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ABSTRACT. In this paper, we introduce and study the concept of gener-
alized monoform modules (G — M modules, for short) which is a proper
generalization of that of monoform modules. We present some of their
examples, properties and characterizations. It is shown that over a com-
mutative ring R, the properties monoform, small monoform, G — M,
compressible, uniform and weakly co-Hopfian are all equivalent. More-
over, we demonstrate that a ring R is an injective semisimple ring iff any
R-module is G — M. Further, we prove a similar theorem to Hilbert’s
basis theorem for monoform, small monoform and G — M modules.

Keywords: Monoform modules, Small monoform modules, G — M mod-
ules.
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1. Introduction

Throughout this paper, all rings are commutative with identity and all mod-
ules are unitary R-modules. Let L be an R-module, for submodules A and B of
L, A < B denotes that A is a submodule of B, A <% L denotes that A is a di-
rect summand of L, E(L) denotes the injective hull of L and Endg(L) denotes
the ring of endomorphisms of L. The study of modules by properties of their
endomorphisms is a classical research subject. In [18], Zelmanowitz introduced
the concept of monoform modules. Recall that a partial endomorphism of a
module M is a homomorphism from a submodule of M into M. A module is
monoform if any of its non-zero partial endomorphism is monomorphism. A
monoform module is uniform (i.e., any two non-zero submodules have non-zero
intersection). A submodule N of L is called a small submodule of L if whenever
N + K = L for some submodule K of L, we have L = K, and in this case we
write N < L. A module L is called small if it is a small submodule of some
module. In [11], Inaam Hadi and Hassan Marhun introduced and studied the
notion of small monoform modules. An R-module L is called a small mono-
form module, if any non-zero partial endomorphism of L has a small kernel.
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Recently, some works have been done concerning some variations of Hopfian,
co-Hopfian and also monoform modules see [2-4,7].

Motivated by the above-mentioned works, we are interested in introducing
a new generalization of monoform modules namely G — M modules. We call
a module L G — M if for every non-zero submodule N of L and for each
f € Homg(N,L), f # 0 implies Kerf <, N. The concept of G — M modules
forms a proper generalization of monoform modules ( Example 2.2). It is
obvious that any small monoform module is G— M. Example 2.18 demonstrates
that the converse is false, in general.

Our paper is structured as follows:

In Section 1, we give some known results which we will cite or use throughout
this paper.

In Section 2, we present some equivalent properties and characterizations
of G — M modules. A non-zero R-module L is called compressible provided
for each non-zero submodule N of L there exists a monomorphism f : L —
N. We have the obvious implications: compressible = monoform =- small
monoform = G — M. We will see later that under certain conditions the
properties monoform, uniform, compressible, small monoform and G — M are
coincide (Corollary 2.9). The dual of an R-module L is Hompg(L, R), this
will be denoted by L*. If the natural map L — (L*)* is bijective, L will
be called reflexive. We prove that for a quasi-Frobenius principal ring R, if
L is a G — M cosingular R-module, then L is reflexive and E(L*) is finitely
generated (Proposition 2.11). In proposition 2.15, we obtain that if L is a fully
retractable R-module such that for every 0 £ N < L, the kernel of any non-
zero endomorphism of N is p-small, then L is G — M. In [5], we investigated
and introduced the concept of u-Hopfian modules. An R-module L is called
u-Hopfian if every surjective endomorphism of L has a p-small kernel. We show
that for a semisimple quasi-injective R-module L, the properties u-Hopfian and
G — M are equivalent (Proposition 2.16).

In Section 3, we consider the monoform, small monoform and G — M prop-
erties of the R[z]/(x""1)-modules L[z]/(x"*1).

For a ring R and a right R-module L, let Z*(L) = {x € L: zR is small}.
If Z*(L) = 0 (resp., Z*(L) = L), then L is called a noncosingular (resp.,
cosingular) module (see [13]).

A submodule K of L is said to be g-small in L (K <, L), if L = K + H
with L/H is cosingular, then L = H, see [17]. It is clear that if B <« L,
then B <, L, but the converse is not true in general, see [17, Examples and
Remarks 2.10].

Let R be a ring and L an R-module. We now state a few well-known pre-
liminary results:

Remark 1.1. (1) Let R be a commutative ring and L an R-module. Then
L is monoform if and only if L is uniform prime [15].
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(2) Let R be a commutative ring. Then every compressible R-module is
monoform [15].

(3) It is clear that every monoform R-module is a small monoform module.
However, the converse in general is not true. Z4 is a small monoform
Z-module while it is not monoform [11].

(4) Let L be a semisimple R-module. Then the following are equivalent
[11].

(a) L is small monoform;

(b) L is monoform;

(¢) L is simple.

We list some properties of u-small submodules that will be used in the paper.

Lemma 1.2. ([17]) Let L be an R-module.

(1) Let X <Y <L. ThenY <, Liff X <, L and Y/X <, L/X.

(2) Let X <L andY < L. Then X +Y <, L iff X <, L andY <, L.
Moreover, if X1, Xo, ...,X, are submodules of L with X; <, L, ¥V
i=1,..,n, then > | X; <, L.

(3) Let f: L — N be a homomorphism. If X <, L, then f(X) <, N.

(4) Let L = L1® Ly be a module, X1 < L1 and Xo < Lo. Then X16Xs <,
L1 @LQ ZﬁXl <<N L1 and X2 <<# LQ.

(5) Let L be a module and let X <Y < L. IfY <% L and X <, L, then
XK, Y.

Lemma 1.3. ( [5]) Let K be a submodule of a module L. Then the following
statements are equivalent.

(1) K<, L.

(2) If X+ K =L, then X <® L and L/X is semisimple injective.

2. Modules in which every partial endomorphism has a pu-
small kernel

Definition 2.1. An R-module L is called G — M if for every non-zero sub-
module N of L and for each f € Homg(N, L), f # 0 implies Kerf <, N.

Example 2.2. Let H = Zg~. Since H is a hollow group, each proper subgroup
is p-small, hence H is a G — M group. But H is not monoform because the
multiplication by q induces an endomorphism of H which is not a monomor-
phism.

Theorem 2.3. The following are equivalent for an R-module L:
(1) LisG— M.
(2) For every non-zero partial endomorphism f € Hom(N, L) where 0 #
N < L, if there exists P < N such that f(P) = f(N), then there exists
an injective semisimple direct summand H of N such that N = H® P.
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Proof. (1) = (2) Assume that f € Hom(N, L) where 0 # N < L is a non-zero
partial endomorphism. If there exists P < N such that f(P) = f(N), then
Kerf+P=N. Since Lis G— M, Kerf <, N. By Lemma 1.3, N=H®P
for some injective semisimple H < N.

(2) = (1) Let f € Hom(N, L) where 0 # N < L be a non-zero partial en-
domorphism and Ker(f)+ P = N for some P < N, where N/P is cosingular.
Then f(P) = f(IN) . By (2), there exists an injective semisimple direct sum-
mand H of N such that N = H& P, then N/P is noncosingular by [13, Lemma
4]. Thus N/P = 0. Therefore N = P and Ker(f) <, N.

(|

Proposition 2.4. Every G — M cosingular module is uniform.

Proof. Let L be a G— M cosingular R-module. Suppose there exists a non-zero
submodule N of L such that N is not essential in L. So, there exists a relative
complement K of N in L such that N @ K is essential in L. Let f: N6 K — L
define by f(n+k) =k foralln+k € N @ K. It is clear that f is well defined
and f # 0. Since Lis G—M, Kerf ={0}& K <, N® K. So, by Lemma 1.3,
K is injective semisimple. Thus K is noncosingular by [13, Lemma 4]. Since L
is cosingular, K is also cosingular, then K must be zero. This implies that N
is essential in L, contradiction.

O

Recall that a non-zero right R-module L is called prime, if whenever N is
a non-zero submodule of L and A is an ideal of R such that NA = 0, then
LA=0.

Example 2.5. [t is clear that a simple module is G— M prime. But in general,
the converse is not true. For example, Z is a G—M prime Z-module. However,
Z 1s not simple.

Definition 2.6. [10]. Let L be an R-module. Then L is called weakly co-
Hopfian if every its injective endomorphism has an essential image.

Recall that an Artinian principal ideal ring is a left and right Artinian, left
and right principal ideal ring.

Theorem 2.7. Let R be an Artinian principal ideal ring and L be a cosingular
R-module. Then the following statements are equivalent:

(1) L is G— M prime;

(2) L is simple.

Proof. (1) = (2) Suppose L is a G — M prime module. Since L is cosingular,
so L is uniform by Proposition 2.4. Thus L is weakly co-Hopfian. As R is an
Artinian principal ideal ring, then by [1, Theorem 3.8], L is finitely generated.
Hence there exists an epimorphism ¢g : R — L such that R/anng(L) = L.
Since L is a prime module, anng(L) is a prime ideal of R. Hence anng(L) is
maximal in R as R is Artinian. Thus L is a simple module.
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(2) = (1) It is clear.
O

Example 2.8. Every compressible R-module is G—M . In general, the converse
is not true. For example, Q is a G — M Z-module. But it is not compressible
because Homz(Q,Z) = {0}.

Corollary 2.9. Let R be an Artinian principal ideal ring and L be a prime
cosingular R-module. Then the following statements are equivalent:

(1) LisG—M;

(2) L is monoform;

(3) L is small monoform;

(4) L is compressible;

(5) L is uniform;
(6) L is weakly co-Hopfian.

Proof. (1) = (2) By Theorem 2.7, L is a simple module, then L is monoform.
(2) = (1) It is clear.
(1) & (3) By [17], if L is cosingular and if K < L, then K < L if and only
if K <, L. Therefore L is G — M iff L is a small monoform module.

(1) = (4) By (1), we obtain that L is a uniform prime finitely generated
module hence, by [15, Lemma 26.2.9], L is compressible.

(4) = (1) By Remark 1.1, every compressible module is monoform, then it
isG—M.

(2) = (5) It is clear.

(5) = (2) Suppose that L is a uniform module. According to the proof of
(1) = (2), L is simple. Thus, L is monoform.

(5) = (6) It is clear.

(6) = (5) Assume that L is a weakly co-Hopfian module. Then L is simple.
Thus, L is uniform.
O

Corollary 2.10. Let R be an Artinian principal ideal ring and L o« G — M
cosingular R-module. Then End(L) is a local ring.

Proof. Since L is a finitely generated module over an Artinian ring, by Theo-
rem 2.7, L is of finite length. And since L is uniform, L is indecomposable of
finite length. Thus, End(L) is a local ring.

O

Proposition 2.11. Let R be a principal quasi-Frobenius ring and L a G — M
cosingular R-module. Then the following statements hold:

(1) L is reflexive.

(2) L* and E(L*) are finitely generated.

Proof. 1) According to Theorem 2.7, L is a finitely generated R-module. Thus,
by [12, Theorem 15.11], L is reflexive.
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2) Since R is Artinian and L* is finitely generated, E(L*) is finitely gener-
ated.
O

Proposition 2.12. Let L be a G — M module and f be a surjective endomor-
phism of L, N < L. Then f(N) <, L if and only if N <, L.

Proof. =) Let N +Y = L with L/Y cosingular for some ¥ < L. Then
f(N)+ f(Y) = L. Since the class of cosingular R-modules is closed under
homomorphic images, L/f(Y') is cosingular. Then f(Y) = L as f(N) <, L.
This implies that Kerf+Y = L. Being L a G—M module implies Kerf <, L.
Hence Y = L. Therefore N <, L.

<) By Lemma 1.2. O

Definition 2.13. ( [14]) A module L is said to be fully retractable if for any
non-zero submodule N of L and every non-zero g € Hompg(N, L) we have
Hompg(L,N)g # 0.

Example 2.14. According to [14], Z4 is a fully retractable Z-module.

Proposition 2.15. Let L be a fully retractable R-module such that for every
non-zero submodule N of L, the kernel of any non-zero endomorphism of N is
u-small. Then L is G — M.

Proof. Let 0 # N < L and f : N — L such that f # 0. Since L is fully
retractable, there exists g : L — N, g # 0. Consider

N / ~ L g - N

We have gf # 0 as L is fully retractable. By hypothesis, Ker(gf) <, N.
Since Kerf C Ker(gf), according to Lemma 1.2, Kerf <, N. It follows that
LisG— M.

O

Proposition 2.16. Let L be a semisimple quasi-injective R-module. Then the
following statements are equivalent:

(1) LisG—M;

(2) L is u-Hopfian.

Proof. (1) = (2) Is clear.

(2) = (1) Let 0 # N < L and f : N — L such that f # 0. Since L
is quasi-injective, there exists g € Endg(L) such that gi = f where ¢ is the
inclusion map. Hence, g(z) = f(z) for each € N and so Kerf < Kerg. Since
L is p-Hopfian, Kerg <, L. So Kerf <, L. On the other hand, Kerf < N
and L is semisimple, then N is a direct summand of L. Hence, by Lemma 1.2,
Kerf <, N. This shows that L is G — M.

|
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Corollary 2.17. If R is a semisimple ring, then every R-module is G — M.
Proof. By [5, Theorem 2.10] and Proposition 2.16. O

It is obvious that every small monoform module is G — M. The following
example shows that the converse is false, in general.

Example 2.18. Let R be a semisimple ring. According to Corollary 2.17, R™
is G — M. But the kernel of every non-zero endomorphism of RN is not small
by [5, Example 2.11]. Thus RM) s not a small monoform module.

A ring R is a right GV -ring if every simple R-module is either projective
or injective. In [16], the authors proved that every simple module is small if
and only if R is a right GV-ring. It follows directly from [16, Theorem 3.1],
that R is a right GV-ring if and only if R has no simple (semisimple) injective
R-module.

Corollary 2.19. Let R be a right GV -ring and L an R-module. Then the
following statements are equivalent:
(1) LisG—M;

(2) L is small monoform.

Proof. (1) = (2) Let L be a G—M module, N be a non-zero submodule of L and
f € Hom(N, L) be a non-zero partial endomorphism. Assume Kerf+ K = N
for some K < N. As L is a G—M module, Kerf <, N. Then by Theorem 2.3,
N = K @ H for some injective semisimple submodule H of N. By hypothesis,
H = 0. This implies that N = K and so Kerf < N. Hence L is a small
monoform module.
(2) = (1) Is clear.
O

Definition 2.20. ( [9]) A right Goldie ring is a ring R that has finite uni-
form dimension as a right module over itself, and satisfies the ascending chain
condition on right annihilators of subsets of R

Proposition 2.21. Let R be a prime right Goldie ring which is not a right
primitive (e.g. a commutative domain which is not a field) and L a semisimple
R-module. Then the following assertions are equivalent:

(1) LisG—M;

(2) L is monoform;

(3) L is small monoform;

(4) L is simple.

Proof. (2) & (3) & (4) By Remark 1.1.

(1) = (2) Let N be a non-zero submodule of L and f € Hom(N,L) a
non-zero partial endomorphism. Since L is G — M, Kerf <, N. As R is
a prime right Goldie ring which is not a right primitive ring, N is cosingular
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by [13, Corollary 9], and it is semisimple as L is semisimple, hence the only
p-small submodule of N is zero. So Kerf = 0, this completes the proof.
(2) = (1) Is clear.
O

Lemma 2.22. For an R-module L, consider the following statements.
(1) LisG—M.
(2) For every right R-module Y, if there is an epimorphism L — L&Y,

then Y is semisimple injective.
Then (1) = (2).

Proof. (1) = (2) Let g : L — L ®Y be a surjective homomorphism, and
let # : L ®Y — L the natural projection. It is obvious that Ker(mg) =
g (08 Y). Since L is G — M, Ker(rg) <, L. According to Lemma 1.2,
0eY =glg~'(08Y)] = g(Ker(rg)) <, L&Y. Thus Y <, Y by Lemma 1.2.
Therefore, Y is semisimple injective by Lemma 1.3.

(|

In the following, we characterize the class of rings R for which every (free)
R- module is G — M.

Theorem 2.23. Let R be a ring. The following assertions are equivalent:
(1) R is semisimple;
(2) Any R-module is G — M ;
(3) Any projective R-module is G — M ;
(4) Any free R-module is G — M.

Proof. (1) = (2) By Corollary 2.17
(2) = (3) = (4) Clear.

(4) = (1) Let L = R™ by (4) Lis a G — M R-module. Since L = L& L,
L is semisimple injective by Lemma 2.22. Therefore R is a semisimple ring.

O

Proposition 2.24. Fvery non-zero submodule of a G — M module is G — M.

Proof. Let N be a non-zero submodule of a G — M module L. For any 0 #
K < N,let f: K — N be a non-zero partial endomorphism of N, then if # 0
where i : N — L is the inclusion mapping. Since L is G — M, Ker(if) <, K,
hence Kerf <, K, and so N is G — M. a

Remark 2.25. Let 7 : Z — 7Z /127, where 7 is the natural projection. However
Z/12Z is not a G — M Z-module as 0 # f = 4% € End(Z/12Z) and Kerf =<
3 > is not p-small in Z/127Z.

(1) Let L = Z/3Z & Z/AZ. Each of Z/3Z and Z/AZ is a G — M module
(because every of each is small monoform). Since L = Z/12Z. Then
the direct sum of G — M modules is not necessarily G — M.
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(2) Since Z is a G— M Z-module and Z/12Z is not G — M Z-module. Then
the homomorphic image of G — M module is not necessarily G — M.

Proposition 2.26. Let L be a Noetherian R-module. Then L is G — M iff
any non-zero 3-generated submodule of L is G — M.

Proof. =) Clear from Proposition 2.24.
<) Suppose that any non-zero 3-generated submodule of L is G— M. Let N
be a non-zero submodule of L and f : N — L such that f # 0. If Kerf = 0 then
Kerf <, N. If Kerf #0,let x € Kerf. Let y € N and z = f(y). Consider
P = Rz + Ry + Rz is a 3-generated submodule of L. Let H = Rz + Ry and
h = f |g: H— P. By hypothesis P is G — M, hence Kerh <, H < N.
But x € Kerh, so < x >C Kerh <, N. Since L is Noetherian, Kerf is
finitely generated, hence Kerf = > " | Ra;, for some z; € L, 1 < i < n.
We have < z; ><, N for every 1 < ¢ < n. Thus according to Lemma 1.2,
Kerf =3, Rx; <, N. Therefore L is G — M.
O

Corollary 2.27. Let R be an Artinian principal ideal ring and L a weakly
co-Hopfian R-module. Then the following are equivalent:

(1) LisG— M.

(2) Any non-zero 3-generated submodule of L is G — M.
Proof. By [1, Theorem 3.8], L must be finitely generated. Then L is a Noe-

therian since R is an Artinian principal ideal ring. Thus by Propostion 2.26
the result is obtained. g

3. Properties of Polynomial Extensions

In [6], we have recalled the definitions of the modules L[x] and L[x]/(z"1).

Every element of L[] is a formal sum as eg +e12 + ... +e,x® with k& > 0 and
e; € L. This sum that is denoted by Zle e;xt (egz?, is the element eg € L).
The addition is defined by adding the corresponding coefficients. The structure
of R[z]-module is given by

(Cimg mirt). (g ja7) = 245 anat’,

where a; = 2, ;_, viej, for any v; € R, e; € L.

Any P € L[z] can be written under the form (Zizk e;x') with [ > k > 0,
e; € L, e, # 0 and ¢; # 0. In this case we say that k is the order of P, [ is the
degree of P, ey is the initial coefficient of P, and e; as the leading coefficient
of P.

Let n be any positive integer and

I,+1 ={0} U{P;0# P € R[], order of P > n + 1}.

Hence I,,+1 < Rlz]. The quotient ring R[z]|/I,+1 is truncated at degree n +
1. For that R[z]/I,4+1 is said to be the truncated polynomial ring. Since
R has an identity element, I,,;; = (z"*!). Even when R does not have an
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identity element, the ring R[z]/I,,+1 denoted by R[z]/(z"T!). Every element
of R[z]/(z"™!) can be written under the form (Y., v;z%) with v; € R.
Let
Dy11 ={0}U{P;0+# P € L[z], order of P > n + 1}.
Hence D, ;1 < L[z]. As I,41L[z] C Dyi1, we see that R[z]/(z""1) acts on
L[z]/Dy+1. The module L[z]/D, 1 denoted by L[z]/(z"*1). The action of
R[z]/(x""1) on L[x]/(z" 1) is given by
(o %‘371)-(2?:0 ejz!) = ZZ:O aurh,
where a, =3, . viej, for any v; € R, e; € L.

Any non-zero element P € L[z]/D,11 can be written uniquely under the
form (3°7 e;x’) withn >k >0, e; € L, e # 0. In this case we say that k is
the order of P, e, is the initial coefficient of P.

Similarly we define the Rz1,...,a;] /(27" ..., 27*Th)-module

Ly, oy ) /(T e .

Lemma 3.1. Let g : N — L[z]/(z" ™) be a non-zero partial endomorphism,
where 0 # N < Llx]/(z™ 1) and n is a positive integer. If g(h(z)) # 0 for
h(z) = Z?:o mjzd € N, then o(h(z)) < o(g(h(z))), where o(h(x)) represent
the order of h(x). For instance when g is injective, we have that o(h(zx)) =

o(g(h(x))).

Proof. We have that g(m) = }7_, mjzd for any m € H, where H is the
non-zero submodule of N which is generated by the constant polynomials of
N. Therefore g(ma*) = et (Y5 myat) = Z;:é“ mjzitk where 0 < k <
n. Clearly, o(3 7_om;z’) < o(g(37_ym;a7)), that is o(h(x)) < o(g(h(x))).
In case g is injective, suppose g(maz*) = Z?:k-&-l mjx?, then we get that
g(mz™) = g(a" % (mak)) = an—*k Z?:kﬂ mjzd =0, thus m = 0. So o(h(x)) =

o(g(h(z))).
O

Theorem 3.2. L[z]/(z™*1) is a monoform R[z]/(z"*"1)-module iff L is mono-
form R-module.

Proof. =) Let f: N — L be any non-zero partial endomorphism of L where
0# N < L, then g : N[z]/(z"™!) — L{z]/(z""") defined by g(> 1, a;z’) =
S o f(a;)z" is a non-zero partial endomorphism of L[z]/(z"™!) with 0 #
Nlz]/(x"™) < L]x]/(2™!) and Kerg = (Kerf)[x]/(z™). Since L{z]/(x"*1)
is monoform, Kerg = 0 then Kerf = 0. Hence L is monoform.

<) Let g : N — L[z]/(2"!) be a non-zero partial endomorphism of
L[z]/(z"*1), where N is a non-zero submodule of L[x]/(z" ") and 7: H — N
is the inclusion map, where H is the non-zero submodule of IV generated by the
constant polynomials of N. Define p; : L[z]/(2"*) — L by p;(357_gmja?) =
m;, ¢ = 0,1,...,n. We can prove that p;g7 # 0, else, there exists 0 # m € H
such that p;g7(m) = 0, hence p;g7(m) = p;g(m) = pi(Z?:o m;xl) =m; =0,
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then o(m) = 0 < o(g(m)), contradiction with Lemma 3.1. Since H is a non-zero
submodule of L and L is monoform, then Ker(p;g7) = 0.

Let x € Kerg, so g(z) = 0 implies p;gr(x) = p;g(z) = 0. Hence z €
Ker(pigr). Tt follows that Kerg C Ker(p;g7) = 0. Thus Kerg = 0 and so
L[z]/(x"*1) is monoform.

O

Theorem 3.3. L[z]/(z"*1) is a small monoform R[x]/(x"1)-module iff L is
a small monoform R-module.

Proof. =) Let f: N — L be any non-zero partial endomorphism of L where
0# N < L, then g : N[z]/(z""!) — L[z]/(z"") defined by g(>_1, a;z*) =
S o f(a;)z" is a non-zero partial endomorphism of L[z]/(z"!) with 0 #
Niz]/(z") < L[z]/(2" ) and Kerg = (Kerf)[x]/(z"*!). Since L[z]/(z"1)
is small monoform Kerg < N[z]/(z"™1), then Kerf < N. Hence L is a small
monoform module.

<) Let g : N — L[z]/(z"!) be a non-zero partial endomorphism of
L[z]/(x"1), where N is a non-zero submodule of L[z]/(z"*1) and 7: H — N
is the inclusion map, where H is the non-zero submodule of IV generated by the
constant polynomials of N. Define p; : L[z]/(z"*') — L by p;(3°]_, m;a’) =
m;, ¢ = 0,1,...,n. We can prove that p;g7 # 0, else, there exists 0 #m € H
such that pigr(m) = 0, hence pigr(m) — pig(m) = pi(X_omya?) = mi = 0,
then o(m) = 0 < o(g(m)), contradiction with Lemma 3.1. Since H is a non-zero
submodule of L and L is small monoform, then Kerp,gr < H.

Let = € Kerg, so g(z) = 0 implies p;g7(x) = p;g(z) = 0. Hence x €
Ker(p;gr). It follows that Kerg C Ker(p;g7) < H < N. Thus Kerg < N
and so L[z]/(2"*1) is a small monoform module.

O

Lemma 3.4. ([8, Lemma 2.1]). Let K < L. Then K[z]/(z"*!) < L[x]/(2"T1)
as R[z]/(z"*1)-modules, where n > 0.

Theorem 3.5. L[z]/(z""1) is a G — M R[x]/(z"*)-module iff L is a G — M
R-module.

Proof. =) Let f: N — L be any non-zero partial endomorphism of L where
N be a non-zero submodule of L, then g : N[z]/(z"*!) — Llx]/(2""!) de-
fined by g(} 7, a;z’) = >, f(a;)z’ is a non-zero partial endomorphism of
Liz]/(z"*1) with 0 # N[z]/(z"*) < L[z]/(z"!) and Kerg = (Ker f)[x]/(z™T1).
Suppose that Kerf + H = N for some H < N with Z*(N/H) = N/H, thus

(Ker(f))x]/(@"*1) + Hlz]/(2"*1) = Nla]/(@"*1).

z] /(™! z]/(z™ ! n i z]/(z™ Tt
We show that Z* (R ) = JEVAC L et h = Y miat € FHEAE).

As N/H is cosingular, m;R is small for every 0 < i < n. Then according to
Lemma 3.4, (m;R)[z]/(x"1) is small, hence (hR)[x]/(z"*!) is small. Then
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Ze(MEe ) = M) Since Kerg <, Nla)/(z"*), Nla]/(a™) =
Hz]/(z"™') and so N = H. Thus Kerf <, N and L is G — M.

<) Let g : N — L[z]/(z""!) be a non-zero partial endomorphism of
L[z]/(z"™1), where N is a non-zero submodule of L[z]/(z" ") and 7: H -+ N
is the inclusion map, where H is the non-zero submodule of IV generated by the
constant polynomials of N. Define p; : L[z]/(z""") — L by p;(3-7_ym;a?) =
m;, 1 = 0,1,...,n. We can prove that p;g7 # 0, else, there exists 0 # m € H
such that p;g7(m) = 0, hence p;g7(m) = p;g(m) = Pi(Z?:o mjazd) =m; =0,
then o(m) = 0 < o(g(m)), contradiction with Lemma 3.1. Since H is a non-zero
submodule of L and L is G — M, then Kerp;gr <, H.

Let z € Kerg, so g(z) = 0 implies p;g7(xz) = p;g(z) = 0. Hence z €
Ker(pigr). It follows that Kerg C Ker(p;gr) <, H < N. Thus by Lemma 1.2,
Kerg <,, N and so L[z]/(z""1) is G — M.

Corollary 3.6. L[z, ..., zx]/(z1 T, et is a G—M Rlxy, ..., g/ (x7

module iff L is a G — M R-module.

Proof. We use the induction, the ring isomorphism

(Rlay, ooy xa) /(@Y 2 ) 2] /(@) ~ Ry, oy ] /(@Y L 2t

and
(Rlz1, .oy i)/ (T, xzk_’_11+1))[xk]/(zzk+1)—modulc isomorphism

(Llwrs oy apaa] /@ 2 ) [aa] /(@) = L, ey ag] /(27 ™)

Open Problems

(1) What is the structure of rings whose finitely generated modules are
G — M modules?

(2) Let R be a ring with identity, and M a G — M module. Is M[X, X 1]
G — M module in R[X, X ~!]-module?

(3) Let R be a G— M ring and n > 1 an integer. Is the matrix ring M, (R)
G- M?
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