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ABSTRACT. Let I be a non-zero proper ideal of a Lie algebra L. Then
(L,I) is called a Camina pair if I C [z,L], for all x € L\ I. Also, L is
called a Camina Lie algebra if (L, L?) is a Camina pair.

We first give some properties of Camina Lie algebras, and then show
that all Camina Lie algebras are soluble.

Also, a new notion of n-Baer Lie algebras is introduced, and we in-
vestigate some of its properties, for n = 1,2. A Lie algebra L is said to
be 2-Baer if for any one dimensional subalgebra K of L, there exists an
ideal I of L such that K is an ideal of I.

Finally, we study three classes of Lie algebras with 2-subideal subal-
gebras and give some relations among them.

Keywords: Camina Lie algebra, n-Baer Lie algebra, 2-subideal subalge-
bra, nilpotent Lie algebra.
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1. Introduction

Recall that a non-abelian group G is a Camina group if the conjugacy class
of every element g € G\ G’ is gG'. Tt is clear from the earliest papers that
the study of Camina groups and the more general objects Camina pairs was
motivated by finding a common generalization of Frobenius groups and extra-
special groups. It is not difficult to see that extra-special groups and Frobenius
groups with an abelian Frobenius complement are Camina groups. Thus, one
question that seems reasonable to ask is whether there are any other Camina
groups, or can one classify all Camina groups?

In [9], Dark and Scoppola stated that they had completed the classification
of all Camina groups. The classification is recorded in the following theorem.

Theorem 1.1. [9] Let G be a group. Then G is a Camina group if and only
if one of the following holds:
(i) G is a Camina p-group of nilpotence class 2 or 3.
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(i) G is a Frobenius group with a cyclic Frobenius complement.
(7i1) G is a Frobenius group whose Frobenius complement is isomorphic to the
quaternions.

In fact, the work in [9] is the capstone of several results that combined and
lead to the classification. The first result needed is that if G is a Camina group,
P is a Sylow p-subgroup for some prime p, and G/G’ is a p-group, then P is a
Camina group which is proved in Lemma 3.6 of [6]. The second result needed
is Theorem 3 of [7] which states that if G is a Camina group such that G/G’ is
a p-group for some prime p and a Sylow p-subgroup of G has nilpotency class
at most p + 1, then either G is a p-group or G is a Frobenius group whose
complement is either cyclic or quaternion. Then Dark and Scopolla proved
in [9] that Camina p-groups have nilpotency class 2 or 3. This proves Theorem
1.1 under the hypothesis that G/G’ is a p-group for some prime p. Finally, by
Theorem 2.1 of [13], we know that if G is a Camina group, then either G is a
Frobenius group with Abelian Frobenius complement or G/G’ is a p-group for
some prime p. Combining all of these results, one obtains the above theorem.

In section 2 of the present article, we give some properties of Camina Lie
algebras. Moreover, we show that all Camina Lie algebras are soluble.

Let n be a positive integer. A subgroup H of a group G is called n-subnormal,
denoted by H <, G, if there exist distinct subgroups Hy = H, Hy,--- ,H,, = G
such that

H=Hy<xH «---<H,=0G.
In a group of nilpotency class n, all subgroups are n-subnormal. Conversely, by
a well known result of Roseblade [18], a group with all subgroups n-subnormal is
nilpotent of class bounded by a function of n. For n = 1, having all subgroups
n-subnormal, hence normal, is equivalent to having all cyclic subgroups n-
subnormal; but this is no longer the case if n > 2 [15].

A group G is called an n-Baer group if all of its cyclic subgroups are n-
subnormal. It can be easily seen that every n-Baer group is (n + 1)-Engel,
ie., [T,y1y] = 1 for all 2,y € G, where [z,1y] = [z,y] = 27 '2Y and [z, y] =
[[x,k—19],y], k = 2. We say x € G is a right n-Engel element, if [z,, g] = 1 for
all g € G, and a left n-Engel element, if [g,, 2] =1 for all g € G.

Of course, the class of 1-Baer groups coincides with the familiar Dedekind
groups. For the finite case, these groups were classified by Dedekind [10], and
for the case of infinite groups by Baer [1].

In parts 3 and 4 we introduce a new notion of n-Baer Lie algebras, and we
investigate some of its properties, for n = 1, 2. Finally, we study three classes of
Lie algebras with 2-subideal subalgebras and give some relations among them.

2. Camina Lie algebras

Let L be a Lie algebra over a field F' of characteristic zero. Usually, F is
considered to be the real or complex numbers, R or C. The derived subalgebra
L? = [L, L] generated by [z,y], for all z,y € L.
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An element x € L acts as a linear transformation on the vector space L by
the rule y — [z, y], which is denoted by ad, and called adjoint representation.
Clearly, the adjoint map is a homomorphism and

ad[z,y) = ady o ady — ady o ad,.

Recall that a linear transformation 7 is nilpotent, if its n*"* power is zero for
some n € N, i.e.T7™ = 0. Clearly, (ad,)y = [z, y] and inductively

(ady)*y = (ady 0 ady)y = ady [z, y] = [x, [z, y]],

(ada:)sy = (adw oady o adm)y = [xv [l‘, [x7y]]]v e

By the definition of a nilpotent Lie algebra, one can easily check that if L is
nilpotent, then ad, is also nilpotent, for all z € L, as (ad,;)™ = 0. One notes
that the converse is also true. Engel’s theorem says that a finite dimensional
Lie algebra L is nilpotent if and only if ad, is nilpotent, for all = in L.

Note that the bilinear map is defined by x : L x L — F, where (z,y) —
tr(ady o ady) and is called a Killing form of L. The Killing form is a special
case of the notion of trace form. It is the trace form associated to the adjoint
representation. Killing form, named after Wilhelm Killing, is a symmetric
bilinear form which plays a basic role in the theory of Lie groups and Lie
algebras, as tr(AB) = tr(BA), for any squared matrices A and B. It is also
invariant, i.e.

wllz, 9l 2) = k(a, [y, 2]),

for all z,y,z € L.

In 1894, Killing form was essentially introduced into Lie algebra theory by
Elie Cartan [5], in his Thesis.

The following theorem is useful for further investigation
Theorem ( [5], Cartan’s solubility criterion). A Lie algebra L is soluble
if and only if (L, L?) = 0.

In 1978, Camina [2] introduced and studied the notion of Camina pairs in
group theory. Camina pairs are studied by many authors in [3, 14, 16], when
G is a finite group. Infinite Camina groups are studied in [12]. For example,
all extra-special p-groups are Camina groups. An important property of finite
Camina groups is obtained by Dark and Scoppola [9]. They proved that every
finite Camina p-group is nilpotent of class at most 3.

In the present article, we introduce and study the notion of Camina pair for
Lie algebras (see also [17]).

Definition 2.1. Let L be a finite dimension Lie algebra over a field F' and [
a non-zero proper ideal of L. Then the pair (L, I) is called Camina pair of Lie
algebras, if for any elements x € L\ I and i € I, there exists an element [ € L
such that [z,l] =1, i.e.

IC{x,l]:1€ L}
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Following the notation in [8], the nilpotent Lie algebras in this paper are
denoted by Lgj, where d is the dimension of the algebra and k is its index
among the nilpotent Lie algebras with dimension d.

Ea:ample 2.2. Let L = L5,5 = <$1, o, Ty | [1‘1,1‘2] = T3, [I1,$3] = Ts, [1‘2,.734] =
x5) and I be the one dimensional ideal of L with basis x5. Then

I C {[z1,22], [x1, 23], [w2, 4]},

and so (L, I) is a Camina pair (see [8] for more information).

Now, by considering the above discussion, we introduce and study some new
results on Camina Lie algebras.

Lemma 2.3. If (L, I) is a Camina pair of Lie algebra L, then Z(L) C I C L2.
Proof. Clearly, for every x € L\ T
IC{[x,:1e Ly C{x1:1€L)CL*=[L,1L).

Now, assume there exists a non-zero element « € Z(L)\ I. Then for each i € I,
there exists an element [ € L such that ¢ = [z,]] = 0 and so I = 0. This
contradiction gives the result. ([l

Definition 2.4. If (L, L?) is a Camina pair of a Lie algebra L, then L is called
a Camina Lie algebra.

Clearly, All Heisenberg Lie algebras with finite or infinite dimensions are
Camina.

Remark 2.5. A Lie algebra L is called Heisenberg, when L? = Z(L) and
dimL? = 1. All Heisenberg Lie algebras of finite dimensions have odd number
of basis {x1, -+ , Tam, z} say, and the only non-zero multiplication between ba-
sis elements are [x9;_1,x9;] = x, for i = 1,--- ;m. Similarly, any Heisenberg
Lie algebra of infinite dimension with basis {x,x;}, is defined by the relations
[T2;_1,72;] = x, for all i = 1,2,---. Clearly, any Heisenberg Lie algebra is
nilpotent. However, it is not true that all Camina Lie algebras are nilpotent.
For example, any 2-dimensional non-abelian Lie algebra is Camina Lie algebra,
which is not nilpotent.

Lemma 2.6. Let L be a Camina Lie algebra and I be an ideal of L contained
in L?. Then L/I is a Camina Lie algebra.

Proof. Clearly,

L, L L IL*4I I
(T) —[777]_ T _Ta
as [ C L% Letz+1€e L72, then for every I’ € L2, there exists [ € L such
that [x,{] =1, as L is a Camina Lie algebra. It is clear that I’ + I = [z,{]+ ] =
[x+1,1+1]. Thus for every z+1 € £ LTz andl'+1 € L7/7 there exists [+1 € £
such that [z + I, + I] =1’ + 1. Hence L/I is a Camina Lie algebra. O
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Using the above lemma, we have the following

Corollary 2.7. If L is a Camina Lie algebra, then L/Z(L) is also Camina
Lie algebra.

Lemma 2.8. Let (L,I) be a Camina pair of Lie algebras and J be an ideal of
L contained in I, then (L/J,I/J) is also a Camina pair.

Proof. We need to show that for each x + J € % l, and i+ J € §7 there exists
l+J¢€ % such that [x + J,l + J] =i+ J. As (L,I) is Camina pair, then for
any v+ J € % \ § and i € I, there exists [ € L with [z,l] = i. Obviously,
i+J=z,0]+J =[x+ J,1+ J] and this gives the result. O

Theorem 2.9. Let L be a non-abelian Camina Lie algebra with finite dim(L/Z(L)).
Then dim(L) is also finite.

Proof. Assume dim(L/Z(L)) = n, then a well known theorem implies that
dim(L*) < gn(n — 1). On the other hand, Z(L) C L?, as L is Camina Lie
algebra. Thus Z(L) is of finite dimension and so dim(L) is also finite. O

Let L be a Lie algebra, the lower central series of L is defined as follows:

L=IL'D2I[?D---DL"D---

)

where L? = L’ is the derived algebra of L and L™ = [L"~! L]. Also, the upper
central series of L is defined as

0=Zo(L) € Zy(L) C -+ C Zy(L) C - |

where Z1(L) = Z(L) is the centre of L and Z,+1(L)/Z,(L) = Z(L/Z,(L)).
A Lie algebra L is nilpotent if there exists a non-negative integer ¢ such that
L+ = 0 (or Z;(L) = L). The smallest integer i, for which L‘*1 = 0 (or
Z;(L) = L) is called the nil-index of L. Clearly, the Lie algebras with nil-index
1 are abelian.

Theorem 2.10. Let L be a nilpotent Lie algebra with nil-index i. If (L,I) is
Camina pair, then I = L™ and I = Z;_,1(L), for some 1 <r < 1.

Proof. Clearly, Z(L) C I when (L, I) is a Camina pair. Now, we show that I =
Zi—ry1(L) for some 1 < r <. If Z(L) = I, then the result is obtained. Now as-
sume that Z(L) G I, then Lemma 2.6 implies that (L/Z(L),I/Z(L)) is a Cam-
ina pair. Therefore Z(L/Z (L)) C I/Z(L) and hence Zs(L)/Z(L) C I/Z(L).
Continuing the same trend, we have I = Z;_,;1(L), for some 1 < r < 4. Using
induction on r, we obtain L" C Z;_,1(L) = I. Now, if L" G Z;_,1(L) = I,
then (L/L",I/L") is Camina pair and so L"' /L™ C Z(L/L") C I/L". Hence,
L'=Y C I =Z;_,+1(L) implies that L* C Zy(L) = 0, which is a contradiction.
Therefore L" = Z;_.1(L) = I. O
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Corollary 2.11. (i) Let L be a nilpotent Lie algebra with nil-index i. If
(L, Z(L)) is a Camina pair, then L' = Z(L).
(ii) Let L be a nilpotent Lie algebra with nil-index 2 and dimL? = 1. Then
(L, 1) is Camina pair if and only if I = L? and L is a Heisenberg Lie algebra.
Proof. (i) The result follows by Theorem 2.8.

(i7) Let L be a nilpotent Lie algebra with nil-index 2, dimL? = 1 and (L, I)
be a Camina pair. Then Theorem 2.8 implies that I = L? = Z(L) and hence
L is Heisenberg Lie algebra. The converse is obvious. ]

Let L be a nilpotent Lie algebra with nil-index 2. Theorem 2.8 implies that,
if L is a Camina Lie algebra, then Z(L) = L?. In general, the converse of this
statement is not true. For example

Lsg = (x1, - ,25 | [71,%2] = 24, [71, 23] = T5)

is not Camina Lie algebra, while Z(L) = L? (see [8] for more details).
Now, we state and prove our final result of this section, as follows:

Theorem 2.12. Every Camina Lie algebra is soluble.

Proof. Let (L,L?) be a Camina pair, then for all z € L\ L? we have
L* C{[z,1]: 1€ L}.
Hence for any y € L?, there exists [, € L such that y = [z,1,]. Now, for every
29 € L and y € L? the property of Killing form implies that
K(zo,y) = K(xo, [z,1,]) = K([zo,2],1y)
K([z,14],1,), (since [xo, 7] € L?)
K(,[l1,1,]), (since [l1,1,] € L?)

= K(z,z,l3])
= K(z,z],l2) =0.
Hence K (L, L?) = 0 and Cartan’s solubility criterion gives the result. O

3. Lie algebras with 2-subideal subalgebras

Clearly, subnormality property in groups is a natural generalization of normal-
ity. It receives no attention from group theorists until 1939, when Wielandt’s
fundamental paper [19] has been appeared.

Let K be a subalgebra of a Lie algebra L. We call K is n-subideal of L and
denoted by K <, L, if there exist distinct subalgebras K;, Ks,--- , K, such
that

K<aKi<Ke<---<aK,=1L,
for some n € N.

In this section, we introduce a new notion of n-Baer Lie algebras and it is
shown that some of the known results of n-Baer groups can be proved in n-
Baer Lie algebras. We remind that G is called n-Baer group, if all of its cyclic
subgroups are n-subnormal.
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A natural set up for Lie algebras is as follows.

Definition 3.1. A Lie algebra L is called n-Baer Lie algebra, if all of its one
dimensional subalgebras are n-subideal.

Clearly, in a nilpotent group of class n, all subgroups are n-subnormal.
Conversely, by a well-known result of Roseblade [18], a group with all subgroups
n-subnormal is nilpotent of class bounded by a function of n.

The next lemma describes the closure properties of the class of n-Baer Lie
algebras.

Lemma 3.2. Every subalgebra K of n-Baer Lie algebra L is at most n-Baer.

Proof. Assume that K is a subalgebra of an n-Baer Lie algebra L. Then for
every one dimensional subalgebra H of L which is contained in K, there exist
distinct subalgebras L, Lo, - - - , L, such that

Hali< Ly« ---< L, =L.

Clearly, the following series is n-subideal series for K and so K is n-Baer Lie
algebra.
H=HNKaL 1 NKJaL:NKx---aLNK =K.

Now, we prove some structural results for 1 and 2-Baer Lie algebras.

Definition 3.3. A Lie algebra L is called 1-Baer or Dedekind Lie algebra if all
of its one dimensional subalgebras are ideal in L.

We remind that a group in which all of its subgroups are normal, called a
Dedekind group. Such finite groups were classified by Dedekind in 1897 [10],
and the infinite case by Baer in [1]. Dedekind groups are either abelian or the
direct product of the Quaternion group of order 8 by a periodic abelian group
with no elements of order 4. Clearly, every abelian Lie algebra is Dedekind.

Let L be a Lie algebra over a field F of characteristic zero and let D(L) be
the derivation algebra of L, which is the Lie algebra of all derivations of L.

Now, using the above discussion we give an important property of Dedekind
Lie algebras.

Proposition 3.4. Let L be Dedekind Lie algebra, then L is nilpotent of class
at most 2.

Proof. By the definition, any one dimensional subalgebra K of L is an ideal of
L. Hence, each element of L induces an inner derivation of K. So there exists a
homomorphism from L into Inn(K). The kernel of this homomorphism, which
contains L2, is the centralizer of k in L, for any element k € K. So [L? k] = 0,
which gives the result. O

The following interesting lemma is a useful property for 2-Baer Lie algebras.
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Lemma 3.5. Let H be a one dimensional subalgebra of a Lie algebra L. Then
L is 2-Baer Lie algebra if and only if [L,h,h] C H, for all non-zero elements
h of H.

Proof. Assume that L is 2-Baer Lie algebra, then there exists some subalgebra
K of L such that H < K < L is 2-subideal series for H. Thus [K,h] C H and
[L,k] CK, forall h € H and k € K. Hence [L,h,h] C H.

Conversely, assume [L, h, h] C H, for every non-zero element h in H. Then
H is an ideal of [L, h]. On the other hand, H < ([, h]) < L, where ([, h]) is an
ideal of L, and so L is 2-Baer Lie algebra. O

Considering the discussion in the previous part and Lemma 3.5, we have the
following result.

Theorem 3.6. Every 2-Baer Lie algebra is 3-Engel.

Proof. Assume L is 2-Baer Lie algebra, then Lemma 3.5 implies that
[L7 1.7 m? x] = 07
for all z € L. Hence L is 3-Engel Lie algebra and (ad,)3 = 0. O

Corollary 3.7. If L is a finite dimensional 2-Baer Lie algebra, then L is
nilpotent.

We denote the class of all 2-Baer Lie algebras, the class of Lie algebras in
which every abelian subalgebra is 2-subideal, and the class of all Lie algebras
in which every subalgebra is 2-subideal by L, L4 and Lg, respectively. It is
obvious that Lg C L4 C Lp.

In the rest of this section, we show that for 2-dimensional Lie algebras the
properties Lp, L4 and Lg are equivalent.

The next result and Lemma 3.5, play an important role in proving our main
theorem of this section.

Proposition 3.8. Let C be a class of Lie algebras, which is closed under form-
ing subalgebras. If K € C is a subalgebra of a Lie algebra L, then K is 2-subideal
in L if and only if [L,xz,y] C (x,y), for all z,y € K.

Proof. Assume that every subalgebra of L in the class C is 2-subideal. Then
for all z,y € K, there exists an ideal I of L such that (z,y) < I <1 L. Clearly
[l,z] € I, for all I € L, and [[I,z],y] € (z,y), as (z,y) is ideal of I. Hence
[L,z,y] C (z,y), which proves the necessary part of the result.

Conversely, suppose [L,z,y] C (z,y), for all z,y € K. In order to show
that every subalgebra K of L, which is in C, is 2-subideal, we must show that
K < [L, K], which is obvious by the assumption. On the other hand, consider
the ideal generated by [I, k], and so the following 2-subideal series completes
the proof

K <([l,k]) < L.
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The following corollary is an immediate consequence of the above proposi-
tion.

Corollary 3.9. Let L be a Lie algebra. Then for all x,y,l € L,
(Z) LeCLs Zf and only Zf [l,l’,y] c <£L’,y>,’
(1) L € L if and only if [I,x,y] C (z,y), with [z,y] = 0.

Proof. Both parts follow easily using Proposition 3.8, by taking C to be the class
of all Lie algebras, and the class of all abelian Lie algebras, respectively. O

Recall that Lg C L4 C Lp. The following main theorem, gives the exact
relations among Lg, L4 and Lp.

Theorem 3.10. Let L be a Lie algebra over a field F' of characteristic # 2.
Then L € Lp is equivalent to L € L 4.

Proof. Clearly L4 is contained in L. Assume that L is a 2-Baer Lie algebra.
Then by Lemma 3.5, for every one dimensional subalgebra H of L and any
non-zero element h € H, we have [L,h,h] C H. In view of Corollary 3.9 (ii),
it suffices to prove that for any 2-dimensional abelian subalgebra K = (z,y) of
L, [l,x,y] € K, for all [ € L. On the other hand, the Jacobi identity yields

[, 2], 9] + ([, 9l 1) + [[y, 1], =] = 0.
Now, the property [z, y] = 0 implies that [I, z,y] = [I,y, x]. By Lemma 3.5,
La+y,z+yl =Lz o]+ Loyl + Ly 2]+ [Lyyl,
and hence, we obtain
2L,y =[La+y,z+y] =[x, 2] — [l,y,y] € (z,y) = K.
Therefore the assumption implies that [I,z,y] € K and so L € L4. g

4. Generalized 2-Baer Lie algebras

In this final section, we concentrate on the generalized version of n-Baer Lie
algebras, specially 2-Baer Lie algebras, which is motivated by the works of D.
Cappitt, L.C. Kappe and Tortora in group theory (see [4] and [11] for more
details).

For any Lie algebra L, let T,,(L) = (x € L : (z) #4, L). Clearly, T,,(L)
is trivial, if all of one dimensional subalgebras of L are n-subideal, i.e. L is
n-Baer Lie algebra.

Definition 4.1. If L is a Lie algebra with T,,(L) # L, then L is called a
generalized n-Baer Lie algebra. In addition, if T;,(L) is non-trivial, then L is
called a generalized T),-Lie algebra.

The class of generalized n-Baer and T),-Lie algebras will be denoted by GB,,
and GT,, respectively.
Here, we provide some structural results for generalized 2-Baer Lie algebras.
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Lemma 4.2. Let L € GBs.
(1) If v € L\ T2(L) and K is a subalgebra of L containing x, then K € GBs.
(1) If I is an ideal of L contained in To(L), then L/I € GBs.

Proof. (i) Let L € GBs, then for the one dimensional subalgebra (z) of L, there
exists an ideal I such that (z) < I < L, where x € L\ T5(L). Thus

(xy=(x)NK<INKJLNK =K,

which gives the result.
(#) Clearly, To(L/I) C To(L)/1. Assume that To(L/I) = L/I, then we have
(L) L L. _Ty(L)
C — = —) C
r s R e
and so L = T5(L), which is a contradiction. Therefore T5(L/I) # L/I, and
hence L/I € GBs. O

Theorem 4.3. Let L € GBy and x € L\ To(L). Then x is a left 3-Engel
element.

Proof. Let x € L\T»(L), then there exists an ideal I in L such that (x) T < L.
Therefore [I, 2] C (x) and [L, ] C I for every ¢ € I, which implies that [L, 7, x] C
(x) and so [L,z,z,z] = 0. O

In the following we give couple of examples of 2-Baer and generalized 2-Baer
Lie algebras.

E:cample 4.4. (Z) Let L = L575 = <$1,"' , L5 | [3?1,.1‘2} = $3,[$1,$3] =
x5, [Te, 4] = x5) and (1), (x2), (x3) and (x4) are one dimensional subalgebras
of L, then we have the following series
(z1) < (@a, 25) < L
<:172> < <£U3,.T5> <L
(z3) < (T2, 73, 75) < L;
<QJ4> < <I’1,1‘3, I5> < L.
Note that (z5) is an ideal of L and (x5) < (x3,25) < L, so L is 2-Baer Lie
algebra.
(#4) Let L = (x1,22,23,24 | [71,22] = x3,[x1,23] = X2, [T1,24] = x4).
Then
(x2) < (@2, 23) < L;
(x3) < (w2, 23,24) Q L,
imply that zo, 23 € To(L). Also (z4) < L and 1 ¢ To(L). Hence, L is general-
ized 2-Baer Lie algebra.
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