
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,074 |
Extension of stabilizers on subtraction algebras | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 4 - شماره پیاپی 29، اسفند 2024، صفحه 165-179 اصل مقاله (458.35 K) | ||
نوع مقاله: Special Issue Dedicated to Prof. Esfandiar Eslami | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2024.23142.1599 | ||
نویسندگان | ||
Saeide Zahiri* 1؛ Farshad Nahangi2 | ||
1Department of Mathematics, Faculty of Science, Higher Education Center of Eghlid, Eghlid, Iran | ||
2ASU School of Computing and Augmented Intelligence, Tempe, AZ, USA | ||
چکیده | ||
This paper explores the intersection between the class of bounded subtraction algebras and the class of Boolean algebras, demonstrating their equivalence. It introduces the concepts of stabilizers for subsets and the stabilizers of one subset with respect to another within subtraction algebras. The study reveals that both the stabilizer of a subset and the stabilizer of an ideal with respect to another ideal are, in fact, ideals themselves. Investigating the impact of stabilizers on product and quotient subtraction algebras is a focal point. Additionally, a novel concept termed the ”stabilizer operation” is defined, and it is proven that the collection of ideals endowed with a binary stabilizer operator forms a bounded Hilbert algebra. | ||
کلیدواژهها | ||
(Bounded) Subtraction algebra؛ Stabilizer؛ Hilbert algebra | ||
مراجع | ||
[1] Abbott, J. C. (1969). Sets, lattices and Boolean Algebras. Allyn and Bacon.
[2] Borumand Saeid, A. & Mohtashamnia, N. (2012). Stabilizer in Residuated Lattices. U.P.B. Scienti c Bulletin, Series A, 74(2) ,65-74.
[3] C even, Y. & Ozturk, M.A. (2009). Some Results on Subtraction Algebras. Hacettepe Journal of Mathematics and Statistics, 38(3), 299-304.
[4] C even, Y. (2011). Quotient Subtraction Algebras. International Mathematical Forum, 6(25), 1241-1247.
[5] Haveshki, M.& Mohamadhasani, M. (2010). Stabilizer in BL-Algebras and its Properties. International Mathematical Forum, 5, no. 57, 2809-2816.
[6] Iorgulescu,A. (2008). Algebras of Logic as BCK-algebras. Editura ASE, Bucharest.
[7] Jun,Y.B. & Kim, Y.H. & Roh, E.H. (2004). Ideal Theory of Subtraction Algebras. Scientiae Mathematica Japonicae Online, 397-402.
[8] Jun,Y.B. & Kim, Y.H. (2006). On ideals in subtraction algebras. Sci. Math. Jpn. Online, 1081-1086.
[9] Jun,Y.B. & Kim, Y.H. & Oh, K.A. (2007). Subtraction Algebras with Additional Conditions. Commun. Korean Math. Soc. 22(1), 1-7.
[10] Jun,Y.B. & Kim, Y.H. (2008). Prime and Irreducible Ideals in Subtraction Algebras. International Mathematical Forum, 3(10), 457-462,
[11] Lee, K.J& Jun, Y.B & Kim, Y.H. (2008). Weak forms of subtraction algebras. Bulletin Korean Mathematics Society,45, 437-444.
[12] Schein, B.M. (1992). Di erence Semigroups. Communications in Algebra, 20, 2152-2169.
[13] Woumfo, F. & Koguep Njionou, B. & Temgoua, E. & Kondo, M. (2024. Some results on state ideals in state residuated lattices. Soft Computing, 28, 163-176. https://doi.org/10.1007/s00500-023-09300-8
[14] Zahiri, S. & Borumand Saeid, A. & Eslami, E. (2018). A study of stabilizers in triangle algebras. Mathematica Slovaca, 68, 41-52.
[15] Zelinka, B. (1995). Subtraction Semigroups. Mathematica Bohemica, 120, 445-447. | ||
آمار تعداد مشاهده مقاله: 97 تعداد دریافت فایل اصل مقاله: 102 |