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Abstract. Feature selection (FS) is a well-known dimensionality reduc-

tion method that chooses a hopeful subset of the original feature collec-
tion to diminish the influence the curse of dimensionality phenomenon.

FS improves learning performance by removing irrelevant and redundant
features. The significance of semi-supervised learning becomes obvious

when labeled instances are not always accessible; however, labeling such

data may be costly or time-consuming. Many of the samples in semi-
supervised learning are unlabeled. Semi-supervised FS techniques over-

come this problem, simultaneously utilizing information from labeled and

unlabeled data. This article presents a new semi-supervised FS method
called ESACO. ESACO uses a combination of ACO algorithm and a set

of heuristics to select the best features. Ant colony optimization algo-

rithm (ACO) is a metaheuristic method for solving optimization prob-
lems. Heuristic selection is a significant part of the ACO algorithm that

can influence the movements of ants. Utilizing numerous heuristics rather

than a single one can improve the performance of the ACO algorithm.
However, using multiple heuristics investigates other aspects to attain op-

timal and better solutions in ACO and provides us with more information.
Thus, in the ESACO, we have utilized the ensemble of heuristic functions

by integrating them into Multi-Criteria Decision-Making (MCDM) pro-

cedure. So far, the utilization of multiple heuristics in ACO has not
been studied in semi-supervised FS. We have compared the performance

of the ESACO using the KNN classifier with variant experiments with

eight semi-supervised FS techniques and 15 datasets. Considering the
obtained results, the efficiency of the presented method is significantly

better than the competing methods. The article’s code link on GitHub

can also be found at the following: https://github.com/frshkara/ESACO.
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1. Introduction

Due to the increase in the number of dimensions in massive data, a phenom-
enon called the curse of dimensionality arises, which causes problems for data
mining and machine learning algorithms. The curse of dimensionality causes
the overfitting of algorithms, decreases the accuracy of learning models, and
increases the learning time and computation complexity. The principal chal-
lenge in machine learning and data mining is extracting knowledge from this
large quantity of data (Hashemi, et al., 2020; Hashemi, et al., 2022).

Generally, data does not always contain beneficial features, and many of
them are irrelevant and redundant. The redundant features are almost a com-
bination of other features and do not provide new information. Also, the ir-
relevant features do not influence achieving the result. Due to the presence of
these features in data, learning algorithms are time-consuming and suffer from
a decrease in learning accuracy. Feature selection is one of the most efficient
approaches that chooses a subset of the original features and deletes redundant
and unrelated features to improve learning efficiency (Cai et al. 2018; Chan-
drashekar & Sahin 2014; Dey 2024b, 2024a; Hashemi et al., 2023; Hira & Gillies
2015; Khalid et al., 2014; Miao & Niu 2016; Miri et al., 2022a; Venkatesh &
Anuradha 2019).

Based on interaction with the learning algorithms, FS techniques can be
categorized into three types: wrapper, embedded, and filter (Hashemi et al.,
2021; Miri et al., 2022b). Filter techniques are independent of learning algo-
rithms and assess the features according to statistical criteria (Bayati et al.,
2022). In the wrapper techniques, a classification algorithm is used to evalu-
ate the possible feature subsets. Embedded methods learn a model once and
then assess the features based on the learned model, similar to filter techniques
(Chandrashekar & Sahin 2014; Hashemi & Dowlatshahi 2023; Miao & Niu 2016;
Venkatesh & Anuradha 2019; Xue et al. 2016).

Considering the interaction with the class label, FS techniques are catego-
rized into three classes: unsupervised, supervised, and semi-supervised (Hashemi,
Joodaki, et al. 2022; Hashemi, Dowlatshahi, and Nezamabadi-pour 2021;
Karimi, Dowlatshahi, and Hashemi 2023). The features are evaluated based
on the level of interaction with the class label in the supervised FS meth-
ods (Hashemi et al. 2021). We have no information about the class label in
unsupervised FS approaches. Only a tiny portion of the data is labeled in
semi-supervised techniques (Beiranvand et al., Dowlatshahi 2022; Dowlatshahi
& Hashemi 2023; van Engelen & Hoos 2020; Sheikhpour et al. 2017). Fig. 1
demonstrates the general categorization FS techniques.

FS can be considered an optimization process for selecting a subset of op-
timal features. Hybrid optimization problems are NP-hard since determinis-
tic polynomial computation cannot solve them in a limited time. Therefore,
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Figure 1. the general categorization of FS classification

solving complex problems by using approximate techniques is necessary. Meta-
heuristic methods can solve many optimization problems and quickly attain
near-optimal solutions in a reasonable time (Mazyavkina et al., 2021).

ACO is one of the famous metaheuristic methods with excellent performance
on FS problems. ACO focuses on the inherent behavior of real ants in nature
and is a population-based metaheuristic technique (Sheikhpour et al., 2018).
Random search is the main procedure of the ACO algorithm. The principal
part of the ACO algorithm, which is used for the possible sampling of search
space, is a chemical called pheromone (Jia et al., 2020). The ants collaborate
in ACO to discover the optimal route. Every ant deposits several pheromones
along the track while accidentally moving from available paths and updates the
pheromone in its route. Finally, the route with more pheromones is selected as
the optimal path (Ma et al., 2011; Sugiyama et al., 2010).

On the other hand, ensemble learning combines the results of several machine
learning techniques to achieve better performance rather than using one alone
(Miri et al., 2022). Generally, utilizing ensemble methods is better than using
one technique alone. Thus, this paper uses an ensemble of heuristics in ACO
to enhance the accuracy of semi-supervised FS.

Initial Research Questions: 1. Can using multiple heuristics in the ACO
algorithm improve its accuracy of semi-supervised feature selection? 2. Does
combining non-linear and linear heuristics in the ACO algorithm for semi-
supervised learning enhance its accuracy? 3. Does integrating ACO heuristics
or ensemble heuristics) with an MCDM algorithm improve the accuracy of
semi-supervised feature selection? 4. Does modeling the integration of ACO
heuristics within an MCDM algorithm, represented as a graph, increase the
accuracy of semi-supervised feature selection?
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This paper presents a new semi-supervised FS algorithm that uses an ensem-
ble of heuristics in ACO for choosing practical features. Based on our knowl-
edge, no semi-supervised FS method has utilized an ensemble of heuristics in
ACO. The proposed ESACO uses MCDM modeling for combining different
heuristics. MCDM makes the decision-making process more transparent and
efficient by analyzing and comparing various options. For the aggregation of
heuristics, we have used various FS techniques. Therefore, the features as al-
ternatives and the heuristics (FS techniques) are assumed as criteria in this
modeling. The principal difference between the presented algorithm and other
methods in the paper is that the features are not assessed according to one
heuristic function. In other words, considering that none of the proposed semi-
supervised feature selection techniques have used ensemble heuristics in the
ACO algorithm, we decided to use this idea for our proposed algorithm. Also,
to increase the efficiency of our proposed method, we have integrated heuristics
into the MCDM algorithm.

The principal properties of the proposed method are as below:
• A semi-supervised FS technique has been presented according to the en-

semble of heuristic functions in ACO for the first time.
• The proposed algorithm uses both linear and non-linear approaches within

its heuristics, allowing for the effective utilization of information from both
labeled and unlabeled samples.

• The proposed algorithm integrates ACO heuristics within the MCDM
framework, leading to high accuracy in semi-supervised feature selection.

• The presented algorithm is competitive with the current semi-supervised
FS approaches and performs in a reasonable run-time.

• The results demonstrate that the proposed method is more efficient than
competing techniques when 20 and 40 percent of the training instances are
labeled.

To demonstrate the efficiency and optimality of our method, we bench-
marked it against eight existing semi-supervised FS strategies using a collection
of 15 real-world datasets. According to advanced techniques, the results show
the excellence of the presented algorithm over the other competing techniques.
The article’s following sections are presented: Section 2 represents the related
methods. Section 3 presents the technique’s elemental notions. Section 4 ex-
plains the characteristics of the presented algorithm. Sections 5 and 6 describe
the experimental setup and the obtained results, respectively. Finally, a con-
clusion is proposed in section 7.

2. Related Works

In this section, some semi-supervised FS approaches are reviewed.
Supervised FS methods perform weakly due to overfitting when only a small

count of labeled instances is accessible. SELF is a semi-supervised FS technique
suggested by Sugiyama et al. (Sugiyama et al., 2010) that retains the global
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structure of unlabeled samples to detach labeled instances in variant handles
from others. Semi-supervised Fisher’s local discriminant analysis (SELF), is
computed according to a particular analysis and includes an analytic construc-
tion of the globally optimal solution.

The sudden increase in digital pictures requires efficient methods to manage
these pictures. Ma et al. (Ma et al., 2011) presented a method to exploit
unlabeled and labeled data to learn manifold structure and choosing the most
effective features using sparse models. This structure can simultaneously learn
a robust classifier for image annotation by selecting distinct features related to
semantic concepts.

CLS, which stands for Constrained Laplacian Score, is a presented technique
for semi-supervised FS. Since CLS utilizes unlabeled and labeled samples to
select the most relevant features, the critical problem is to obtain information
from labeled instances (described by pairwise constraints). The presence of
noise in constraints has been shown to hinder the efficiency of the learning
process. Hindawi et al. (Benabdeslem & Hindawi, 2011) presented a random
subspace method according to the ensemble of data resampling (bagging). This
technique analyzes multiple perspectives within the unlabeled and labeled data
to generate a global ranking of features. It achieves this by combining multiple
constraint Laplacian scores.

For regression problems, Sheikhpour et al. (Sheikhpour et al., 2018) sug-
gested a repetitive construction founded on mixed non-convex and convex l2,p
(0 < p ≤ 1) regularization and graph Laplacian. This method uses a special
matrix (a semi-supervised graph Laplacian-based scatter matrix) to encode the
local structure of both unlabeled and labeled samples.

NMF stands for non-negative matrix factorization. Jia et al. (Jia et al.,
2020), utilized an NMF construction to find the best subset of features by
modeling the label information. The proposed technique to improve grouping
performance allows the production of low-dimensional displays. Specifically,
some complementary regularizers and similarities are included in traditional
NMF to guide decomposition. Additionally, it restricts the dissimilarity and
similarity of the low-dimensional presentations of unlabeled and labeled sam-
ples.

If we have binary labeled and unlabeled instances, labeling all unlabeled
data points as positive or negative based on certain criteria. In this procedure,
practical and academic studies present powerful results for FS through feature
ranking and hypothesis testing. Sechidis et al. (Sechidis and Brown, 2018)
obtained two unique strategies (Semi-IAMB and Semi-JMI), which have been
shown to significantly outperform competing methods when combined with
prior ”soft” domain knowledge. They perform well if the class label is absent,
but not by accident.

Liu et al. (Liu et al., 2010) suggested a method that analyzes the dis-
pensation of unlabeled and labeled data with a particular label propagation
technique. Then, to optimize the tracking proportion criterion, an efficient
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method directly identifies the ideal set of features. This technique utilizes label
propagation to assign soft labels to unlabeled samples by analyzing the distri-
bution of both labeled and unlabeled data. Then, to choose the optimal feature
subset the ratio optimization measure is utilized.

Table 1 shows a summary of related methods that have been compared with
the proposed method.

Following are the recently proposed metaheuristic algorithms that we will
try to use in the future. The Binary Waterwheel Plant Optimization Algo-
rithm is a novel metaheuristic algorithm inspired by the foraging behavior of
the waterwheel plant. It’s designed for FS problems, particularly those involv-
ing high-dimensional and complex datasets (Anon n.d.). The Weighted Super-
position Attraction Optimization Algorithmis a novel metaheuristic algorithm
for FS in machine learning, inspired by the concept of particle attraction and
superposition in quantum mechanics. It’s particularly well-suited for address-
ing high-dimensional and complex FS problems Ganesh et al., 2023). Asghari
Varzaneh Liu et al. (Asghari Varzaneh et al., 2022) suggested a new two-step
FS method for high-dimensional data. First, it uses mRMR to score features
and select the most relevant ones. Then, it applies an improved version of the
Equilibrium Optimizer (IMEO) algorithm to further refine the FS and avoid
getting stuck in suboptimal solutions. This approach combines filter-based
(mRMR) and wrapper-based (IMEO) techniques for effective FS (Ganesh et
al. 2023).

3. Basic Conceptions

3.1. Ant Colony Optimization (ACO). ACO algorithm was recommended
by Dorigo et al. (Dorigo, Birattari, and Stutzle 2006). ACO according to
the innate behavior of real ants, is a random search and swarm intelligence
metaheuristic method and applicable to solving optimization problems. The
main section of the ACO algorithm is pheromone that utilizes the search space
for possible sampling. The ant deposits a continuous trail of pheromone as they
travel from the nest to the food source. The value of the pheromone, to prevent
ants from being trapped in the local optimum, evaporates over time. Based
on this fact, when more ants travel along a path, and the pheromone value is
more intense the probability of choosing an optimal solution is higher. (Dorigo
and Blum 2005; Monteiro, Fontes, and Fontes 2012; Paniri, Dowlatshahi, and
Nezamabadi-pour 2020, 2021).

The ACO algorithm, in addition to the attributes of real ants, adds other
abilities to artificial ants. They have an internal state that maintains the history
of their former activities and evaluates the excellence of the solution generated
by each ant. They update the pheromone trail locally and globally, to gain
better solutions. Also, the ACO algorithm can use some heuristic information
to perform the search process (Dorigo & Blum 2005; Monteiro et al. 2012).
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Table 1. Summery of Related Works.

Algorithm Method Technique Advantages Disadvantages

TRCFS Filter

scatter matrix

trace

ratio criterion

Handles

limited labeled

data, incorporates

both labeled

and

unlabeled data,

higher

computational

complexity

SELF Filter

Projects data to

lower dimensions,

preserving

local structure and

class separation.

Effective

dimensionality

reduction,

handles limited

labeled data,

preserves

local structure

Sensitive

to outliers,

higher

computational

complexity

ENCLS Filter
Ensemble of

Laplacian Scores

Handles limited

labeled data,

incorporates

graph-based

information

Tuning Parameters,

Increased complexity

Limited validation

GSSNMF Filter

Graph Laplaciane,

Incorporating

label information

through

an auxiliary

loss term

Effective

dimensionality

reduction,

preserves

local structure

and

discriminative

information

Sensitive

to outliers,

higher

computational

complexity

SFSGL Filter

Graph Laplaciane,

mixed convex

and non-convex

l 2 , p − norm

regularization

incorporates

graph-based

information,

promotes sparsity

and

structure

preservation

Parameter tuning,

Computational

complexity

Limited validation

SFSS Filter

multi-layer

structure

joint

l 2, 1 norm

minimization

Effectively for

regression problems,

enhances robustness,

incorporates

structural information.

Computational

complexity,

Limited validation

Tuning parameters

Semi-JMI Filter

conditional

mutual information

(JMI)

effectively

rank features

with

positive labels

Limited

Information Use,

Time Complexity

Semi-MIM Filter

Based on

the IAMB

(Incremental

Association

Markov Blanket)

effectively

find a set

of relevant feature

with positive

and

negative labels

Require

a large

amount of data
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The general procedure of the ACO algorithm, after initializing the param-
eters, is constructed as follows: In each iteration, until the stopping criteria
are satisfied, the ants formulate solutions using the specific pheromone formu-
lation. After the ants complete their solution, the pheromone trail evaporates
uniformly at all points. Each ant updates the pheromone vector according to
its solutions (Dorigo & Blum, 2005; Monteiro et al., 2012).

To represent the ACO-based FS problem, the problem must be formulated
suitably.The nodes illustrate features, and the edges represent relationships
among them. Until the stopping criterion is met, Optimal search is when ants
visit the minimum number of nodes in the graph. For instance, attaining high
accuracy with fewer features than the initial features set can be the stopping
metric (Kanan, Faez, and Taheri 2007).

Suppose we have a graph G, with a set of features F = {f1, f2, . . . , fm}
as graph nodes. Initially, m ants are move on the n features of the problem
space with some initial pheromone values. Each ant on graph G follows a sto-
chastic greedy rule for its movements. Thus, While ants terminate their trips,
the global updating rule updates the pheromone values of features (Hashemi,
Joodaki, et al. 2022; Paniri et al. 2020).

In a probabilistic approach, ant k uses the probabilistic action selection rule
based on the equation below to transmit from featurei to feature j (Paniri et
al. 2020):

(1) pkij(t) =
[τi(t)]

α[η(Fi,Fj)]
β∑

u∈Ni
[τu]α[η(Fi,Fu)]

β
∀j ∈ Nk

i , if q > q0

Where pkij(t) is a transition possibility to move from feature i to feature j at
time t for k-th ant, τi is the allocated pheromone value to feature i, η(Fi ,Fj )
is value of the heuristic information between features (Fi, Fj). Nk

i s the set
of neighbor features for feature i, q is a random variable that is uniformly
dispensed in [0, 1], and q0 is a constant variable (0 ≤ q0 ≤ 1). The value
of the parameter β is between [0, 1] , Setting the pheromone value and the
level significance of heuristic information. If β = 0 , the heuristic information
is neglected and the decision is taken based on the previous action history.
Greedily, every ant visits the next feature based on the equation below (Paniri
et al., 2020):

(2) i = arg max
u∈Nk

{
[τu][η(Fi, Fu)]β | q ≤ q0

}
The interchange between the exploration and exploitation abilities of the

algorithm is balanced with the parameters q and q0. Whenever an ant chooses
its next feature (from feature i), it creates a random number q. Every feature
can be selected proportional to its probability (Exploration) when q > q0.
utilizing Eq.1. Otherwise, by Eq.2 (Exploitation), the most beneficial feature
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is selected to use. The combination of Eq.1 and Eq.2, named the ”pseudo-
random proportional” law is The state transition rule. The pheromone routes
are updated by every ant separately after ants travel some features on the
graph. based on the equation below The global updating rule updates the
pheromone values (Paniri et al., 2020):

(3) τi(t+ 1) = (1− ρ)τi(t) + ∆τi

The pheromone values of feature i at times t and t+1, individually, are
τi(t + 1) , τi(t) , and the pheromone decay rate parameter is ρ. According to
some criteria, ∆τ i determines the pheromone enhancement value for feature i.

Eventually, a feature with a high pheromone value is a beneficial feature.
Thus, the optimal feature subset is determined, based on the value of pheromones,
by choosing the m (m(m > d) top features specified.

3.2. MCDM and MOORA Algorithm. MCDM stands for Multi-Criteria
Decision Making, which provides potent decision-making in domains where
selecting the best option is complex. MCDM is the strategy to find the best
solution among various options according to multiple criteria. In decision-
making problems, no option is often better than others in all criteria. Thus, the
decision-makers generally endeavor to discover an acceptable solution (Aruldoss
2013; Hashemi et al. 2022).

There are several methods for solving MCDM problems. One of the most
famous is the MOORA method. MOORA stands for Multi-Objective Opti-
mization based on Ratio Analysis, was presented by Zavadskas (Karel et al.,
2006), which compounds the reference point and the ratio system procedure
(Hashemi, Joodaki, et al., 2022). We must initialize a weight vector and a
decision matrix to perform an MCDM process. Therefore, the decision matrix
(X) in MOORA is constructed based on the rating Xij of m options according
to n criteria, as follows:

(4) X =


X11 X12 . . . X1n

X21 X22 . . . X2n

. . . . . . . . . . . .
Xm1 Xm2 . . . Xmn


Sometimes, in an MCDM, every criterion has a variant grade of an impres-

sion on the results. Therefore, the weights of the criteria are represented by
the weight vector, which is described below:

(5) W =
(
w1, w2, . . . , wn

)
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Since the ranking of options for every metric may be in different ranges, this
matrix is generally normalized first before giving matrix X to the MCDM al-
gorithm. Generally, in MOORA the vector normalization technique is utilized,
the formula of which is displayed below:

(6) X∗ij =
xij√∑m
i=1(xij)2

where i and j, respectively, are the criterion and alternative numbers. The
normalization matrix is constructed as below:

(7) X∗ =


X∗11 X∗12 . . . X∗1n
X∗21 X∗22 . . . X∗2n
. . . . . . . . . . . .

X∗m1 X∗m2 . . . X∗mn


Not all factors in MCDM are equally important. So, we assign different

weights to each factor using a normalization matrix. The MOORA algorithm
for calculate the utility of each alternative utilizes the arithmetic weighted
aggregation operator. Therefore, the weighted sum of beneficial criteria is
subtracted from the non-beneficial criteria as below:

(8) Ui =

g∑
j=1

WjX
∗
ij −

n∑
j=g+1

WjX
∗
ij

where (n - g) and g show the numbers of non-beneficial and beneficial criteria,
respectively. All metrics used in this article are beneficial. Therefore, the profit
of the i-th option is computed by the equation below:

(9) Ui =

n∑
j=1

WjX
∗
ij

The utility vector, denoted by , represents the utility scores of each alter-
native (i-th option). The option that maximizes utility is considered the best
alternative. A detailed explanation of the MOORA algorithm, broken down
into individual steps, can be found in Fig. 2.

The description of the MOORA algorithm is as follows: Lines 1-3: a decision
matrix (X) with dimensions m * n and a weighted matrix W in one dimension
with size n are given as input to the algorithm. The decision matrix is a
table that contains the scores of each alternative (option) being considered on
each criterion (factor). The weight vector assigns a weight to each criterion,
indicating its relative importance. Lines 5-9: This loop iterates over each
row (i) in the decision matrix. Lines 6-8: This section is commented out and
appears to be incomplete. It likely intended to normalize the decision matrix.
Normalization transforms the values in the decision matrix into a common
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Figure 2. MOORA Algorithm.

scale so that criteria measured in different units can be compared. Lines 10-
14: This loop iterates over each column (j) in the decision matrix. Line 11:
This line is also commented out. Lines 15-19: This loop iterates over each row
(i) in the decision matrix again. Line 16: This line calculates a utility value
(U1) for each alternative (i) by multiplying the weight vector (W) with the
corresponding row in the decision matrix (X). Line 17: This line is commented
out. It likely intended to rank the alternatives based on the utility values (U1).

4. Presented algorithm

As discussed earlier, incorporating multiple heuristic functions can lead to
improved ACO performance relative to a single heuristic function.This sec-
tion presents a new semi-supervised FS technique that uses an ensemble of
heuristics based on integrating the MCDM procedure in the ACO. A powerful
combination technique is required to reach more dependable results when some
FS techniques are used for ranking features. We use an ACO algorithm with
multiple heuristics to identify a consistent order for the features by analyzing
the ranking agreement from all feature selection algorithms. In this method,
by considering the features as alternatives and FS techniques as criteria, the
ensemble of heuristics has been modeled into an MCDM procedure. In other
words, we have used multiple FS techniques in ACO as various heuristics to
attain the best agreement. By using the MOORA algorithm and based on the
results of different FS techniques, a final discovery can be achieved that indi-
cates the importance and ranking of each feature. The general construction
of the presented method is demonstrated in Fig. 4. The pseudo code of the
presented method is displayed in Fig. 5.
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4.1. Pheromone Initialization. To create a good solution the principal part
of the ACO algorithm is the pheromone trail. In the presented technique, every
ant adds some pheromone to the nodes of the graph (features) while passing
on them and creates a vector, denoted by τ , with d dimensions. This vector
represents the pheromone sequence. In this article, the initial value of the
pheromone is set to τ0. This means the initial values (denoted by τ0 ) of the
pheromone vector for all links between nodes j and i are initialized with a fixed
value of 0.5.

4.2. Basic FS methods. ACO algorithms usually use one heuristic function,
while using several heuristics instead of one can lead to better results. Thus,
the presented method has used an ensemble of heuristic functions instead of
one heuristic. In the following, we mention the FS methods used in ensemble
learning of the ESACO.

The first FS technique is cosine similarity, which computes redundancy be-
tween features. The matrix flcos with dimensions d ∗ d is the redundancy
matrix. To calculate the cosine coefficient, we can use this formula: (Lee &
Wander 1988):

(10) Cosine(X,Y ) =

∣∣∣∣∣
∑n
i=1(XiYi)√∑n

i=1X
2
i

√∑n
i=1 Y

2
i

∣∣∣∣∣
where Y and X are two n-dimensional feature vectors, in which n is the count

of instances. Since our proposed method is designed for semi-supervised data,
to compute the redundancy between features in both labeled and unlabeled
instances it uses cosine similarity.

The cosine similarity value is in ranges [0, 1]. Two random variables are
dependent if the cosine similarity value is nearer to 1, and they are independent
if it is closer to 0.

The next FS function is MIC. MIC ( Maximal Information Coefficient) com-
putes relevancy between features. A vector named flcorr captures the relevance
of features, with a dimension of d. The MIC is computed as below (Zhu et al.,
2019):

(11) MIC(X,Y ) = max

{
|X||Y | < T,

MI(X,Y )

log2 (min(|X|, |Y |))

}
Here, Y and X represent two sets of features, each with n dimensions. Here,

|Y | and |X| represent the number of data points falling into each bin on the Y-
axis and X-axis, respectively. T represents the upper limit of the grid partition
for the joint space of X and Y. The mutual information between X and Y is
denoted by MI(X,Y ).

The entropy of two variables and one variable can be calculated as below
(Zhu et al., 2019):
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(12) H(X) = −
n∑
i=1

p(Xi) log2(p(Xi))

(13) H(X,Y ) = −
n∑
i=1

m∑
j=1

p(Xi, Yj) log2(p(Xi, Yj))

To compute the relevance between the class label and the features of labeled
samples we have used the MIC.

MIC demonstrates the linear and non-linear relevancy among two variable
pairs. The range of the MIC value is [0, 1], where 1 indicates the maximum
relationship between variables, and 0 denotes independence (Cao et al., 2021).
MIC has two great attributes: equality and generality, and to have the most
relevancy, it is looking for a smaller subset of the primary feature collection. It
can specify various relevancy, including non-functional, functional, non-linear,
and linear. Via experimental comparison, MIC indicates good versatility and
fairness (Pan, 2021).

Since most instances in semi-supervised learning are unlabeled, ESACO uses
an unsupervised FS algorithm to rank the features. The third FS technique
is the LLCFS algorithm. Given that the proposed method leverages both la-
beled and unlabeled data, ESACO has used the LLCFS algorithm to identify
information between unlabeled samples. Kernel Learning and FS for Local
Learning-Based Clustering (LLCFS) were presented by Hong Zeng (Zeng &
Cheung, 2011), which is a suitable data presentation method through kernel
learning or FS within the structure of technique LLC (Wu & Schölkopf, 2006).
Local Learning-based Clustering, or LLC, is a way to group data points to-
gether. In LLC, each point’s group is determined by looking at its neighbors.
The LLCFC merges the FS into the LLC. It should be mentioned that learn-
ing the local regression model, which is trained only with the points in every
neighborhood, is the principal component of the LLC. LLCFS involves two
main phases (Du and Shen 2015): 1. In the weighted feature space, build
the k-nearest neighbor graph 2. Conduct joint clustering and feature weight
learning.

In short it can be said: in our proposed method, we employed the cosine
similarity to quantify the redundancy among unlabeled features, aiming to
select those with the least redundancy. Additionally, we utilized the MIC
correlation coefficient to assess the relationship between labeled features, which
was, in fact, employed to select those features that exhibit the highest degree
of mutual relevance. Also, due to the semi-supervised nature of the proposed
method and the high number of unlabeled samples, it was decided to use the
LLCFS algorithm, which selects the features that have the least redundancy
by adjusting the weighting of the features. Next, the features selected by each
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algorithm are sorted and the process of selecting suitable features is continued
by the MCDM matrix, which is explained below.

Various methods were tested to select best features, and the mentioned
methods had the best results among the others.

4.3. Decision Matrix Construction. We obtain the ranks assigned by the
feature selection algorithms to gain the last rank of features. In the presented
method, we investigate the features according to assessing some feature ranking
techniques. We assume this process as an MCDM problem, then to gain the
final heuristic, MOORA algorithm is then used to analyze the outputs from
various FS techniques and identify the most effective approach.

As a first step, the method, to gain the rank matrix (decision matrix), mul-
tiple FS methods rank the features as below:

(14) R =


R11 R12 . . . R1n

R21 R22 . . . R2n

. . . . . . . . . . . .
Rm1 Rm2 . . . Rmn


where the rank allocated to m-th feature with n-th filter technique is indi-

cated by Rmn.
Since our optimization goal is maximization, and the decision matrix is

constructed using feature ranks, normalization becomes necessary. Thus, con-
sidering that feature’s ranking we determine a score for every feature. The
top-ranked feature, identified by a value of 1 in matrix R, is assigned the max-
imum score, equivalent to the number of features ( m). Following the ranking
scheme of matrix R, the feature in the second best (value of 2) is assigned a
score of m minus one. This process continues as long as all features have been
allocated new scores. The normalization decision matrix, is matrix R∗, is built
as below:

(15) R∗ =


R∗11 R∗12 . . . R∗1n
R∗21 R∗22 . . . R∗2n
. . . . . . . . . . . .

R∗m1 R∗m2 . . . R∗mn


Now, for our MCDM procedure, we have our decision matrix in which the

columns (FS techniques) are considered as criteria (experts), where each row of
R∗ (representing a feature) corresponds to an alternative. We have determined
an equivalent weight for every criterion (1/n) . Therefore, to rank the features
according to the matrix R∗, the MOORA technique is utilized. To evaluate
the utility ( U) of every feature, we have utilized Algorithm 1. The results of
using the MOORA algorithm are constrcuted as follows:

(16) U =
(
u1, u2, . . . , um

)
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where m is the feature number.
The performance summary of the MCDM routine can be expressed as fol-

lows: A consolidated feature matrix is constructed by combining and ranking
feature subsets generated from various selection methods. Weighting is applied
to the features within this matrix, and subsequent ranking determines the final
feature set. Next, the selected features are ranked by the MOORA algorithm
and given to the ACO algorithm as a heuristic matrix.

Considering we have our heuristic vector ( U), to discover the optimal fea-
tures we can use the ACO algorithm. In Eq.(1), we require to initialize some
parameters for applying ACO, which are written below:

(17) P ki (t) =
([τi][ηi(Ui)]

β)∑
u∈Nk

i
([τu][ηu(Uu)]β)

In Eq.(17), the possibility for ant k to travel to feature i at time t is indicated
by P ki (t). The pheromone value of feature i is indicated by τi, the neighbors of
ant k are illustrated by Nk

i , and the heuristic information of the feature is ηi.
As noted earlier, utilizing one heuristic function in the ACO algorithm can-

not effectively handle complex problems in the long run. Therefore, ηi(Ui)
combines information from various heuristics to evaluate the importance of
feature i. Now, between pheromone and heuristic information we assume equal
importance and the β parameter will be set to 1.

At the end of every iteration, the pheromone matrix, τ , is updated. Accord-
ing to the Eq.(2), the value of pheromones is updated, the pheromone values,
τi(t + 1) and τi(t), represent the values for feature i + 1 and i at the current
time t + 1 and t compared to feature i at the same time, respectively. The
pheromone decay rate parameter (represented by the symbol ρ ) is set to 0.1
in this case. ∆τi denotes the pheromone enhancement value for feature i. Af-
ter the ACO algorithm finishes, the features are arranged in descending order
based on their final pheromone values.

4.4. Summary of the ESACO algorithm. The ESACO algorithm is a en-
semble FS algorithm that uses ACO to select a set of effective features for clas-
sification. The algorithm uses three FS techniques (LLCFS, MIC, and COS)
to compute the weight of each feature, and then uses ACO to select a set of
features with maximum classification performance. The steps of the ESACO
algorithm are as follows: Step 1: This step involves preprocessing the data to
prepare it for the algorithm. The data is divided into two sets: the labeled (XL)
and the unlabeled samples (X = XL U XU ). The features are also standardized
to have the same scale. Step 2: This step computes redundancy vector between
all features in the dataset X using cosine similarity. This matrix captures the
degree of similarity between each pair of features, including both labeled and
unlabeled samples. Step 3: This step computes the relevancy vector between
the class label and the features of the labeled samples using MIC algorithm.
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flCOS is used to measure the strength of the relationship between each feature
and the class label. flMIC is an information-based FS algorithm that uses the
mutual information between features and the class label to select features. Step
4: This step computes the feature weights using LLCFS techniques. LLCFS
is a clustering-based FS algorithm that uses the minimum distance between
clusters to select features. Step 5: This step constructs the decision matrix
which shows the weights of the features for each sample. The weights are com-
puted using a combination of the weights computed by the LLCFS, flMIC,
and flCOS FS algorithms. Step 6: This step initializes the weights for each FS
technique to 1/3. Step 7: This step uses ACO to select a set of features with
maximum classification performance. The ACO algorithm uses pheromone to
guide the ants to select features. Step 8: This step selects the top d features
as the final feature set. These features are the most important features for
classifying the data.

To illustrate the concept, a portion of the algorithm’s calculations can be
demonstrated with a small dataset as a numerical example in Fig. 3. Finally,
the utility vector is fed into the ACO algorithm, which then selects the best
features based on their pheromone values (with the highest values indicating
the most favorable features).

5. Experimental Tuning

This section determines the datasets, simulation environment, assessment
metrics, parameter tuning, and classifiers. The experiments were run on a
computer with Windows 10, an Intel Core i7 processor, and 16GB of RAM.
We used MATLAB software (version R2021a) for the analysis. . We ran each
experiment 30 separate times for every algorithm on each dataset. This repe-
tition (30 runs) helps to achieve statistically significant and consistent results.
Using hold-out validation, in each run a split of 70% for the training set and
30% for the test set was used on the dataset instances. Considering the semi-
supervised nature of the technique, experiments were performed separately
with accidental labeling on 40 % and 20 % of the training instances.

5.1. Datasets Specification. In this part, we contrast the efficiency of the
presented method ESACO with some techniques in the literature: SFSS (Ma
et al. 2011), SELF (Sugiyama et al. 2010), EnsCLS (Hindawi, Elghazel, &
Benabdeslem 2013), SFSGL (Sheikhpour et al. 2018), GSSNMF (Jia et al.
2020), Semi-JMI and Semi-MIM (Sechidis & Brown 2018) and TRCFS (Liu et
al. 2010).

5.2. Classifier Specification. To assess the classification performance of the
presented technique, we have utilized the K-Nearest Neighbour classifier (KNN)
(Liao and Vemuri 2002). The k parameter of the KNN classifier is set to 5.
We evaluate the efficiency of the semi-supervised FS techniques using a range
of feature numbers from 10 to 100 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
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Figure 3. Example of the steps of the ESACO algorithm

5.3. Performance Evaluation Metrics. We used F-score and accuracy met-
rics to evaluate the efficiency of the suggested technique and competitive strate-
gies (Hashemi, Dowlatshahi, et al., 2021). First, follow the following concepts:
1. True Positive (TP): The ratio of positive samples that are correctly catego-
rized. 2. False Positive (FP): The ratio of negative samples that are incorrectly
categorized as positive. 3. True Negative (TN): The ratio of negative samples
that are correctly categorized. 4. False Negative (FN): The ratio of positive
samples that are incorrectly categorized as negative.

F-score and Accuracy metrics are described below:

(18) Accuracy =
(TP + TN)

(TP + FP + TN + FN)
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Figure 4. The overall framework of the ESACO
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Figure 5. ESACO Algorithm.

(19) F − score =
(TP )

(TP + 1/2 ∗ (FP + FN))
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5.4. Parameters Tuning. The parameter tuning in swarm intelligence algo-
rithms are typically determined experimentally. Table 3 presents these param-
eter values. Num Cycle, which represents the number of iterations for the ants,
is assigned to 30 (Num Cycle = 30), Num Ant, which represents the number
of ants, is set 30 and the pheromone decay rate is set to 0.15 is assigned to 30
(Num Ant = 30 and ρ = 0.15). The power parameter of the multinomial decay
rate and the parameter β are both assiged to 0.7 and 1 (β = 1), respectively.
The final number of features to be selected (m) can range from 10 to 100.
However, you can assigned it to any value between 1 and the total number of
features (d), i.e., 1 ≤ m ≤ d. For consistency with competing techniques, the
presented parameter values are assumed for all techniques, according to the
corresponding referenced papers.

Table 2. The specifications of datasets.

Dataset
Feature

Type

Num of

Instances

Num of

Features

Num of

Classes
Reference

Arcene Continuous 200 10000 2
(Hashemi,

et al., 2021)

Chiaretti Continuous 217 1413 3 1

Golub Discrete 72 7129 2 2

Jaffe Discrete 213 676 10 3

Khan Continuous 63 2308 4 4

Leukemia Discrete 72 7070 2 (Li et al., 2017)

Lung Continuous 203 3312 5 (Li et al., 2017)

Lymphoma Discrete 96 4026 9 (Li et al., 2017)

NCI60 Continuous 64 6830 14 5

ORL Discrete 400 1024 40
(Samaria,

& Harter, 1994)

Orlraws10p Discrete 100 10304 10 6

Prostate-GE Continuous 102 5966 2 Li et al., 2017)

Semeion Discrete 1593 256 2 7

Sorlie Continuous 85 456 5 8

SRBCT Discrete 83 2308 4 9

6. Result and Discussion

In this section, we compare the efficiency of the presented algorithm ESACO
with some techniques in the literature: SFSS (Ma et al. 2011), SELF (Sugiyama
et al. 2010), EnsCLS (Hindawi et al. 2013), SFSGL (Sheikhpour et al. 2018),
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Table 3. Parameters determining ESACO.

Parameter Explanation Value

ρ Evaporating rate of pheromones 0.1

Num Cycle
The number of iteratations required

for the algorithm to find a solution
30

Num Ant
The number of ants that search

in the space of featurest
30

β
The exchange between pheromones

and heuristic information
0.7

m
The number of most remarkable

features that select
10 ≤ m ≤ 100

q exploration-exploitation coefficient 0.7

GSSNMF (Jia et al. 2020), Semi-JMI and Semi-MIM (Sechidis & Brown 2018)
and TRCFS (Liu et al. 2010).

Tables 3 and 4 demonstrate the run-time of the techniques in states 20%
and 40% of the training instances are labeled. Figs. 5 to 12 demonstrate the
classification performance for F-score and Accuracy measures.

6.1. Comparison with other semi-supervised FS methods. Based on
the results and observations, it can be observed that the ESACO technique
achieved better classification performance compared to competing semi-supervised
FS strategies in the literature. The mean accuracy of the ESACO when 20%
of the training instances are labeled is demonstrated in Figs. 6 and 7. It
can be observed that the presented method in all cases, compared to other
strategies, has gained better classification accuracy, particularly for Leukemia,
Chiaretti, Arcene, Golub, NCI60, Lymphoma, Khan, Prostate-GE, Lung, Sor-
lie, Orlraws10P, and SRBCT datasets.

When 20% of the training instances are labeled the mean F-score of the
ESACO is shown in Figs. 8 and 9. It can be seen that the presented method
in all states, compared to other strategies, has gained better F-score value,
particularly for Chiaretti, Arcene, Golub, Khan, Lung, Leukemia, Lymphoma,
ORL, Prostate-GE, Semeion, Sorlie, and SRBCT datasets.

When 40% of the training instances are labeled the mean accuracy of the
ESACO is shown in Figs. 10 and 11. The results of 40% labeling of training
instances ESACO, Similar to the results of 20% labeling, has demonstrated
better classification accuracy in all cases compared to other methods. partic-
ularly for Chiaretti, Arcene, Golub, Jaffe, Khan, Lung, NCI60, Orlraws10P,
and Semeion datasets. ESACO has retained its high accuracy in both 40% and
20% labeling of training instances compared to other strategies in all datasets.

When 40% of the training instances are labeled the mean F-score of the
ESACO is shown in Figs. 12 and 13. The results of 40% labeling of training
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Figure 6. Accuracy metric for 20 percent labeled data
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Figure 7. Continuous of Accuracy metric for 20 percent la-
beled data
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Figure 8. F-score metric for 20 percent labeled data
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Figure 9. Continuous of F-score metric for 20 percent labeled
data
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Figure 10. Accuracy metric for 40 percent labeled data
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Figure 11. Continuous of Accuracy metric for 40 percent
labeled data
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instances ESACO, Similar to the results of 20% labeling, has demonstrated
better classification F-score in all cases compared to other methods. particu-
larly for Chiaretti, Arcene, Golub, Jaffe, Khan, Lung, NCI60, Orlraws10P, and
Semeion datasets. Also, similar to the results of mean accuracy, ESACO has
retained its high F-score in both 40% and 20% labeling of training instances
compared to other strategies in all datasets.

We have also calculated the computation complexity of the proposed algo-
rithm. Table 4 shows the computational complexity of different steps of the
proposed method, considering the pseudo code presented in ESACO Algorithm.

Table 4. The computational complexity of ESACO algo-
rithm.

Step Computational Complexity (Big Omicron)

Step 1 (Redundancy matrix) O(nd2)

Step 2 (Relevancy vector) O(dl2)

Step 3 (LLCFS algorithm) O(nd2)

Step 4 (MCDM algorithm) O(nd + n2 log d)

Steps 5-15 (ACO process) O(NumCycle × NumAnt × d2)

Step 16 (Sorting the features) O(d log d)

Overall O(nd2 + dl2 + n2 log d + NumCycle × NumAnt × d2)

Description of symbols

d: number of features,

l: number of labeled samples,

n: number of instances,

NumCycle: number of iterations,

NumAnts→number of ants.

Tables 5 and 6 display the run times (in seconds) when 20 % and 40 % of
training instances are labeled. A non-parametric Friedman test [50] compares
the results’ importance according to the statistical procedure. We consider a
p-value less than 0.05 to be statistically significant. These comparisons are
demonstrated in Tables 7 to 11, and Table 9 displays the general win/tie/loss.
In Tables 5 to 8, the (+) sign means that the presented ESACO is statistically
better than other techniques. As well as, (-) and (=) signs demonstrate worst
and equal efficiency, respectively.
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Figure 12. F-score metric for 40 percent labeled data
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Figure 13. Continuous of F-score metric for 40 percent la-
beled data
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Table 5. Execution time comparisons on 20 percent labeled
data

Dataset Algorithm

TRCFS SELF ENCLS GSSNMF SFSGL SFSS Semi-JMI Semi-MIM ESACO

Arcene 2.4106 223.5991 10.8828 0.2576 1.0586e+03 39.2320 1.0110e+04 1.0110e+04 9.8125

Chiaretti 0.1341 3.0651 8.8570 0.0525 7.0677 0.6865 146.2542 146.2542 1.8887

Golub 0.9523 291.0064 3.2690 0.0767 1.0747e+03 10.3789 5.5374e+03 5.5374e+03 4.3646

Jaffe 0.0212 0.7157 6.5901 0.0276 0.1391 0.0690 25.8568 25.8569 2.6198

Khan 2.0665 33.8233 0.0875 0.0322 24.3326 2.0407 639.7204 639.7204 1.6704

Leukemia 0.9754 348.3809 2.8181 0.0921 841.3363 39.9451 5.7033e+03 5.7033e+03 3.7441

Lung 0.2826 45.3454 13.2009 0.1430 102.8575 7.0634 1.1580e+03 1.1580e+03 3.0800

Lymphoma 0.3269 294.9491 4.1747 0.1203 197.4651 8.1868 1.7184e+03 1.7184e+03 2.7395

NCI60 0.9253 309.5145 2.5270 0.0958 775.7263 49.1071 4.5409e+03 4.5409e+03 2.9547

ORL 0.0548 1.4303 26.8676 0.1291 0.5390 0.1816 126.7509 126.7509 3.2790

Orlraws10p 2.0274 584.6595 3.9926 0.3086 4.5680e+03 52.0016 8.8094e+03 8.8094e+03 4.0027

Prostate-

GE

0.8640 197.2423 4.5990 0.1142 810.2006 38.2078 4.8306e+03 4.8306e+03 2.0036

Semeion 0.4127 0.6385 725.1094 0.3217 2.6039 0.2967 19.2946 19.2946 5.7473

Sorlie 0.0108 1.9155 2.7092 0.0174 0.5128 0.0599 23.1184 23.1184 0.6916

SRBCT 0.0922 27.5736 2.6624 0.0294 29.5941 1.9439 440.8094 440.8094 1.0074
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Table 6. Execution time comparisons on 40 percent labeled
data

Dataset Algorithm

TRCFS SELF ENCLS GSSNMF SFSGL SFSS Semi-

JMI

Semi-

MIM

ESACO

Arcene 2.3430 505.1395 13.2143 0.2794 1.4458e+03 39.9798 865.8015 865.8016 8.2353

Chiaretti 0.0924 10.0775 16.6324 0.0931 4.3854 1.3928 21.2724 21.2724 2.5095

Golub 0.8896 442.0393 2.4231 0.0643 163.4951 8.6186 307.9999 308.0000 6.2567

Jaffe 0.0363 1.7457 15.1251 0.0588 0.1730 0.1243 4.1754 4.1755 3.3599

Khan 0.1437 74.6716 4.0143 0.0452 62.5907 4.2744 62.3078 62.3079 2.3025

Leukemia 0.8355 757.9332 2.5230 0.1263 1.4366e+04 41.5873 308.8415 308.8422 6.0314

Lung 0.5089 240.2031 25.7691 0.2615 160.2422 13.4017 204.6004 204.6005 6.7009

Lymphoma 0.3652 164.0963 2.9120 0.0741 1.8168e+03 8.5217 96.9267 96.9268 4.2023

NCI60 0.8981 486.4758 3.6843 0.1251 1.0988e+03 73.6994 549.2767 549.2769 3.6623

ORL 0.1058 2.3717 366.5952 0.2207 0.8914 0.3266 276.8230 276.8231 4.3867

Orlraws10p 1.6026 1.2548e+033.9167 0.1927 824.7220 53.5960 657.9727 657.9727 6.3218

Prostate-

GE

0.7360 285.9702 5.5476 0.1098 1.3860e+03 42.6458 288.7139 288.7140 2.9473

Semeion 0.3840 0.8446 889.1811 0.2615 2.9452 0.3019 1.7231 1.7232 4.7613

Sorlie 0.0119 4.5501 4.8377 0.0209 4.0180 0.0785 2.4465 2.4466 1.2993

SRBCT 0.1470 59.7695 4.6626 0.0553 96.6638 2.9199 78.1815 78.1816 1.9804
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Table 7. The gained p-values for the accuracy metric accord-
ing to 20 percent labeled data by the Friedman test

Dataset ESACO

against

Semi-

MIM

Semi-

JMI

SFSS SFSGL GSSNMF ENCLS Self TRCFS

Arcene 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0018 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Chiaretti 0.0004

(+)

0.0004

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0004 (+) 0.0004 (+)

Golub 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Jaffe 0.0016

(+)

0.0016

(+)

0.1616

(=)

0.0016

(+)

0.0016 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Khan 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.1573

(=)

0.0005 (+) 0.0005

(+)

0.2987 (=) 0.0005 (+)

Leukemia 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Lung 0.0005

(+)

0.0018

(+)

0.0018

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0018 (+) 0.0018 (+)

Lymphoma 0.0005

(+)

0.0018

(+)

0.0005

(+)

0.0005

(+)

0.0009 (+) 0.0005

(+)

0.0018 (+) 0.0018 (+)

NCI60 0.0005

(+)

0.0005

(+)

0.0018

(+)

0.0018

(+)

0.0018 (+) 0.0005

(+)

0.0018 (+) 0.0005 (+)

ORL 0.0005

(+)

0.0018

(+)

0.4884

(=)

0.0005

(+)

0.0153 (+) 0.0018

(+)

0.0005 (+) 0.0018 (+)

Orlraws10p 0.0056

(+)

0.1153

(=)

0.0018

(+)

0.0377

(+)

0.0056 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Prostate-

GE

0.0005

(+)

0.7290

(=)

0.0005

(+)

0.0005

(+)

0.0029 (+) 0.0005

(+)

0.0005 (+) 0.7290 (=)

Semeion 0.0377

(+)

0.0833

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0153 (+)

Sorlie 0.0018

(+)

0.0018

(+)

0.0005

(+)

0.0018

(+)

0.0018 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

SRBCT 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0016

(+)

0.0005 (+) 0.0005

(+)

0.0018 (+) 0.0018 (+)
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Table 8. The gained p-values for the F-score metric accord-
ing to 20 percent labeled data by the Friedman test

Dataset ESACO

against

Semi-

MIM

Semi-

JMI

SFSS SFSGL GSSNMF ENCLS Self TRCFS

Arcene 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Chiaretti 0.0004

(+)

0.0004

(+)

0.0143

(+)

0.0484

(+)

0.0005 (+) 0.0005

(+)

0.1616 (=) 0.0004 (+)

Golub 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Jaffe 0.0018

(+)

0.0005

(+)

0.1659

(=)

0.0005

(+)

0.0018 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Khan 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.1659

(=)

0.0005 (+) 0.0005

(+)

0.2987 (=) 0.0005 (+)

Leukemia 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Lung 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Lymphoma 0.0018

(+)

0.0018

(+)

0.0005

(+)

0.0005

(+)

0.0018 (+) 0.0005

(+)

0.0018 (+) 0.4884 (=)

NCI60 0.0005

(+)

0.0018

(+)

0.1659

(=)

0.2987

(=)

0.0153 (+) 0.0005

(+)

1 (=) 0.0005 (+)

ORL 0.0005

(+)

0.0018

(+)

0.0833

(=)

0.0005

(+)

0.0377 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

Orlraws10p 0.1659

(=)

0.7290

(=)

0.0056

(+)

0.0377

(+)

0.0833 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

Prostate-

GE

0.0005

(+)

0.7290

(=)

0.0005

(+)

0.0005

(+)

0.0056 (+) 0.0005

(+)

0.0005 (+) 0.2987 (+)

Semeion 0.0377

(+)

0.1659

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0153 (+)

Sorlie 0.0018

(+)

0.0018

(+)

0.0005

(+)

0.0018

(+)

0.0018 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

SRBCT 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0016

(+)

0.0005 (+) 0.0005

(+)

0.0018 (+) 0.0018 (+)
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Table 9. The gained p-values for the accuracy metric accord-
ing to 40 percent labeled data by the Friedman test

Dataset ESACO

against

Semi-

MIM

Semi-

JMI

SFSS SFSGL GSSNMF ENCLS Self TRCFS

Arcene 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0018 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Chiaretti 0.0016

(+)

0.0133

(+)

0.0004

(+)

0.0016

(+)

0.0004 (+) 0.0005

(+)

0.0005 (+) 0.0016 (+)

Golub 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Jaffe 0.0005

(+)

0.0005

(+)

0.0005

(=)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Khan 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.2207 (=)

Leukemia 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Lung 0.0005

(+)

0.0018

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Lymphoma 0.0080

(+)

0.0229

(+)

0.0005

(+)

0.1659

(=)

0.0005 (+) 0.0018

(+)

0.0005 (+) 0.0377 (+)

NCI60 0.0005

(+)

0.0005

(+)

0.0087

(+)

0.0056

(+)

0.0005 (+) 0.0005

(+)

0.0018 (+) 0.0005 (+)

ORL 0.0005

(+)

0.0018

(+)

0.0153

(+)

0.0005

(+)

0.0056 (+) 0.0005

(+)

0.0018 (+) 0.0018 (+)

Orlraws10p 0.0018

(+)

0.4884

(=)

0.0005

(+)

0.0005

(+)

0.0377 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Prostate-

GE

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0056 (+)

Semeion 0.2987

(=)

0.7290

(=)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0153 (+)

Sorlie 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0056

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0153 (+)

SRBCT 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0051 (+)
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Table 10. The gained p-values for the F-score metric accord-
ing to 40 percent labeled data by the Friedman test

Dataset ESACO

against

Semi-

MIM

Semi-

JMI

SFSS SFSGL GSSNMF ENCLS Self TRCFS

Arcene 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Chiaretti 0.0005

(+)

0.2888

(=)

0.0016

(+)

0.0358

(+)

0.0004 (+) 0.0005

(+)

0.0004 (+) 0.0051 (+)

Golub 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Jaffe 0.0005

(+)

0.0005

(+)

0.0018

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Khan 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 1 (=)

Leukemia 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0005 (+)

Lung 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

Lymphoma 0.0833

(=)

0.0833

(=)

0.0005

(+)

0.2987

(=)

0.0018 (+) 0.0005

(+)

0.0018 (+) 0.0833 (=)

NCI60 0.0005

(+)

0.0005

(+)

0.0153

(+)

0.0833

(=)

0.0018 (+) 0.0005

(+)

0.2987 (=) 0.0005 (+)

ORL 0.0005

(+)

0.0018

(+)

0.1659

(=)

0.0005

(+)

0.0056 (+) 0.0005

(+)

0.0018 (+) 0.0018 (+)

Orlraws10p 0.0005

(+)

0.7290

(=)

0.0005

(+)

0.0005

(+)

0.0153 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

Prostate-

GE

0.0005

(+)

0.0005

(=)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0056 (+)

Semeion 0.2987

(=)

0.4884

(=)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0153 (+)

Sorlie 0.0018

(+)

0.0005

(+)

0.0005

(+)

0.0018

(+)

0.0018 (+) 0.0005

(+)

0.0005 (+) 0.0018 (+)

SRBCT 0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005

(+)

0.0005 (+) 0.0005

(+)

0.0005 (+) 0.0377 (+)
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Table 11. The overall win/tie/loss, according to the Fried-
man test

Dataset ESACO

against

Semi-

MIM

Semi-

JMI

SFSS SFSGL GSSNMF ENCLS Self TRCFS

20% accuracy

of labeled data
15/0/0 13/2/0 13/2/0 14/1/0 15/0/0 115/0/0 14/1/0 14/1/0

F-measure of 20%

of labeled data
14/1/0 13/2/0 12/3/0 13/2/0 15/0/0 15/0/0 12/3/0 14/1/0

40% accuracy

of labeled data
14/1/0 13/2/0 14/1/0 14/1/0 15/0/0 15/0/0 15/0/0 14/1/0

F-measure of 40%

of labeled data
13/2/0 11/4/0 14/1/0 13/2/0 15/0/0 15/0/0 14/1/0 13/2/0

Overall 56/4/0 50/10/0 53/7/0 54/6/0 60/0/0 60/0/0 55/5/0 55/5/0
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To evaluate the robustness of the proposed method to parameter variations,
we conducted a sensitivity analysis on the available datasets using five distinct
parameter configurations. Table 12 shows the accuracy results of the sensi-
tivity test of the parameters used in the proposed method. Our results show
that the proposed method is relatively insensitive to parameter changes. This
means that even when the parameters are adjusted, the results remain stable.
The parameters in the table are: decay: evaporation coefficient, cycle: num-
ber of executions of ESACO algorithm, ant: number of ants q is exploration-
exploitation coefficient and β: the exchange between pheromones and heuristic
information .

Table 12. Testing the sensitivity of parameters.

Dataset

decay = 0.25,

cycle = 50,

ant = 60,

beta & q

= 0.8

decay = 0.2,

cycle = 40,

ant = 50,

beta & q

= 0.7

decay = 0.15,

cycle = 30,

ant = 40,

beta & q

= 0.6

decay = 0.1,

cycle = 20,

ant = 30,

beta & q

= 0.5

decay = 0.05,

cycle = 10,

ant = 20,

beta & q

= 0.4

Arcene 0.80375 0.780625 0.765 0.776875 0.774375

Chiaretti 1 0.999418605 0.999418605 0.998837209 0.999418605

Golub 0.882142857 0.8875 0.898214286 0.851785714 0.864285714

Jaffe 0.952352941 0.948235294 0.952941176 0.951764706 0.954117647

Khan 0.848 0.886 0.912 0.898 0.878

Leukemia 0.844642857 0.85 0.828571429 0.857142857 0.842857143

Lung 0.927777778 0.924691358 0.916666667 0.919135802 0.922222222

Lymphoma 0.789473684 0.769736842 0.848214286 0.784210526 0.781578947

NCI60 0.392 0.418 0.446 0.424 0.434

ORL 0.6415625 0.613125 0.634375 0.63875 0.6365625

Orlraws10p 0.80375 0.78125 0.79875 0.77 0.79375

Prostate-

GE

0.8575 0.83125 0.8375 0.82875 0.80375

Semeion 0.95 0.951805338 0.950156986 0.950627943 0.948744113

Sorlie 0.745588235 0.760294118 0.785294118 0.739705882 0.763235294

SRBCT 0.874242424 0.836363636 0.865151515 0.834848485 0.836363636
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6.2. Discussion. The proposed method, ESACO, to check the best feature
subset in semi-supervised data utilizes the ACO algorithm. ACO can solve
combinatorial optimization problems, especially FS problems. The primary
difference between this technique and other metaheuristic algorithms and other
competitive techniques is the heuristic selection. The FS procedure in compet-
itive techniques is based on a specific heuristic. However, the recommended
algorithm used an ensemble of heuristic selection techniques. We have per-
formed experiments to display the effect of the ensemble of heuristics in the
semi-supervised FS.

The main characteristic of the suggested algorithm is using the ensemble of
heuristics according to the MCDM process in ACO, which is the first time used
in the semi-supervised FS. Thus, considering its high performance and power,
we determined to use this procedure in semi-supervised FS.

Furthermore, as in Tables 3 and 4, the run-time of all techniques is displayed.
According to these values, it can be observed that the presented algorithm is
not the fastest. Due to the iterative framework of the ant algorithm, this
matter is entirely rational. Because in this method, to achieve the best feature,
we have assumed 30 iterations. Furthermore, in every iteration, the MCDM
procedure is performed.

A non-parametric test is utilized according to the Friedman test to evaluate
the validity of the results. Table. 9 suggests the general values of win/tie/loss
by the statistical comparisons. We can see the excellence of the presented tech-
nique against the other methods in two different semi-supervised prospective
and two classification metrics. The presented algorithm acts better statistically
than the competitive techniques in most cases (443 cases between 480 cases),
and the efficiency is the tie in the remnant of 37 cases.

7. Conclusion

Based on our knowledge, no ACO-based semi-supervised FS method equipped
with an ensemble of heuristics has been presented so far. The presented tech-
nique uses an ensemble of heuristic functions instead of one heuristic function
in ACO. The idea of using ensemble learning for semi-supervised FS is based on
the fact that using multiple learning algorithms results in better performance
and higher accuracy than using one single function alone. EASCO utilizes the
MCDM procedure in the FS process based on the recommendations of numer-
ous heuristics to find the best heuristic. EASCO utilizes unlabeled and labeled
instances of information at the same time to discover the most beneficial fea-
tures. The results of the KNN classifier show that the suggested method is
better than comparing techniques on fifteen datasets. Furthermore, the results
demonstrate that the presented algorithm is better efficient than other methods
in two states of accidental 40% and 20% labeling of the training instances with
proper run-time. One of the advantages of the ESACO algorithm is its high
speed and accuracy. Also, in most cases, the ESACO algorithm has been able to
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show its superiority over competing algorithms. While the ESACO algorithm
offers these advantages, it is also somewhat time-consuming, which is accept-
able due to the iterative nature of the ACO algorithm.Considering the premier
efficiency of EASCO, we desire to generalize this procedure to semi-supervised
FSs: wrapper, embedded, and multi-label techniques.
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