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Abstract. In this paper, we introduce and study the concept of gener-
alized monoform modules (G−M modules, for short) which is a proper

generalization of that of monoform modules. We present some of their

examples, properties and characterizations. It is shown that over a com-
mutative ring R, the properties monoform, small monoform, G − M ,

compressible, uniform and weakly co-Hopfian are all equivalent. More-

over, we demonstrate that a ring R is an injective semisimple ring iff any
R-module is G − M . Further, we prove a similar theorem to Hilbert’s

basis theorem for monoform, small monoform and G−M modules.

Keywords: Monoform modules, Small monoform modules, G −M mod-

ules.
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1. Introduction

Throughout this paper, all rings are commutative with identity and all mod-
ules are unitary R-modules. Let L be an R-module, for submodules A and B of
L, A ≤ B denotes that A is a submodule of B, A ≤⊕ L denotes that A is a di-
rect summand of L, E(L) denotes the injective hull of L and EndR(L) denotes
the ring of endomorphisms of L. The study of modules by properties of their
endomorphisms is a classical research subject. In [18], Zelmanowitz introduced
the concept of monoform modules. Recall that a partial endomorphism of a
module M is a homomorphism from a submodule of M into M . A module is
monoform if any of its non-zero partial endomorphism is monomorphism. A
monoform module is uniform (i.e., any two non-zero submodules have non-zero
intersection). A submodule N of L is called a small submodule of L if whenever
N + K = L for some submodule K of L, we have L = K, and in this case we
write N � L. A module L is called small if it is a small submodule of some
module. In [11], Inaam Hadi and Hassan Marhun introduced and studied the
notion of small monoform modules. An R-module L is called a small mono-
form module, if any non-zero partial endomorphism of L has a small kernel.
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Recently, some works have been done concerning some variations of Hopfian,
co-Hopfian and also monoform modules see [2–4,7].

Motivated by the above-mentioned works, we are interested in introducing
a new generalization of monoform modules namely G −M modules. We call
a module L G − M if for every non-zero submodule N of L and for each
f ∈ HomR(N,L), f 6= 0 implies Kerf �µ N . The concept of G−M modules
forms a proper generalization of monoform modules ( Example 2.2). It is
obvious that any small monoform module is G−M . Example 2.18 demonstrates
that the converse is false, in general.

Our paper is structured as follows:
In Section 1, we give some known results which we will cite or use throughout

this paper.
In Section 2, we present some equivalent properties and characterizations

of G −M modules. A non-zero R-module L is called compressible provided
for each non-zero submodule N of L there exists a monomorphism f : L →
N . We have the obvious implications: compressible ⇒ monoform ⇒ small
monoform ⇒ G − M . We will see later that under certain conditions the
properties monoform, uniform, compressible, small monoform and G −M are
coincide (Corollary 2.9). The dual of an R-module L is HomR(L,R), this
will be denoted by L∗. If the natural map L → (L∗)∗ is bijective, L will
be called reflexive. We prove that for a quasi-Frobenius principal ring R, if
L is a G −M cosingular R-module, then L is reflexive and E(L∗) is finitely
generated (Proposition 2.11). In proposition 2.15, we obtain that if L is a fully
retractable R-module such that for every 0 6= N ≤ L, the kernel of any non-
zero endomorphism of N is µ-small, then L is G −M . In [5], we investigated
and introduced the concept of µ-Hopfian modules. An R-module L is called
µ-Hopfian if every surjective endomorphism of L has a µ-small kernel. We show
that for a semisimple quasi-injective R-module L, the properties µ-Hopfian and
G−M are equivalent (Proposition 2.16).

In Section 3, we consider the monoform, small monoform and G−M prop-
erties of the R[x]/(xn+1)-modules L[x]/(xn+1).

For a ring R and a right R-module L, let Z∗(L) = {x ∈ L: xR is small}.
If Z∗(L) = 0 (resp., Z∗(L) = L), then L is called a noncosingular (resp.,
cosingular) module (see [13]).

A submodule K of L is said to be µ-small in L (K �µ L), if L = K + H
with L/H is cosingular, then L = H, see [17]. It is clear that if B � L,
then B �µ L, but the converse is not true in general, see [17, Examples and
Remarks 2.10].

Let R be a ring and L an R-module. We now state a few well-known pre-
liminary results:

Remark 1.1. (1) Let R be a commutative ring and L an R-module. Then
L is monoform if and only if L is uniform prime [15].
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(2) Let R be a commutative ring. Then every compressible R-module is
monoform [15].

(3) It is clear that every monoform R-module is a small monoform module.
However, the converse in general is not true. Z4 is a small monoform
Z-module while it is not monoform [11].

(4) Let L be a semisimple R-module. Then the following are equivalent
[11].
(a) L is small monoform;
(b) L is monoform;
(c) L is simple.

We list some properties of µ-small submodules that will be used in the paper.

Lemma 1.2. ( [17]) Let L be an R-module.

(1) Let X ≤ Y ≤ L. Then Y �µ L iff X �µ L and Y/X �µ L/X.
(2) Let X ≤ L and Y ≤ L. Then X + Y �µ L iff X �µ L and Y �µ L.

Moreover, if X1, X2, ...,Xn are submodules of L with Xi �µ L, ∀
i = 1, ..., n, then

∑n
i=1Xi �µ L.

(3) Let f : L→ N be a homomorphism. If X �µ L, then f(X)�µ N .
(4) Let L = L1⊕L2 be a module, X1 ≤ L1 and X2 ≤ L2. Then X1⊕X2 �µ

L1 ⊕ L2 iff X1 �µ L1 and X2 �µ L2.
(5) Let L be a module and let X ≤ Y ≤ L. If Y ≤⊕ L and X �µ L, then

X �µ Y .

Lemma 1.3. ( [5]) Let K be a submodule of a module L. Then the following
statements are equivalent.

(1) K �µ L.
(2) If X +K = L, then X ≤⊕ L and L/X is semisimple injective.

2. Modules in which every partial endomorphism has a µ-
small kernel

Definition 2.1. An R-module L is called G −M if for every non-zero sub-
module N of L and for each f ∈ HomR(N,L), f 6= 0 implies Kerf �µ N .

Example 2.2. Let H = Zq∞ . Since H is a hollow group, each proper subgroup
is µ-small, hence H is a G −M group. But H is not monoform because the
multiplication by q induces an endomorphism of H which is not a monomor-
phism.

Theorem 2.3. The following are equivalent for an R-module L:

(1) L is G−M .
(2) For every non-zero partial endomorphism f ∈ Hom(N,L) where 0 6=

N ≤ L, if there exists P ≤ N such that f(P ) = f(N), then there exists
an injective semisimple direct summand H of N such that N = H⊕P .
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Proof. (1)⇒ (2) Assume that f ∈ Hom(N,L) where 0 6= N ≤ L is a non-zero
partial endomorphism. If there exists P ≤ N such that f(P ) = f(N), then
Kerf + P = N . Since L is G−M , Kerf �µ N . By Lemma 1.3, N = H ⊕ P
for some injective semisimple H ≤ N .

(2) ⇒ (1) Let f ∈ Hom(N,L) where 0 6= N ≤ L be a non-zero partial en-
domorphism and Ker(f) + P = N for some P ≤ N , where N/P is cosingular.
Then f(P ) = f(N) . By (2), there exists an injective semisimple direct sum-
mand H of N such that N = H⊕P , then N/P is noncosingular by [13, Lemma
4]. Thus N/P = 0. Therefore N = P and Ker(f)�µ N .

�

Proposition 2.4. Every G−M cosingular module is uniform.

Proof. Let L be a G−M cosingular R-module. Suppose there exists a non-zero
submodule N of L such that N is not essential in L. So, there exists a relative
complement K of N in L such that N⊕K is essential in L. Let f : N⊕K → L
define by f(n+ k) = k for all n+ k ∈ N ⊕K. It is clear that f is well defined
and f 6= 0. Since L is G−M , Kerf = {0}⊕K �µ N ⊕K. So, by Lemma 1.3,
K is injective semisimple. Thus K is noncosingular by [13, Lemma 4]. Since L
is cosingular, K is also cosingular, then K must be zero. This implies that N
is essential in L, contradiction.

�

Recall that a non-zero right R-module L is called prime, if whenever N is
a non-zero submodule of L and A is an ideal of R such that NA = 0, then
LA = 0.

Example 2.5. It is clear that a simple module is G−M prime. But in general,
the converse is not true. For example, Z is a G−M prime Z-module. However,
Z is not simple.

Definition 2.6. [10]. Let L be an R-module. Then L is called weakly co-
Hopfian if every its injective endomorphism has an essential image.

Recall that an Artinian principal ideal ring is a left and right Artinian, left
and right principal ideal ring.

Theorem 2.7. Let R be an Artinian principal ideal ring and L be a cosingular
R-module. Then the following statements are equivalent:

(1) L is G−M prime;
(2) L is simple.

Proof. (1) ⇒ (2) Suppose L is a G −M prime module. Since L is cosingular,
so L is uniform by Proposition 2.4. Thus L is weakly co-Hopfian. As R is an
Artinian principal ideal ring, then by [1, Theorem 3.8], L is finitely generated.
Hence there exists an epimorphism g : R → L such that R/annR(L) ∼= L.
Since L is a prime module, annR(L) is a prime ideal of R. Hence annR(L) is
maximal in R as R is Artinian. Thus L is a simple module.
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(2)⇒ (1) It is clear.
�

Example 2.8. Every compressible R-module is G−M . In general, the converse
is not true. For example, Q is a G−M Z-module. But it is not compressible
because HomZ(Q,Z) = {0}.

Corollary 2.9. Let R be an Artinian principal ideal ring and L be a prime
cosingular R-module. Then the following statements are equivalent:

(1) L is G−M ;
(2) L is monoform;
(3) L is small monoform;
(4) L is compressible;
(5) L is uniform;
(6) L is weakly co-Hopfian.

Proof. (1)⇒ (2) By Theorem 2.7, L is a simple module, then L is monoform.
(2)⇒ (1) It is clear.
(1)⇔ (3) By [17], if L is cosingular and if K ≤ L, then K � L if and only

if K �µ L. Therefore L is G−M iff L is a small monoform module.
(1) ⇒ (4) By (1), we obtain that L is a uniform prime finitely generated

module hence, by [15, Lemma 26.2.9], L is compressible.
(4) ⇒ (1) By Remark 1.1, every compressible module is monoform, then it

is G−M .
(2)⇒ (5) It is clear.
(5) ⇒ (2) Suppose that L is a uniform module. According to the proof of

(1)⇒ (2), L is simple. Thus, L is monoform.
(5)⇒ (6) It is clear.
(6)⇒ (5) Assume that L is a weakly co-Hopfian module. Then L is simple.

Thus, L is uniform.
�

Corollary 2.10. Let R be an Artinian principal ideal ring and L a G −M
cosingular R-module. Then End(L) is a local ring.

Proof. Since L is a finitely generated module over an Artinian ring, by Theo-
rem 2.7, L is of finite length. And since L is uniform, L is indecomposable of
finite length. Thus, End(L) is a local ring.

�

Proposition 2.11. Let R be a principal quasi-Frobenius ring and L a G−M
cosingular R-module. Then the following statements hold:

(1) L is reflexive.
(2) L∗ and E(L∗) are finitely generated.

Proof. 1) According to Theorem 2.7, L is a finitely generated R-module. Thus,
by [12, Theorem 15.11], L is reflexive.
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2) Since R is Artinian and L∗ is finitely generated, E(L∗) is finitely gener-
ated.

�

Proposition 2.12. Let L be a G−M module and f be a surjective endomor-
phism of L, N ≤ L. Then f(N)�µ L if and only if N �µ L.

Proof. ⇒) Let N + Y = L with L/Y cosingular for some Y ≤ L. Then
f(N) + f(Y ) = L. Since the class of cosingular R-modules is closed under
homomorphic images, L/f(Y ) is cosingular. Then f(Y ) = L as f(N) �µ L.
This implies that Kerf+Y = L. Being L a G−M module implies Kerf �µ L.
Hence Y = L. Therefore N �µ L.
⇐) By Lemma 1.2. �

Definition 2.13. ( [14]) A module L is said to be fully retractable if for any
non-zero submodule N of L and every non-zero g ∈ HomR(N,L) we have
HomR(L,N)g 6= 0.

Example 2.14. According to [14], Z4 is a fully retractable Z-module.

Proposition 2.15. Let L be a fully retractable R-module such that for every
non-zero submodule N of L, the kernel of any non-zero endomorphism of N is
µ-small. Then L is G−M .

Proof. Let 0 6= N ≤ L and f : N → L such that f 6= 0. Since L is fully
retractable, there exists g : L→ N , g 6= 0. Consider

NLN
gf

We have gf 6= 0 as L is fully retractable. By hypothesis, Ker(gf) �µ N .
Since Kerf ⊆ Ker(gf), according to Lemma 1.2, Kerf �µ N . It follows that
L is G−M .

�

Proposition 2.16. Let L be a semisimple quasi-injective R-module. Then the
following statements are equivalent:

(1) L is G−M ;
(2) L is µ-Hopfian.

Proof. (1)⇒ (2) Is clear.
(2) ⇒ (1) Let 0 6= N ≤ L and f : N → L such that f 6= 0. Since L

is quasi-injective, there exists g ∈ EndR(L) such that gi = f where i is the
inclusion map. Hence, g(x) = f(x) for each x ∈ N and so Kerf ≤ Kerg. Since
L is µ-Hopfian, Kerg �µ L. So Kerf �µ L. On the other hand, Kerf ≤ N
and L is semisimple, then N is a direct summand of L. Hence, by Lemma 1.2,
Kerf �µ N . This shows that L is G−M .

�
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Corollary 2.17. If R is a semisimple ring, then every R-module is G−M .

Proof. By [5, Theorem 2.10] and Proposition 2.16. �

It is obvious that every small monoform module is G −M . The following
example shows that the converse is false, in general.

Example 2.18. Let R be a semisimple ring. According to Corollary 2.17, R(N)

is G−M . But the kernel of every non-zero endomorphism of R(N) is not small
by [5, Example 2.11]. Thus R(N) is not a small monoform module.

A ring R is a right GV -ring if every simple R-module is either projective
or injective. In [16], the authors proved that every simple module is small if
and only if R is a right GV -ring. It follows directly from [16, Theorem 3.1],
that R is a right GV -ring if and only if R has no simple (semisimple) injective
R-module.

Corollary 2.19. Let R be a right GV -ring and L an R-module. Then the
following statements are equivalent:

(1) L is G−M ;
(2) L is small monoform.

Proof. (1)⇒ (2) Let L be aG−M module, N be a non-zero submodule of L and
f ∈ Hom(N,L) be a non-zero partial endomorphism. Assume Kerf +K = N
for some K ≤ N . As L is a G−M module, Kerf �µ N . Then by Theorem 2.3,
N = K ⊕H for some injective semisimple submodule H of N . By hypothesis,
H = 0. This implies that N = K and so Kerf � N . Hence L is a small
monoform module.

(2)⇒ (1) Is clear.
�

Definition 2.20. ( [9]) A right Goldie ring is a ring R that has finite uni-
form dimension as a right module over itself, and satisfies the ascending chain
condition on right annihilators of subsets of R

Proposition 2.21. Let R be a prime right Goldie ring which is not a right
primitive (e.g. a commutative domain which is not a field) and L a semisimple
R-module. Then the following assertions are equivalent:

(1) L is G−M ;
(2) L is monoform;
(3) L is small monoform;
(4) L is simple.

Proof. (2)⇔ (3)⇔ (4) By Remark 1.1.
(1) ⇒ (2) Let N be a non-zero submodule of L and f ∈ Hom(N,L) a

non-zero partial endomorphism. Since L is G − M , Kerf �µ N . As R is
a prime right Goldie ring which is not a right primitive ring, N is cosingular
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by [13, Corollary 9], and it is semisimple as L is semisimple, hence the only
µ-small submodule of N is zero. So Kerf = 0, this completes the proof.

(2)⇒ (1) Is clear.
�

Lemma 2.22. For an R-module L, consider the following statements.

(1) L is G−M .
(2) For every right R-module Y , if there is an epimorphism L → L ⊕ Y ,

then Y is semisimple injective.
Then (1) ⇒ (2).

Proof. (1) ⇒ (2) Let g : L → L ⊕ Y be a surjective homomorphism, and
let π : L ⊕ Y → L the natural projection. It is obvious that Ker(πg) =
g−1(0 ⊕ Y ). Since L is G −M , Ker(πg) �µ L. According to Lemma 1.2,
0⊕Y = g[g−1(0⊕Y )] = g(Ker(πg))�µ L⊕Y . Thus Y �µ Y by Lemma 1.2.
Therefore, Y is semisimple injective by Lemma 1.3.

�

In the following, we characterize the class of rings R for which every (free)
R- module is G−M .

Theorem 2.23. Let R be a ring. The following assertions are equivalent:

(1) R is semisimple;
(2) Any R-module is G−M ;
(3) Any projective R-module is G−M ;
(4) Any free R-module is G−M .

Proof. (1)⇒ (2) By Corollary 2.17
(2)⇒ (3)⇒ (4) Clear.
(4) ⇒ (1) Let L = R(N), by (4) L is a G−M R-module. Since L ∼= L⊕ L,

L is semisimple injective by Lemma 2.22. Therefore R is a semisimple ring.
�

Proposition 2.24. Every non-zero submodule of a G−M module is G−M .

Proof. Let N be a non-zero submodule of a G −M module L. For any 0 6=
K ≤ N , let f : K → N be a non-zero partial endomorphism of N , then if 6= 0
where i : N → L is the inclusion mapping. Since L is G−M , Ker(if)�µ K,
hence Kerf �µ K, and so N is G−M . �

Remark 2.25. Let π : Z→ Z/12Z, where π is the natural projection. However
Z/12Z is not a G−M Z-module as 0 6= f = 4x ∈ End(Z/12Z) and Kerf =<
3 > is not µ-small in Z/12Z.

(1) Let L = Z/3Z ⊕ Z/4Z. Each of Z/3Z and Z/4Z is a G −M module
(because every of each is small monoform). Since L ∼= Z/12Z. Then
the direct sum of G−M modules is not necessarily G−M .
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(2) Since Z is a G−M Z-module and Z/12Z is not G−M Z-module. Then
the homomorphic image of G−M module is not necessarily G−M .

Proposition 2.26. Let L be a Noetherian R-module. Then L is G −M iff
any non-zero 3-generated submodule of L is G−M .

Proof. ⇒) Clear from Proposition 2.24.
⇐) Suppose that any non-zero 3-generated submodule of L is G−M . Let N

be a non-zero submodule of L and f : N → L such that f 6= 0. IfKerf = 0 then
Kerf �µ N . If Kerf 6= 0, let x ∈ Kerf . Let y ∈ N and z = f(y). Consider
P = Rx + Ry + Rz is a 3-generated submodule of L. Let H = Rx + Ry and
h = f |H : H → P . By hypothesis P is G −M , hence Kerh �µ H ≤ N .
But x ∈ Kerh, so < x >⊆ Kerh �µ N . Since L is Noetherian, Kerf is
finitely generated, hence Kerf =

∑n
i=1Rxi, for some xi ∈ L, 1 ≤ i ≤ n.

We have < xi >�µ N for every 1 ≤ i ≤ n. Thus according to Lemma 1.2,
Kerf =

∑n
i=1Rxi �µ N . Therefore L is G−M .

�

Corollary 2.27. Let R be an Artinian principal ideal ring and L a weakly
co-Hopfian R-module. Then the following are equivalent:

(1) L is G−M .
(2) Any non-zero 3-generated submodule of L is G−M .

Proof. By [1, Theorem 3.8], L must be finitely generated. Then L is a Noe-
therian since R is an Artinian principal ideal ring. Thus by Propostion 2.26
the result is obtained. �

3. Properties of Polynomial Extensions

In [6], we have recalled the definitions of the modules L[x] and L[x]/(xn+1).
Every element of L[x] is a formal sum as e0 +e1x+ ...+ekx

k with k ≥ 0 and

ei ∈ L. This sum that is denoted by
∑k
i=1 eix

i (e0x
0, is the element e0 ∈ L).

The addition is defined by adding the corresponding coefficients. The structure
of R[x]-module is given by

(
∑k
i=0 γix

i).(
∑z
j=0 ejx

j) =
∑k+z
t=0 atx

t,

where at =
∑
i+j=t γiej , for any γi ∈ R, ej ∈ L.

Any P ∈ L[x] can be written under the form (
∑l
i=k eix

i) with l ≥ k ≥ 0,
ei ∈ L, ek 6= 0 and el 6= 0. In this case we say that k is the order of P , l is the
degree of P , ek is the initial coefficient of P , and el as the leading coefficient
of P .

Let n be any positive integer and

In+1 = {0} ∪ {P ; 0 6= P ∈ R[x], order of P ≥ n+ 1}.
Hence In+1 ≤ R[x]. The quotient ring R[x]/In+1 is truncated at degree n +
1. For that R[x]/In+1 is said to be the truncated polynomial ring. Since
R has an identity element, In+1 = (xn+1). Even when R does not have an
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identity element, the ring R[x]/In+1 denoted by R[x]/(xn+1). Every element
of R[x]/(xn+1) can be written under the form (

∑n
i=0 γix

i) with γi ∈ R.
Let

Dn+1 = {0} ∪ {P ; 0 6= P ∈ L[x], order of P ≥ n+ 1}.
Hence Dn+1 ≤ L[x]. As In+1L[x] ⊂ Dn+1, we see that R[x]/(xn+1) acts on
L[x]/Dn+1. The module L[x]/Dn+1 denoted by L[x]/(xn+1). The action of
R[x]/(xn+1) on L[x]/(xn+1) is given by

(
∑n
i=0 γix

i).(
∑n
j=0 ejx

j) =
∑n
µ=0 aµx

µ,

where aµ =
∑
i+j=µ γiej , for any γi ∈ R, ej ∈ L.

Any non-zero element P ∈ L[x]/Dn+1 can be written uniquely under the
form (

∑n
i=k eix

i) with n ≥ k ≥ 0, ei ∈ L, ek 6= 0. In this case we say that k is
the order of P , ek is the initial coefficient of P .

Similarly we define the R[x1, ..., xk]/(xn1+1
1 , ..., xnk+1

k )-module

L[x1, ..., xk]/(xn1+1
1 , ..., xnk+1

k ).

Lemma 3.1. Let g : N → L[x]/(xn+1) be a non-zero partial endomorphism,
where 0 6= N ≤ L[x]/(xn+1) and n is a positive integer. If g(h(x)) 6= 0 for
h(x) =

∑n
j=0mjx

j ∈ N , then o(h(x)) ≤ o(g(h(x))), where o(h(x)) represent

the order of h(x). For instance when g is injective, we have that o(h(x)) =
o(g(h(x))).

Proof. We have that g(m) =
∑n
j=0mjx

j for any m ∈ H, where H is the
non-zero submodule of N which is generated by the constant polynomials of

N . Therefore g(mxk) = xk(
∑n
j=0mjx

j) =
∑n−k
j=0 mjx

j+k, where 0 ≤ k ≤
n. Clearly, o(

∑n
j=0mjx

j) ≤ o(g(
∑n
j=0mjx

j)), that is o(h(x)) ≤ o(g(h(x))).

In case g is injective, suppose g(mxk) =
∑n
j=k+1mjx

j , then we get that

g(mxn) = g(xn−k(mxk)) = xn−k
∑n
j=k+1mjx

j = 0, thus m = 0. So o(h(x)) =

o(g(h(x))).
�

Theorem 3.2. L[x]/(xn+1) is a monoform R[x]/(xn+1)-module iff L is mono-
form R-module.

Proof. =⇒) Let f : N → L be any non-zero partial endomorphism of L where
0 6= N ≤ L, then g : N [x]/(xn+1) → L[x]/(xn+1) defined by g(

∑n
i=0 aix

i) =∑n
i=0 f(ai)x

i is a non-zero partial endomorphism of L[x]/(xn+1) with 0 6=
N [x]/(xn+1) ≤ L[x]/(xn+1) and Kerg = (Kerf)[x]/(xn+1). Since L[x]/(xn+1)
is monoform, Kerg = 0 then Kerf = 0. Hence L is monoform.
⇐=) Let g : N → L[x]/(xn+1) be a non-zero partial endomorphism of

L[x]/(xn+1), where N is a non-zero submodule of L[x]/(xn+1) and τ : H → N
is the inclusion map, where H is the non-zero submodule of N generated by the
constant polynomials of N . Define pi : L[x]/(xn+1)→ L by pi(

∑n
j=0mjx

j) =
mi, i = 0, 1, ..., n. We can prove that pigτ 6= 0, else, there exists 0 6= m ∈ H
such that pigτ(m) = 0, hence pigτ(m) = pig(m) = pi(

∑n
j=0mjx

j) = mi = 0,
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then o(m) = 0 < o(g(m)), contradiction with Lemma 3.1. Since H is a non-zero
submodule of L and L is monoform, then Ker(pigτ) = 0.

Let x ∈ Kerg, so g(x) = 0 implies pigτ(x) = pig(x) = 0. Hence x ∈
Ker(pigτ). It follows that Kerg ⊆ Ker(pigτ) = 0. Thus Kerg = 0 and so
L[x]/(xn+1) is monoform.

�

Theorem 3.3. L[x]/(xn+1) is a small monoform R[x]/(xn+1)-module iff L is
a small monoform R-module.

Proof. =⇒) Let f : N → L be any non-zero partial endomorphism of L where
0 6= N ≤ L, then g : N [x]/(xn+1) → L[x]/(xn+1) defined by g(

∑n
i=0 aix

i) =∑n
i=0 f(ai)x

i is a non-zero partial endomorphism of L[x]/(xn+1) with 0 6=
N [x]/(xn+1) ≤ L[x]/(xn+1) and Kerg = (Kerf)[x]/(xn+1). Since L[x]/(xn+1)
is small monoform Kerg � N [x]/(xn+1), then Kerf � N . Hence L is a small
monoform module.
⇐=) Let g : N → L[x]/(xn+1) be a non-zero partial endomorphism of

L[x]/(xn+1), where N is a non-zero submodule of L[x]/(xn+1) and τ : H → N
is the inclusion map, where H is the non-zero submodule of N generated by the
constant polynomials of N . Define pi : L[x]/(xn+1)→ L by pi(

∑n
j=0mjx

j) =
mi, i = 0, 1, ..., n. We can prove that pigτ 6= 0, else, there exists 0 6= m ∈ H
such that pigτ(m) = 0, hence pigτ(m) = pig(m) = pi(

∑n
j=0mjx

j) = mi = 0,

then o(m) = 0 < o(g(m)), contradiction with Lemma 3.1. Since H is a non-zero
submodule of L and L is small monoform, then Kerpigτ � H.

Let x ∈ Kerg, so g(x) = 0 implies pigτ(x) = pig(x) = 0. Hence x ∈
Ker(pigτ). It follows that Kerg ⊆ Ker(pigτ) � H ≤ N . Thus Kerg � N
and so L[x]/(xn+1) is a small monoform module.

�

Lemma 3.4. ( [8, Lemma 2.1]). Let K � L. Then K[x]/(xn+1)� L[x]/(xn+1)
as R[x]/(xn+1)-modules, where n ≥ 0.

Theorem 3.5. L[x]/(xn+1) is a G−M R[x]/(xn+1)-module iff L is a G−M
R-module.

Proof. =⇒) Let f : N → L be any non-zero partial endomorphism of L where
N be a non-zero submodule of L, then g : N [x]/(xn+1) → L[x]/(xn+1) de-
fined by g(

∑n
i=0 aix

i) =
∑n
i=0 f(ai)x

i is a non-zero partial endomorphism of
L[x]/(xn+1) with 0 6= N [x]/(xn+1) ≤ L[x]/(xn+1) andKerg = (Kerf)[x]/(xn+1).
Suppose that Kerf +H = N for some H ≤ N with Z∗(N/H) = N/H, thus

(Ker(f))[x]/(xn+1) +H[x]/(xn+1) = N [x]/(xn+1).

We show that Z∗(N [x]/(xn+1)
H[x]/(xn+1) ) = N [x]/(xn+1)

H[x]/(xn+1) . Let h =
∑n
i=0mix

i ∈ N [x]/(xn+1)
H[x]/(xn+1) .

As N/H is cosingular, miR is small for every 0 ≤ i ≤ n. Then according to
Lemma 3.4, (miR)[x]/(xn+1) is small, hence (hR)[x]/(xn+1) is small. Then
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Z∗(N [x]/(xn+1)
H[x]/(xn+1) ) = N [x]/(xn+1)

H[x]/(xn+1) . Since Kerg �µ N [x]/(xn+1), N [x]/(xn+1) =

H[x]/(xn+1) and so N = H. Thus Kerf �µ N and L is G−M .
⇐=) Let g : N → L[x]/(xn+1) be a non-zero partial endomorphism of

L[x]/(xn+1), where N is a non-zero submodule of L[x]/(xn+1) and τ : H → N
is the inclusion map, where H is the non-zero submodule of N generated by the
constant polynomials of N . Define pi : L[x]/(xn+1)→ L by pi(

∑n
j=0mjx

j) =
mi, i = 0, 1, ..., n. We can prove that pigτ 6= 0, else, there exists 0 6= m ∈ H
such that pigτ(m) = 0, hence pigτ(m) = pig(m) = pi(

∑n
j=0mjx

j) = mi = 0,

then o(m) = 0 < o(g(m)), contradiction with Lemma 3.1. Since H is a non-zero
submodule of L and L is G−M , then Kerpigτ �µ H.

Let x ∈ Kerg, so g(x) = 0 implies pigτ(x) = pig(x) = 0. Hence x ∈
Ker(pigτ). It follows thatKerg ⊆ Ker(pigτ)�µ H ≤ N . Thus by Lemma 1.2,
Kerg �µ N and so L[x]/(xn+1) is G−M .

�

Corollary 3.6. L[x1, ..., xk]/(xn1+1
1 , ..., xnk+1

k ) is a G−M R[x1, ..., xk]/(xn1+1
1 , ..., xnk+1

k )-
module iff L is a G−M R-module.

Proof. We use the induction, the ring isomorphism

(R[x1, ..., xk−1]/(xn1+1
1 , ..., x

nk−1+1
k−1 ))[xk]/(xnk+1

k ) ' R[x1, ..., xk]/(xn1+1
1 , ..., xnk+1

k ),
and
(R[x1, ..., xk−1]/(xn1+1

1 , ..., x
nk−1+1
k−1 ))[xk]/(xnk+1

k )-module isomorphism

(L[x1, ..., xk−1]/(xn1+1
1 , ..., x

nk−1+1
k−1 ))[xk]/(xnk+1

k ) ' L[x1, ..., xk]/(xn1+1
1 , ..., xnk+1

k )
�

Open Problems

(1) What is the structure of rings whose finitely generated modules are
G−M modules?

(2) Let R be a ring with identity, and M a G−M module. Is M [X,X−1]
G−M module in R[X,X−1]-module?

(3) Let R be a G−M ring and n ≥ 1 an integer. Is the matrix ring Mn(R)
G−M?
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