ã, B̃).

(8) S(Ã ∪ C̃, B̃ ∪ C̃) ≥ S(Ã, B̃).

Proof. (1) It is immediately derived from the properties of the function f .

(2) The result can easily be checked because |Ãα4B̃α| = |B̃α4Ãα|, for
every α ∈ [0, 1].

(3) If Ã = B̃, then, S(Ã, B̃) = f(
∫ 1

0
|Ãα4B̃α|dα) = f(0) = 1. Conversely,

assume that S(Ã, B̃) = 1. It is clear that
∫ 1

0
|Ãα4B̃α|dα = f−1(1) = 0.

Therefore, |Ãα4B̃α| = 0, for each α ∈ [0, 1], which concludes that

Ãα = B̃α for each α ∈ [0, 1], or equivalently Ã = B̃.
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(4) Let Ã ⊆ B̃ ⊆ C̃ be three arbitrary nested fuzzy numbers, then Ãα ⊆
B̃α ⊆ C̃α, for every α ∈ [0, 1]. We can prove that for every α ∈ [0, 1],

Ãα4B̃α ⊆ Ãα4C̃α, and B̃α4C̃α ⊆ Ãα4C̃α. Therefore, we obtain the

inequalities |Ãα4B̃α| ≤ |Ãα4C̃α|, and |B̃α4C̃α| ≤ |Ãα4C̃α|. The
proof can be easily checked because f is a strictly decreasing function.

(5) For every α ∈ [0, 1], because (Ãα ∪ B̃α)4(Ãα ∩ B̃α) = Ãα4B̃α, there-
fore, we can get the result.

(6) It can be proved that (Ãα)c4(B̃α)c = Ãα4B̃α, for every α ∈ [0, 1].

(7) For given fuzzy numbers Ã, B̃, and C̃, note that

(Ãα ∩ C̃α)4(B̃α ∩ C̃α) ⊆ Ãα 4 B̃α.

Therefore, we obtain the following inequality
∫ 1

0

|(Ãα ∩ C̃α)4(B̃α ∩ C̃α)| dα ≤
∫ 1

0

|Ãα4B̃α| dα.

The proof can be easily completed, because f is a strictly decreasing
function.

(8) For every α ∈ [0, 1], we can obtain that

(Ãα ∪ C̃α)4(B̃α ∪ C̃α) ⊆ Ãα4B̃α.
Now, similar to item 7, the proof can be completed.

�

2.3. Clustering illustrative example. Fuzzy clustering, which is one of the
major techniques in pattern recognition, is a method for decomposing a given
data set into groups or clusters of similar individuals with uncertain boundaries.
Different algorithms have been developed in fuzzy cluster analysis, which can
be roughly divided into two main categories [34]: the first category is based on
objective functions, while the other one is based on a relation matrix such as
similarity relation, correlation relation, fuzzy equivalence relations, and the like
(for more on this topic, see e.g. [26, 27]). The investigation considered in the
following example focuses on the second category of fuzzy clustering methods
based on fuzzy relations that can be made in the beginning with a similarity
matrix [23].

Assume that there are nine patterns denoted as follows:

Ã1 = (13.0, 0.27, 1.00)T , Ã2 = (14.0, 1.95, 0.93)T , Ã3 = (14.4, 0.56, 1.17)T ,

Ã4 = (14.7, 0.89, 0.88)T , Ã5 = (14.9, 0.12, 1.21)T , Ã6 = (15.3, 1.19, 0.41)T ,

Ã7 = (15.1, 1.82, 0.90)T , Ã8 = (15.6, 0.38, 1.38)T , Ã9 = (16.0, 1.97, 0.12)T .

The similarity measures between these patterns are shown in Figure 1 based
on the following similarity measure function

S(Ã, B̃) =
1

1 +
(∫ 1

0
|Ãα4B̃α|dα

)2 ,
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Figure 1. Left: Similarity measure matrix S(0) between nine

patterns Ã1 − Ã9. Rigth: max−min decomposed similarity
measure matrix S(3)

Figure 2. Dendrogram for cluster analysis based on
max−min decomposed similarity measure matrix S(3)

To obtain a fuzzy cluster for these patterns, we are using Yang and Shih’s [49]
algorithm, which creates a clustering algorithm for the max−min similarity
relation matrix. Here, by max−min composition, first, we have to obtain
S(0) < S(1) < . . . < S(n) = S(n+1) = . . . which is denoted as

∀x, y ∈ {1, . . . , 9} S(n)(x, y) = max
z∈{1,...,9}

{min(S(n−1)(x, z), S(n−1)(z, x))}.

Therefore, by beginning with the initial similarity matrix S(0) given in Figure
1, the max−min compositions are obtained as S(0) < S(1) < S(2) < S(3) =
S(4) = . . .. Then, by beginning with the matrix S(3) shown in Figure 1 and
applying the clustering algorithm, the hierarchical clustering are obtained and
presented in Figure 2 and Table 1. The results illustrate the partitions that
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Table 1. Clustering results according to different levels

δ Clustering results

0.000 < δ ≤ 0.371 {Ã1, Ã2}, {Ã3, Ã4, Ã5, Ã6, Ã7, Ã8, Ã9}
0.371 < δ ≤ 0.470 {Ã1}, {Ã2}, {Ã3, Ã4, Ã5, Ã6, Ã7, Ã8, Ã9}
0.470 < δ ≤ 0.606 {Ã1}, {Ã2}, {Ã3, Ã4, Ã5, Ã6, Ã7, Ã9}, {Ã8}
0.606 < δ ≤ 0.700 {Ã1}, {Ã2}, {Ã3, Ã4, Ã5, Ã6, Ã7}, {Ã8}, {Ã9}
0.700 < δ ≤ 0.720 {Ã1}, {Ã2}, {Ã3, Ã4, Ã7}, {Ã5, Ã6}, {Ã8}, {Ã9}
0.720 < δ ≤ 0.743 {Ã1}, {Ã2}, {Ã3, Ã4}, {Ã5, Ã6}, {Ã7}, {Ã8}, {Ã9}
0.743 < δ ≤ 0.851 {Ã1}, {Ã2}, {Ã3, Ã4}, {Ã5}, {Ã6}, {Ã7}, {Ã8}, {Ã9}
0.851 < δ ≤ 0.941 {Ã1}, {Ã2}, {Ã3}, {Ã4}, {Ã5}, {Ã6}, {Ã7}, {Ã8}, {Ã9}

Table 2. Similarity measures between nine patterns Ã1− Ã9

Clusters S(Ã, Ãi) S(Ã, Cj) = max{S(Ã, Ãi)|Ãi ∈ Cj}
C1 Ã1 0.689 0.689

C2 Ã2 0.759 0.759

Ã3 0.309

Ã4 0.293

Ã5 0.277

C3 Ã6 0.263 0.309

Ã7 0.248

Ã9 0.214

C4 Ã8 0.230 0.230

have been made at levels of δ. For instance, when δ ∈ (0.470, 0.606], the
following distinct clusters are obtained

C1 = {Ã1}, C2 = {Ã2}, C3 = {Ã3, Ã4, Ã5, Ã6, Ã7, Ã9}, C4 = {Ã8}.
Suppose the new pattern Ã = (13.7, 1.1, 0.8)T is recorded and we have to decide
to which cluster it belongs to. To do so, considering the calculations provided
in Table 2 and using the principle of largest similarity between the new pattern

Ã and the clusters Cj , j = 1, . . . , 4, it is concluded that

arg maxj∈{1,...,4}S(Ã, Cj) = C2,
Therefore, using the principle of maximum degree of similarity, it indicates that

the new pattern Ã belongs to the cluster C2, because Ã has the most similarity

degree with cluster C2, i.e. S(Ã, C2) = 0.759.

Remark 2.6. To study calculations with more details on various applied numer-
ical examples of such similarity measures in the contexts of pattern recognition,
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decision making, clustering, and approximate reasoning, we refer the reader to
to Hesamian and Chachi [23].

3. A Similarity-based fuzzy inference system model

In the following, we use fuzzy logic systems to provide a fuzzy model between
fuzzy input-output data. The fuzzy logic modeling technique contains “if”
part (or the antecedent) and “then” part (or the consequent) that each fuzzy
implication is a parameterized equation of the model’s input-output variables.
In this structure of a typical fuzzy if-then rule we use the “and” fuzzy operator.
From every rule equation, one fuzzy output obtains. Therefore, we should find
a way to aggregate all of fuzzy outputs and generate the final fuzzy output.
Based on this approach we can also predict for various values of the input
linguistic variables.

The basic structure of the fuzzy inference system consists of three compo-
nents: a rule base, a database, and an inference procedure [30]. The rule base
contains the selection of fuzzy if-then rules activated by a certain value of inter-
est, the database defines the membership functions adopted in the fuzzy if-then
rules, then the inference procedure provides a fuzzy reasoning based on infor-
mation aggregation from the activated fuzzy rules. The detailed description
of fuzzy inference systems can be found in [6,32,44]. The structure of a typical
fuzzy if-then rule that uses the “and” fuzzy operator is demonstrated in the
example statement below [37]:

rulei : if X̃1 is B̃1i & X̃2 is B̃2i, . . . & X̃p is B̃pi =⇒ Ỹ is C̃i.

In this scheme, rulei (i = 1, . . . , n) is the ith production rule, n is the number

of rules, X̃j (j = 1, . . . , p) is the fuzzy input (antecedent) variables, Ỹ is the

fuzzy output (consequent) variable, B̃ji’s are fuzzy sets of the universe of dis-

course Xj for the antecedent variables, and C̃i’s are fuzzy sets of the universe
of discourse Y for the consequent variable. Gorgin et al. [21] described a hard-
ware realization framework for fuzzy inference system optimization. Now, we
introduce the way of estimating a fuzzy model, based on the fuzzy inference
system. Below, the steps taken in the production of the fuzzy inference system
constitutive model for this work are systematically described.

Let us first consider the forward approximate reasoning scheme based on
fuzzy sets. Suppose that the antecedent statement is demonstrated as follows

Antecedent : X̃1 is B̃∗1 & X̃2 is B̃∗2 , . . . & X̃p is B̃∗p ,

where B̃∗j ’s (j = 1, . . . , p) are fuzzy sets of the universe of discourse Xj for the
antecedent variables. We need to determine the consequence of the approximate
reasoning scheme, which is

Consequence : Ỹ is C̃∗,
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where C̃∗ is a fuzzy set of the universe of discourse Y for the consequent variable.
Now, we propose the following algorithm for ith rule:

(1) Compute sji = S(B̃ji, B̃
∗
j ), the similarity measurement between fuzzy

sets B̃ji and B̃∗j , j = 1, . . . , p.

(2) Let si = max1≤j≤p sji, and C̃∗i = si ⊗ C̃i.
(3) The deduced consequence of rulei is “Ỹ is C̃∗i ”.

Thus, the deduced consequence of the approximate reasoning scheme is “Ỹ is

C̃∗”, where

C̃∗ = C̃∗1 ∪ C̃∗2 ∪ . . . ∪ C̃∗n.
Conversely, let us consider the backward approximate reasoning scheme

based on fuzzy sets. Suppose that the consequence statement is demonstrated
as follows

Consequence : Ỹ is C̃∗.

We need to determine the antecedent of the approximate reasoning scheme,
which is

Antecedent : X̃1 is B̃∗1 & X̃2 is B̃∗2 , . . . & X̃p is B̃∗p .

Similarly, we can derive the following results for ith rule:

(1) Compute si = S(C̃i, C̃
∗), the similarity measurement between fuzzy

sets C̃i and C̃∗.
(2) Let B̃∗ji = si ⊗ B̃ji, j = 1, . . . , p.
(3) The deduced antecedent of rule rulei is

X̃1 is B̃∗1i & X̃2 is B̃∗2i, . . . & X̃p is B̃∗pi.

By aggregating the above results, the deduced antecedent of the approximate
reasoning scheme is

Antecedent : X̃1 is B̃∗1 & X̃2 is B̃∗2 , . . . & X̃p is B̃∗p ,

where

B̃∗j = B̃∗j1 ∪ B̃∗j2 ∪ . . . ∪ B̃∗jn, j = 1, . . . , p.

Forward approximate reasoning: An illustrative example. Consider
the forward approximate reasoning scheme is as follows

rule1 : if X̃1 is B̃11 & X̃2 is B̃21 & X3 is B̃31 =⇒ Ỹ is C̃1,

rule2 : if X̃1 is B̃12 & X̃2 is B̃22 & X3 is B̃32 =⇒ Ỹ is C̃2,

rule3 : if X̃1 is B̃13 & X̃2 is B̃23 & X3 is B̃33 =⇒ Ỹ is C̃3,

rule4 : if X̃1 is B̃14 & X̃2 is B̃24 & X3 is B̃34 =⇒ Ỹ is C̃4,

rule5 : if X̃1 is B̃15 & X̃2 is B̃25 & X3 is B̃35 =⇒ Ỹ is C̃5,

rule6 : if X̃1 is B̃16 & X̃2 is B̃26 & X3 is B̃36 =⇒ Ỹ is C̃6.



176 J. Chachi, M. Jalalvand

Table 3. The triangular fuzzy sets in the forward approxi-
mate reasoning

i B̃1i B̃2i B̃3i C̃i
1 (0.40, 0.20, 0.15) (0.80, 0.40, 0.50) (25, 15, 15) (26, 6, 6)
2 (0.40, 0.20, 0.15) (0.80, 0.40, 0.50) (45, 15, 15) (26, 6, 6)
3 (0.60, 0.25, 0.10) (1.20, 0.40, 0.40) (45, 15, 15) (18, 6, 4)
4 (0.60, 0.25, 0.10) (0.80, 0.40, 0.50) (25, 15, 15) (18, 6, 4)
5 (0.55, 0.30, 0.05) (1.20, 0.40, 0.40) (25, 15, 15) (10, 8, 5)
6 (0.55, 0.30, 0.05) (1.20, 0.40, 0.40) (45, 15, 15) (10, 8, 5)

Table 4. The values of sji = S(B̃ji, B̃
∗
i ) (j = 1, 2, 3, i =

1, . . . , 6) between fuzzy sets in the forward approximate rea-
soning

i s1i s2i s3i si = max{s1i, s2i, s3i} C̃∗i = si ⊗ C̃i
1 0.865 0.424 0.043 0.865 (22.49, 5.19, 5.19)
2 0.865 0.424 0.090 0.865 (22.49, 5.19, 5.19)
3 0.769 0.404 0.090 0.769 (13.84, 4.61, 3.08)
4 0.769 0.424 0.043 0.769 (13.84, 4.61, 3.08)
5 0.771 0.404 0.043 0.771 (7.71, 6.17, 3.85)
6 0.771 0.404 0.090 0.771 (7.71, 6.17, 3.85)

The triangular fuzzy numbers B̃1i, B̃2i, B̃3i, and C̃i used in this forward ap-
proximate reasoning are provided in Table 3. Now, let the antecedent statement
be as follows

Antecedent : X̃1 is B̃∗1 & X̃2 is B̃∗2 & X̃3 is B̃∗3 ,

where

B̃∗1 = (0.45, 0.45, 0.20)T , B̃∗2 = (1, 0.80, 0.80)T , B̃∗3 = (40, 15, 15)T .

We have to obtain the consequence of the forward approximate reasoning
scheme, which is

Consequence : Ỹ is C̃∗.

Applying

S(B̃ji, B̃
∗
i ) =

1

1 +
∫ 1

0
|B̃jiα4B̃∗iα|dα

, j = 1, 2, 3, i = 1, . . . , 6

on the fuzzy sets given in Table 4, we obtain the similarities shown in Table

4. Thus, according to the procedure proposed in the previous section, C̃∗ is
obtained as follows

C̃∗ = ∪6i=1C̃
∗
i ,
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B̃∗(x)

x
27.6816.9210.501.54 17.30

Figure 3. The membership function of fuzzy set C̃∗ in Eq. 1

where the fuzzy sets C̃∗i , i = 1, . . . , 6, are given in Table 4. The closed formula

of C̃∗ is written as follows which is also depicted in Figure 3

C̃∗(x) =





x−1.54
6.17 1.54 < x ≤ 7.71,

11.56−x
3.85 7.71 < x ≤ 10.50,

x−9.23
4.61 10.50 < x ≤ 13.84,

16.92−x
3.08 13.84 < x ≤ 16.92,

x−17.3
5.19 17.30 < x ≤ 22.49,

27.68−x
5.19 22.49 < x ≤ 27.68.

(1)

Backward approximate reasoning: An illustrative example. Conversely,
let us consider the above forward approximate reasoning scheme as a backward
approximate reasoning scheme. Now, suppose that the consequence statement
of the approximate reasoning scheme is demonstrated as follows

Consequence : Ỹ is C̃∗ = (18, 6, 6)T .

We need to determine the antecedent statement of the approximate reasoning
scheme, which is

Antecedent : X̃1 is B̃∗1 & X̃2 is B̃∗2 & X̃3 is B̃∗3 .

the results are summarized in Table 5. Thus, we obtain

B̃∗j = ∪6i=1B̃
∗
ji, j = 1, 2, 3,

The functions B̃∗1(·), B̃∗2(·), and B̃∗3(·) are plotted in Figures 4.

4. Comparison study: practical example

In this section, using the real world dataset from Uniaxial Compressive
Strength (UCS) testing [46], the similarity based fuzzy inference system con-
stitutive model is produced to describe the relationship between three input
variables,

• joint location (X1),
• joint trace length ratio (X2),
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Table 5. Similarity measures in backward approximate rea-
soning

i si = S(C̃i, C̃
∗) B̃∗

1i = si ⊗ B̃1i B̃∗
2i = si ⊗ B̃2i B̃∗

3i = si ⊗ B̃3i

1 0.086 (0.034, 0.017, 0.013)T (0.069, 0.034, 0.043)T (2.15, 1.29, 1.29)T
2 0.086 (0.034, 0.017, 0.013)T (0.069, 0.034, 0.043)T (3.87, 1.29, 1.29)T
3 0.500 (0.300, 0.125, 0.050)T (0.600, 0.200, 0.200)T (22.50, 7.50, 7.50)T
4 0.500 (0.300, 0.125, 0.050)T (0.400, 0.200, 0.250)T (12.50, 7.50, 7.50)T
5 0.079 (0.043, 0.024, 0.004)T (0.095, 0.032, 0.032)T (1.98, 1.19, 1.19)T
6 0.079 (0.043, 0.024, 0.004)T (0.095, 0.032, 0.032)T (3.56, 1.19, 1.19)T

Figure 4. Membership functions of B̃∗1 (left), B̃∗2 (center)

and B̃∗3 (rigth)

Table 6. The dataset.

No. X1 X2 X3 y
1 0.24 0.40 1.05 30.80
2 0.24 0.60 1.05 27.50
3 0.24 0.80 1.05 25.05
4 0.24 1.00 1.05 19.70
5 0.24 1.50 1.05 5.86
6 0.18 0.71 1.31 25.61
7 0.18 0.71 1.05 22.55
8 0.18 0.71 0.79 21.46
9 0.18 0.71 0.52 27.96
10 0.18 0.71 0.26 34.81
11 0.17 1.20 1.05 9.61
12 0.22 1.20 1.05 8.94
13 0.27 1.20 1.05 10.97
14 0.34 1.20 1.05 12.09
15 0.41 1.20 1.05 12.90

• joint orientation (X3),

and determine

• UCS (as the output variable y).
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Table 7. The fuzzy sets of the levels of input variables X̃j ,

j = 1, 2, 3, are denoted by B̃ji, i = 1, . . . , 5, in the rules of
the similarity based forward approximate reasoning given in
Appendix. Also the fuzzy sets of the levels of output variable

y are denoted by C̃i, i = 1, . . . , 5.

i B̃1i B̃2i B̃3i C̃i
1 (0.00, 0.00, 0.45)T (0.00, 0.00, 0.40)T (10, 0, 20)T (0, 0, 10)T
2 (0.80, 0.15, 0.15)T (0.40, 0.20, 0.20)T (35, 15, 15)T (10, 6, 5)T
3 (0.45, 0.05, 0.10)T (0.80, 0.30, 0.40)T (50, 15, 15)T (18, 4, 4)T
4 (0.60, 0.10, 0.10)T (1.40, 0.40, 0.40)T (80, 20, 0)T (25, 5, 8)T
5 (0.90, 0.10, 0.00)T (2.00, 0.60, 0.00)T (35, 10, 0)T

Table 6 shows the dataset and the required fuzzy sets for such the shame are
given in Table 7 (for more details see [46]). The structure of the fuzzy if-
then rules are demonstrated in the Appendix. Now, suppose in the forward
approximate reasoning scheme based on fuzzy sets, the antecedent statement
is demonstrated as follows

Antecedent : X̃1 is B̃∗1 & X̃2 is B̃∗2 & X̃3 is B̃∗3 ,

where,

B̃∗1 = (0.3, 0.2, 0.1)T , B̃∗2 = (1, 0.4, 0.3)T , B̃∗3 = (40, 10, 15)T .

Applying the similarity measure S used in the two previous examples, we obtain
the results summarized in Table 9 given in the Appendix. Thus,

C̃∗ = ∪98i=1C̃
∗
i ,

where the fuzzy sets C̃∗i , i = 1, . . . , 98, are given in Table 9. The function

C̃∗(·) is plotted in Figure 5. Using the center of gravity defuzzification method
thorough following formula

∫
xC̃∗(x) dx∫
C̃∗(x) dx

the crisp value of 16.87 obtained as the crisp value from the similarity based
fuzzy inference system.

Once the fuzzy model is formed (see the Appendix), it can be used to predict
the value of an output variable for various values of the input variables. By
applying the proposed model to the data set given in the first part of Table
6, the predicted crisp values of output variable y in the second part of Table
6 are obtained. In order to determine the ability of the proposed model to
predict the output variable y using input variables X1, X2 and X3, the ordinary
regression model [1] and the fuzzy inference system model (FIS model) [46,47]
are also used for modeling this data set. We also compare the proposed method
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Figure 5. Membership function of C̃∗ = ∪98i=1C̃
∗
i

with the method proposed by Wagner et al. [45] that is a similarity-based

inference engine for fuzzy logic systems. For X̃ and B̃ representing the input
and antecedent FISs in the single rule

rule : if X̃ is B̃ =⇒ Ỹ is C̃.

they employed the value of the following similarity measure

S(X̃, B̃) =

∫
min{X̃(x), B̃(x)} dx∫
max{X̃(x), B̃(x)} dx

,

as a degree of firing for a given pair of input and antecedent FISs. Thus, if this
is the only rule of the rule-base, the output fuzzy set will be

C̃∗(y) = min{S(X̃, B̃), C̃(y)}
For input-output mapping within the rule, Wagner et al. [45] employed mini-
mum as the standard t-norm [29]. For multiple-input and multiple-rule system,
see [35,45].

The observed and predicted crisp values of output variable y based on the
ordinary regression model, Wagner et al. [45] and the FIS model are shown in
Table 8. The following performance indices were used to measure the perfor-
mance of the three models in terms of accuracy of prediction

E =

√
1

n

∑
(y − ŷ)2,

v =

(
1− var(y − ŷ)

var(y)

)
100%,

where y is the output recorded value, ŷ is the corresponding predicted value
and n is the sample size of instances. Generally, lower values (minimum 0) of E
and higher values (maximum 100%) of v are indicative of better performance
for a predictive model. Calculated values for E and v for the four constitutive
models are given in Table 8, in favor of the proposed model.
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Table 8. Calculated E and v% values as well as the corre-
sponding predicted values of output variable y obtained from
four competitive models.

Observed Predicted values of y
No. y Our model FIS [46] Reg. Wagner et al. [45]

1 30.80 31.1 32.0 28.1 29.9
2 27.50 26.3 26.9 27.6 29.3
3 25.05 21.4 21.8 26.3 19.2
4 19.70 16.6 16.7 21.2 10.8
5 5.86 4.5 3.9 10.7 8.9
6 25.61 26.6 25.4 26.3 24.3
7 22.55 23.6 23.3 26.3 21.9
8 21.46 22.9 24.0 26.3 18.5
9 27.96 27.6 27.6 26.3 20.1
10 34.81 34.5 34.0 29.2 33.0
11 9.61 10.6 10.6 10.3 8.2
12 8.94 9.8 11.3 10.7 7.7
13 10.97 11.8 12.0 10.7 11.7
14 12.09 11.8 12.9 11.7 15.2
15 12.90 12.8 13.8 14.5 12.9
E — 1.48 1.68 2.27 3.78

v% — 97.18 96.29 90.75 84.51

Remark 4.1. It should be noted that the superiority of the methods stated in
Table 8 is based on the numerical results of a practical example. Since such
the models are data dependent, therefore the comprehensive superiority of one
method over another should be:

(1) based on diverse and extensive data sets; and/or
(2) based on relationships and pure formulas.

The last item above is an important topic which can be one of the research
guideline in the future.

5. Conclusions

In this paper, we validated the applicability and effectiveness of functional
dependence modeling between fuzzy input-output data based on the similarity-
based approximate reasoning system. The models based on fuzzy logic have
ability to closely approximate a wide variety of processes, from the traditional
methods such as multivariate regression. Unlike many traditional modeling
methods that typically represent an input-output relationship with a single
equation that applies globally, the fuzzy logic modeling technique represents
the correlation with numerous local equations (rules) that are combined to



182 J. Chachi, M. Jalalvand

globally represent the process. An efficient structure identification algorithm
ensures that the fuzzy model contains the appropriate fuzzy rules so that the
predictive capability of the model is maximized. The experiments ascertain the
fact that the proposed modeling technique based on the similarity-based ap-
proximate reasoning system performs better than the Mamdani fuzzy inference
systems and the multivariate regression. The ability to incorporate physical
understanding and prior knowledge is an important aspect of this model.

In our future work, we will pursue further this approach and study the inter-
play between the matching functions proposed in this paper and the remaining
components of similarity-based reasoning systems, namely, robustness, conti-
nuity, modification, monotonicity, interpolativity and aggregation functions.
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Appendix: Rules and Tables

rule1 : if X̃1 is B̃11 & X̃2 is B̃25 & X̃3 is B̃33 =⇒ Ỹ is C̃1,

rule2 : if X̃1 is B̃11 & X̃2 is B̃25 & X̃3 is B̃32 =⇒ Ỹ is C̃1,

rule3 : if X̃1 is B̃11 & X̃2 is B̃25 & X̃3 is B̃34 =⇒ Ỹ is C̃2,

...
...

rule96 : if X̃1 is B̃15 & X̃2 is B̃21 & X̃3 is B̃32 =⇒ Ỹ is C̃1,

rule97 : if X̃1 is B̃15 & X̃2 is B̃21 & X̃3 is B̃34 =⇒ Ỹ is C̃1,

rule98 : if X̃1 is B̃15 & X̃2 is B̃21 & X̃3 is B̃31 =⇒ Ỹ is C̃1.
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Table 9. Similarity measures sji = S(B̃ji, B̃
∗
i ) (j = 1, 2, 3,

i = 1, . . . , 98) between fuzzy sets in the forward approximate
reasoning in comparison study

i s1i s2i s3i si = maxj∈{1,2,3} sji C̃∗i = si ⊗ C̃i

1 0.837 0.606 0.066 0.837 (0.00, 0.00, 8.37)T
2 0.837 0.606 0.080 0.837 (0.00, 0.00, 8.37)T
3 0.837 0.606 0.043 0.837 (8.37, 5.02, 4.19)T
4 0.837 0.617 0.066 0.837 (8.37, 5.02, 4.19)T
5 0.837 0.617 0.080 0.837 (8.37, 5.02, 4.19)T
6 0.837 0.617 0.043 0.837 (8.37, 5.02, 4.19)T
7 0.837 0.617 0.030 0.837 (8.37, 5.02, 4.19)T
8 0.837 0.800 0.066 0.837 (20.93, 4.19, 6.70)T
9 0.837 0.800 0.080 0.837 (20.93, 4.19, 6.70)T
10 0.837 0.800 0.043 0.837 (20.93, 4.19, 6.70)T
11 0.837 0.800 0.030 0.837 (20.93, 4.19, 6.70)T
12 0.837 0.645 0.066 0.837 (20.93, 4.19, 6.70)T
13 0.837 0.645 0.080 0.837 (20.93, 4.19, 6.70)T
14 0.837 0.645 0.043 0.837 (20.93, 4.19, 6.70)T
15 0.837 0.645 0.030 0.837 (20.93, 4.19, 6.70)T
16 0.837 0.645 0.066 0.837 (29.30, 8.37, 0.00)T
17 0.837 0.645 0.080 0.837 (29.30, 8.37, 0.00)T
18 0.837 0.645 0.043 0.837 (29.30, 8.37, 0.00)T
19 0.837 0.645 0.030 0.837 (29.30, 8.37, 0.00)T
20 0.769 0.606 0.066 0.769 (0.00, 0.00, 7.69)T
21 0.769 0.606 0.080 0.769 (0.00, 0.00, 7.69)T
22 0.769 0.606 0.043 0.769 (7.69, 4.61, 3.85)T
23 0.769 0.606 0.030 0.769 (7.69, 4.61, 3.85)T
24 0.769 0.617 0.066 0.769 (13.84, 3.08, 3.08)T
25 0.769 0.617 0.080 0.769 (13.84, 3.08, 3.08)T
26 0.769 0.617 0.043 0.769 (19.23, 3.85, 6.15)T
27 0.769 0.617 0.030 0.769 (19.23, 3.85, 6.15)T
28 0.769 0.800 0.066 0.800 (20.00, 4.00, 6.40)T
29 0.769 0.800 0.080 0.800 (20.00, 4.00, 6.40)T
30 0.769 0.800 0.043 0.800 (20.00, 4.00, 6.40)T
31 0.769 0.800 0.030 0.800 (20.00, 4.00, 6.40)T
32 0.769 0.645 0.066 0.769 (26.92, 7.69, 0.00)T
33 0.769 0.645 0.080 0.769 (26.92, 7.69, 0.00)T
34 0.769 0.645 0.043 0.769 (26.92, 7.69, 0.00)T
35 0.769 0.645 0.030 0.769 (26.92, 7.69, 0.00)T
36 0.769 0.645 0.066 0.769 (26.92, 7.69, 0.00)T
37 0.769 0.645 0.080 0.769 (26.92, 7.69, 0.00)T
38 0.769 0.645 0.043 0.769 (26.92, 7.69, 0.00)T
39 0.769 0.645 0.030 0.769 (26.92, 7.69, 0.00)T
40 0.816 0.606 0.066 0.816 (0.00, 0.00, 8.16)T
41 0.816 0.606 0.080 0.816 (0.00, 0.00, 8.16)T
42 0.816 0.606 0.043 0.816 (8.16, 4.90, 4.08)T
43 0.816 0.606 0.030 0.816 (8.16, 4.90, 4.08)T
44 0.816 0.617 0.066 0.816 (14.69, 3.26, 3.26)T
45 0.816 0.617 0.043 0.816 (20.40, 4.08, 6.53)T
46 0.816 0.617 0.030 0.816 (20.40, 4.08, 6.53)T
47 0.816 0.800 0.043 0.816 (20.40, 4.08, 6.53)T
48 0.816 0.800 0.080 0.816 (20.40, 4.08, 6.53)T
49 0.816 0.800 0.043 0.816 (28.56, 8.16, 0.00)T
50 0.816 0.800 0.030 0.816 (28.56, 8.16, 0.00)T
51 0.816 0.645 0.066 0.816 (28.56, 8.16, 0.00)T
52 0.816 0.645 0.030 0.816 (28.56, 8.16, 0.00)T
53 0.816 0.645 0.043 0.816 (28.56, 8.16, 0.00)T
54 0.816 0.645 0.030 0.816 (28.56, 8.16, 0.00)T
55 0.816 0.645 0.066 0.816 (28.56, 8.16, 0.00)T
56 0.816 0.645 0.080 0.816 (28.56, 8.16, 0.00)T
57 0.816 0.645 0.043 0.816 (28.56, 8.16, 0.00)T
58 0.816 0.645 0.030 0.816 (28.56, 8.16, 0.00)T
59 0.833 0.606 0.043 0.833 (8.33, 5.00, 4.17)T
60 0.833 0.606 0.080 0.833 (8.33, 5.00, 4.17)T
61 0.833 0.606 0.043 0.833 (14.99, 3.33, 3.33)T
62 0.833 0.606 0.030 0.833 (14.99, 3.33, 3.33)T
63 0.833 0.617 0.066 0.833 (20.83, 4.17, 6.66)T
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Table 9: Continued
i s1i s2i s3i si = maxj∈{1,2,3} sji C̃∗i = si ⊗ C̃i

64 0.833 0.617 0.080 0.833 (20.83, 4.17, 6.66)T
65 0.833 0.617 0.043 0.833 (29.16, 8.33, 0.00)T
66 0.833 0.617 0.030 0.833 (29.16, 8.33, 0.00)T
67 0.833 0.800 0.066 0.833 (20.83, 4.17, 6.66)T
68 0.833 0.800 0.080 0.833 (20.83, 4.17, 6.66)T
69 0.833 0.800 0.043 0.833 (29.16, 8.33, 0.00)T
70 0.833 0.800 0.030 0.833 (29.16, 8.33, 0.00)T
71 0.833 0.645 0.066 0.833 (29.16, 8.33, 0.00)T
72 0.833 0.645 0.080 0.833 (29.16, 8.33, 0.00)T
73 0.833 0.645 0.043 0.833 (29.16, 8.33, 0.00)T
74 0.833 0.645 0.030 0.833 (29.16, 8.33, 0.00)T
75 0.833 0.645 0.066 0.833 (29.16, 8.33, 0.00)T
76 0.833 0.645 0.080 0.833 (29.16, 8.33, 0.00)T
77 0.833 0.645 0.043 0.833 (29.16, 8.33, 0.00)T
78 0.833 0.645 0.030 0.833 (29.16, 8.33, 0.00)T
79 0.769 0.606 0.066 0.769 (13.84, 3.08, 3.08)T
80 0.769 0.606 0.080 0.769 (13.84, 3.08, 3.08)T
81 0.769 0.606 0.043 0.769 (19.23, 3.85, 6.15)T
82 0.769 0.606 0.030 0.769 (19.23, 3.85, 6.15)T
83 0.769 0.617 0.066 0.769 (26.92, 7.69, 0.00)T
84 0.769 0.617 0.080 0.769 (26.92, 7.69, 0.00)T
85 0.769 0.617 0.043 0.769 (26.92, 7.69, 0.00)T
86 0.769 0.617 0.030 0.769 (26.92, 7.69, 0.00)T
87 0.769 0.800 0.066 0.800 (28.00, 8.00, 0.00)T
88 0.769 0.800 0.080 0.800 (28.00, 8.00, 0.00)T
89 0.769 0.800 0.043 0.800 (28.00, 8.00, 0.00)T
90 0.769 0.800 0.030 0.800 (28.00, 8.00, 0.00)T
91 0.769 0.645 0.066 0.769 (26.92, 7.69, 0.00)T
92 0.769 0.645 0.080 0.769 (26.92, 7.69, 0.00)T
93 0.769 0.645 0.043 0.769 (26.92, 7.69, 0.00)T
94 0.769 0.645 0.030 0.769 (26.92, 7.69, 0.00)T
95 0.769 0.645 0.066 0.769 (0.00, 0.00, 7.69)T
96 0.769 0.645 0.080 0.769 (0.00, 0.00, 7.69)T
97 0.769 0.645 0.043 0.769 (0.00, 0.00, 7.69)T
98 0.769 0.645 0.030 0.769 (0.00, 0.00, 7.69)T
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