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Abstract. Lung cancer is one of the most dangerous and fatal diseases
worldwide. By using advanced machine learning techniques and opti-

mization algorithms, early prediction and diagnosis of this disease can
be achieved. Early identification of lung cancer is an important ap-

proach that can increase the survival rate of patients. In this paper,

a novel method for lung cancer prediction is proposed, which combines
two important techniques: Support Vector Machine (SVM) and Differ-

ential Evolution (DE) algorithm. Firstly, using the differential evolution

algorithm, important and suitable features for lung cancer prediction are
extracted. Then, using the SVM classifier, a classification model is built

for prediction. The proposed approach is implemented on two lung cancer

databases and achieves a good level of accuracy, which is compared with
four other methods: C4.5 decision tree, neural network, Naive Bayes clas-

sifier, and logistic regression. The proposed model, with high accuracy

and generalization power, is a suitable model for lung cancer detection
and can serve as a strong decision support system alongside medical pro-

fessionals.

Keywords: Lung cancer, Support vector machine, Differential evolution

algorithm, Feature selection.
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1. Introduction

Lung cancer is currently one of the major diseases worldwide, characterized
by the uncontrolled growth of lung tissue cells. According to recent statistics,
lung cancer is the leading cause of death among cancer diseases and accounts
for a significant number of deaths globally [10]. It causes the death of ap-
proximately 1.61 million people annually. The majority of lung cancer cases
(85%) are attributed to long-term tobacco use, while about 10 to 15% of cases
occur in individuals who have never smoked [1]. Lung cancer is the second
leading cause of death among men and the tenth among women. Early and
accurate diagnosis of lung cancer is of great importance as it enables better and
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more effective treatment in the early stages of the disease, potentially saving
the patient’s life. Diagnosing the disease is a complex task and often requires
conducting numerous tests on patients to reach an accurate result [3]. This
can lead to the utilization of analytical devices designed to assist physicians in
their decision-making processes. Lung cancer can be detected through chest
radiography and computed tomography imaging. With the advancement of
technology and the development of machine learning methods, the use of pre-
diction algorithms and models for cancer detection and prediction has gained
significant attention. To achieve high accuracy and optimal performance in
lung cancer prediction, selecting appropriate features and extracting impor-
tant information from the data is vital [2], we investigate the utilization of two
advanced machine learning and optimization techniques: Support Vector Ma-
chine and Differential Evolution algorithm. SVM is a well-known algorithm for
data classification and has the potential to detect and predict cancer diseases.
The Differential Evolution algorithm is a popular optimization algorithm used
for feature extraction from data. The main objective of this paper is to present
a new and efficient method for lung cancer prediction that combines these two
techniques and demonstrates a significant improvement in prediction accuracy
and reliability. Finally, the performance of the proposed algorithm is evalu-
ated using the lung cancer database and compared with four other methods:
C4.5 decision tree, neural network, Naive Bayes classifier, and logistic regres-
sion. The fact is that the innovation of the proposed method is mainly focused
on defining the fitness function (Section 3.3) rather than the algorithm itself.
The proposed function can also be extended to advanced algorithms. For the
first time, we simultaneously included both the number of features and the
classification error rate. In summary, if the proposed objective function is in-
tegrated as the core of detection in new methods, it will significantly improve
the accuracy of detection. Our goal has been to modify the objective function
rather than the algorithm. In all similar works, evaluation has typically focused
solely on a combination of metrics such as accuracy, precision, F-score, and re-
call. The subsequent sections of this paper are structured as follows. Section
2 provides an overview of the previous research and the algorithms used for
lung cancer diagnosis. In Section 3, we provide a detailed explanation of the
proposed method. Sections 4 and 5 analyze the performance of the proposed
model through experimental design and results. Finally, Section 6 presents a
general conclusion and outlines future research directions.

2. Literature Review

Within the domain of data mining, machine learning algorithms like SVM,
Decision Trees, Neural Networks, Bayesian models, and k-Nearest Neighbors
(k-NN) are prominently utilized. This section provides a comprehensive look
at how these algorithms have been applied in cancer detection, organized
chronologically. In 2013, Chen et al. proposed a fuzzy system utilizing the
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k-Nearest Neighbors method for diagnosing Parkinson’s disease [4]. They inte-
grated principal component analysis, surpassing the Support Vector Machine
with a 96.07% accuracy [4]. Odajima and Pawlovsky (2014) [11] delved into
the impact of varying neighbor numbers on the k-Nearest Neighbors method’s
classification accuracy. They meticulously documented the fluctuations in ac-
curacy concerning classifier sizes and neighbor variations. Lynch et al. (2017)
conducted a comparative study of C4.5, Naive Bayes, and k-Nearest Neighbors
for breast cancer detection [9]. Naive Bayes and k-Nearest Neighbors achieved
a matching accuracy of 98.51%, while C4.5 lagged at 91.79%. Hashi et al.
(2017) utilized Decision Tree and k-Nearest Neighbors for diabetes detection,
obtaining accuracies of 90.43% and 76.96%, respectively, favoring the Deci-
sion Tree algorithm [7]. Alharbi (2018) implemented a fuzzy-genetic algorithm
for lung cancer detection, achieving a commendable 97.5% accuracy [1]. Cherif
(2018) introduced an accelerated k-Nearest Neighbors algorithm for breast can-
cer detection, showcases superior accuracy compared to alternative methods [5].
Vikas et al. (2019) scrutinized Support Vector Machines and Random Forest for
lung cancer prediction, highlighting the superior performance of Support Vector
Machines (SVM) with 98% accuracy and swift execution [25]. In 2020, Puneet
and Chauhan focused on lung cancer prediction using various techniques such
as Boosting models, Logistic Regression, SVM, Gaussian Naive Bayes, Decision
Trees, and k-Nearest Neighbors. Their findings favored the Boosting model,
achieving 92.16% accuracy [16]. Venkatesh and Raamesh (2022) explored en-
semble learning methods for lung cancer prediction, identifying AdaBoost as
the top performer with 98.2% accuracy [24]. Alsinglawi et al. (2022) intro-
duced a framework for predicting lung cancer patient survival times, revealing
that Random Forest with SMOTE class balancing achieved 98% accuracy [2].
In 2023, Varchagall, et al. proposed a novel approach using machine learning to
identify tumorous lung characteristics on CT scans, showing promise in identi-
fying emphysema (AUC = 0.78) [24]. Table 1 offers a comparative analysis of
distinct machine learning methods for lung cancer prediction. These algorithms
showcase varied performance and applicability, requiring careful consideration
based on specific data attributes [8, 20,27].

Table 2 provides a comprehensive comparison of the discussed machine learn-
ing methods in lung cancer prediction. This table systematically compares
these methods across various criteria, ensuring a clearer understanding of their
strengths and limitations in the context of lung cancer prediction. This addition
will aim to provide readers with a more structured and informative overview
of the current state-of-the-art methodologies in the field. This table provides
a detailed comparison across key criteria, helping to understand the suitability
of each method for lung cancer prediction based on specific requirements and
challenges commonly encountered in healthcare applications.

*Criteria Explanation:
Accuracy: Reflects the performance in terms of predictive accuracy
on lung cancer datasets.
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Table 1. A review of different machine learning methods used
in lung cancer prediction.

Authors
(year)

Dataset
(number of samples)

Methods used
(*Proposed method)

Efficiency of
the proposed method

Yuan et al.
(2023)

LUNA16/
LIDC-IDR (1080)

3D ECA-ResNet*
Accuracy 94.89%
sensitivity 94.91%
F1-score 94.65%

Liu et al.
(2023)

LIDC-IDRI (302) PiaNet* Sensitivity 93.6%

Siddiqui et al.
(2023)

LUNA 16/
LIDC-IDRI/
TCIA(27816)

3D MLF-DCNN*
Accuracy 99.2%
sensitivity 99.2%
specificity 99.17%

Alsinglawi et al.
(2022)

MIMIC-III (423)
Random forest*
reinforcement

logistic regression learning

Accuracy 95.3%
Recall 98%

Venkatesh et al.
(2022)

SEER(1000)

Begging
AdaBoost*

decision tree, neural network
nearest neighbor

Accuracy 98.2%

Puneet et al.
(2020)

Lanzhou
University (277)

Begging
Reinforcement learning*

logistic regression
decision tree

support vector machine
naive Bayesian gaussian

decision tree
k-nearest neighbor

Accuracy 92.16%
Recall 96.97%

Sim et al.
(2020)

HRQO(809)

AdaBoost*
logistic regression

decision tree
random forest

bagging

Accuracy 94.8%

Patra
(2020)

UCI(32)

Radial network*
support vector machine

random forest
artificial neural network

k-nearest neighbor
naive bayesian

Accuracy 81.25%
Precision 81.3%

Recall 81.1%
F1 score 81.5%

Radhika et al.
(2019)

Data World
(1000)

Support vector machine*
naive Bayes
decision tree

regression

Accuracy 99.2

Wu et al.
(2019)

Lanzhou
University (277)

Random forest*
Accuracy 95.7%

Recall 96.3

Faisal et al.
(2018)

UCI(32)

MLP neural network
naive bayes

support vector machine
random forest

majority voting
gradient tree*

Accuracy 90%
Precision 87.82%

Recall 83.71%
F1 score 85.71%

Safiyari et al.
(2017)

SEER(924)

Bagging
AdaBoost*

Bayesian network
random forest

logistic regression
C4.5

Accuracy 88.98%
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Table 2. Comparing different machine learning methods
used in lung cancer prediction*.

Method Accuracy Interpretability Scalability
Handling

Imbalanced Data
Training

Time
Computational

Complexity

Linear
Support
Vector
Machines

High Low Moderate Requires tech-
niques such as
class weighting
or resampling
(e.g., SMOTE)

Moderate Training:
O(N2.d) Pre-
diction: O(d)

Non-
Linear
Support
Vector
Machines

High Low High Requires tech-
niques such as
class weighting
or resampling
(e.g., SMOTE)

High Training:
O(N3) Predic-
tion: O(Ns.d)

Random
Forest

High Moderate High Handles imbal-
anced data nat-
urally through
ensemble aver-
aging

Moderate Training:
O(T.m.N2.logN)
Prediction:
O(T.logN)

Logistic
Regres-
sion

Moderate
to High

High High Requires tech-
niques such as
class weighting
or regulariza-
tion

Low to
Moder-
ate

Training:
O(I.N.d) Pre-
diction: O(N.d)

Neural
Networks

High Low High Requires tech-
niques such as
dropout and
regularization

High Training:
O(E.N.L.n2)
Prediction:
O(N.L.n2)

Decision
Trees

Moderate Moderate Moderate Handles imbal-
anced data nat-
urally through
tree structure

Low to
Moder-
ate

Training:
O(d.N2)
Prediction:
O(N.logN)

Naive
Bayes

Moderate High High Handles imbal-
anced data nat-
urally through
probabilistic
framework

Low Training:
O(N.d) Predic-
tion: O(N.C.d)

Interpretability: Indicates how easy it is to understand and interpret
the model’s predictions.
Scalability: Assesses the ability to handle large volumes of data effi-
ciently.
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HandlingImbalancedData: Evaluate how well the method deals with
datasets where one class (e.g., cancer cases) is significantly less preva-
lent than the other.
TrainingT ime: Approximate time required to train the model on typ-
ical lung cancer datasets.
ComputationalComplexity: Reflects the overall complexity of the model
architecture and its implementation.
N : Number of training samples
d: Number of features
Ns: Number of support vectors
T : Number of trees
m: Number of features considered for splitting at each node
I: Total number of iterations
E: Number of epochs
L: Number of layers
n: Average number of neurons per layer
C: Number of classes

3. Proposed Method

The proposed method in this paper is a combination of two algo-
rithms: differential evolution algorithm and Support Vector Machine
classifier. Initially, the DE algorithm will extract the effective fea-
tures, and then the classifier will utilize these features to predict
cancer. Both methods will be explained further. Figure 1 shows the
diagram of the proposed method in summary. Figure 2 shows the
pseudo code of the proposed method.

Figure 1. Diagram of the proposed method at a high level
of abstraction.
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Figure 2. Pseudo code of the proposed method.

3.1. Support Vector Machine. Support Vector Machine is a machine
learning algorithm used for classification and regression problems.
This method is based on the idea of separating data using a specific
hyperplane in a defined feature space. SVM aims to find an optimal
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hyperplane in the input space and divide different data points into
distinct categories optimally. If the data points in the input space
are separable, meaning that an exact hyperplane can be found to
separate them, linear SVM is used. In this case, SVM is optimized
based on support vectors (points from each class that are closest to
the hyperplane) [13]. However, if the data points are not linearly sep-
arable, meaning they have some degree of overlap, nonlinear SVM is
used. In this case, SVM transforms the data using kernel functions
into higher-dimensional feature space and searches for a linear hy-
perplane to separate them in that space. The main formulations of
the Support Vector Machine are as follows [22]:

(1) w =

n∑
i=1

aiyiXi Linear.

(2) w =

n∑
i=1

aiyiK(Xi, X) Non− Linear.

(3) f(x) = sign(wTX + b) Kernelfunction.

(4)

Max w(α) =

n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(Xi, Xj) Optimization objective function.

In these formulas, x represents the feature vectors, y represents the
classification labels (1 or -1), α represents the Lagrange multipliers, b
represents the bias of the hyperplane, w represents the support vec-
tor, and K(x, y) represents the kernel function. The kernel function
K is responsible for transforming the data into a higher-dimensional
feature space. This function can be linear, polynomial, Gaussian,
etc. The function f(x) is the decision function for predicting the
label of a new point X. Optimization in a Support Vector Machine
involves finding the best separating hyperplane based on the data.
Figure 3 illustrates the data classification process in the Support
Vector Machine method.

3.2. Differential Evolution algorithm. The Differential Evolution (DE)
algorithm, conceived by Storn and Price in the mid-1990s [15], stands
as a widely used population-based optimization technique for resolv-
ing various optimization problems. Specifically designed for continu-
ous, nonlinear, and multi-modal optimization problems, DE operates
through the following stages: Initialization: Establish the population
size, NP , and initialize a group of NP candidate solutions randomly
within the search space. Optionally, assign random velocity values to
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Figure 3. Data Classification in Support Vector Machine
Method [22].

each candidate solution, applied in some variations. Mutation: For
every candidate solution in the population, pick three distinct indi-
viduals labeled ”target,” ”base,” and ”rand” from the population.
Create a mutant vector by adding the weighted difference between
the ”base” and ”rand” vectors to the ”target” vector. over: Gen-
erate a trial vector for each candidate solution by combining the
mutant vector with the original candidate solution using a crossover
operator. This operator determines the inheritance of components
from both vectors. Selection: Evaluate the fitness of the trial vector
via an objective function for each candidate solution. If the trial vec-
tor demonstrates superior fitness compared to the original candidate
solution, replace the latter with the former in the population. Termi-
nation: Repeat steps 2-4 until meeting a termination criterion, such
as reaching the maximum number of iterations or fulfilling conver-
gence criteria. The algorithm stops when the termination criterion is
met, returning the best candidate solution obtained so far [12]. The
crux of the Differential Evolution algorithm lies in its differential op-
erators (mutation and crossover), enabling exploration of the search
space and guiding populations toward optimal solutions. The muta-
tion operator introduces diversity by modifying candidate solutions,
while the crossover operator combines data from various solutions
to form trial solutions for assessment. This capability allows DE
to effectively navigate complex, multi-modal landscapes. Differen-
tial Evolution boasts several variants and extensions like DE/rand/1,
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DE/rand/2, and DE/best/1, which differ in the number of individuals
utilized for mutation and the crossover strategies employed. This
algorithm serves as a robust and adaptable optimization technique,
demonstrating successful applications across diverse fields and solv-
ing a multitude of optimization problems. The summary of the Dif-
ferential Evolution algorithm is illustrated in Figure 4.

Figure 4. A flowchart of a differential evolution algorithm.

3.3. Problem Objective Function. The main objective in feature se-
lection is to achieve the minimum possible accuracy where all the
features of the samples contribute to it, and the secondary objective
is to improve the accuracy. Collecting extensive information about
the features of the samples incurs significant costs in terms of time
and money, and it also leads to wasted time in the classification and
detection process. Therefore, it is better to reduce the dimensions,
meaning the number of features, in order to obtain better results
and also achieve a better correlation between the features and the
outcomes. The particle swarm optimization algorithm is a suitable
technique for selecting the best features. In this algorithm, a bi-
nary random vector, called the Vector, which includes the features,
is generated using the formula (5).

(5) V ector =

{
1 i− th feature included

0 otherwise
.
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Then, an objective function is defined based on the sum of the
error rate and the number of features for each selected combination
of features. This objective function acts as a penalty function that
needs to be minimized to find the best feature combination. Here,
the Misclassification Rate (MCR) can be easily obtained using for-
mula (6).

(6) mcr =

∑
aij − [

∑
aij ; (i = j)]∑
aij

; i = j = 1, 2, .....,m.

In this case, the variable m represents the number of classes, and
aij represents the number of cases where sample i is classified as class
j using the classification method. Now, the objective function that
needs to be minimized is a weighted sum of MCR (Misclassification
Rate) and NF (number of selected features), defined as follows:

(7) MinZ = w1 ∗mcr + w2 ∗ nf.
The variables w1 and w2 can be defined as weighted penalties for
misclassification and having an extra feature, respectively. Using
this objective function, the Differential Evolution algorithm aims to
find the best combination of features with the minimum number of
features, simultaneously minimizing both the cost and the misclas-
sification rate. The termination condition for the algorithm can be
a predefined number of iterations.

4. Experimental Design

In this section, we will describe the data used, evaluation metrics,
and the execution system for the codes. The goal of the experimental
design is to prepare a proper and accurate comparison framework.
The results of all experiments are calculated using 10-fold cross-
validation to prevent artificial bias in the responses.

4.1. Data Description. The importance of the dataset is undeniable
as it significantly influences the final outcome of the research. In this
study, the Lung Cancer dataset from Data World is used (https://data.world/cancerdatahp/lung-
cancer-data). This dataset consists of 1000 samples, each with 23
features, which are shown in Table 3. After obtaining the dataset, it
is examined whether any preprocessing is needed to remove missing
values or replace them with appropriate data. Rows in the dataset
that were incomplete were automatically filled using the mean of
other values. The classes in this dataset represent the risk levels of
lung cancer, classified into three levels: low, medium, and high.

Another suitable dataset for laryngeal cancer that can be used to
test data mining methods is the Laryngeal Data from the UCI Ma-
chine Learning Repository. This dataset contains information about



356 A. Khatibi Bardsiri

Table 3. Features available in the Lung Cancer dataset 1.

Age gender occupational
risk

genetic risk blood group

Weight smoking shortness of
breath

chest pain coughing

Snoring dry
cough

frequent colds alcohol con-
sumption

smoking cessa-
tion

Air pollu-
tion

allergy chronic disease diet nail color
change

Weight
loss

excessive
fatigue

difficulty in
swallowinge

patients with laryngeal cancer and related features. Laryngeal Can-
cer Dataset Specifications are as follows:
Dataset Name: Laryngeal Data 2
Source: UCI Machine Learning
Description: This dataset includes medical information of patients
with laryngeal cancer, making it suitable for data mining and ma-
chine learning analyses.
Number of Records (Instances): 213
Number of Features (Attributes): 17
Attributes: Includes demographic and clinical information about pa-
tients, such as age, gender, type of cancer, metastasis status, and
other relevant features.
Instances: Contains data on various patients, which can be used as
input for data mining models.
UCI Laryngeal Data (https://archive.ics.uci.edu/ml/datasets/Laryngeal1)
This dataset can help us test various data mining methods and obtain
meaningful results in the diagnosis and analysis of laryngeal cancer.

4.2. Performance criteria. Confusion matrix is an important tool in
data mining used for evaluating the performance of models and ma-
chine learning algorithms. This matrix represents the number of
correct and incorrect predictions for each class, using the actual val-
ues (labeled samples) and the predictions made by the model. A
confusion matrix is defined as an n ∗ n table, where n is the num-
ber of classes in the problem. The actual and predicted classes are
placed on the horizontal and vertical axes of the table, respectively.
Generally, a confusion matrix is defined as shown in Figure 5.
The values that are placed in the cells of the confusion matrix are

as follows:
• TruePositive(TP ): The number of samples that are correctly iden-
tified and belong to the positive class.
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Figure 5. Confusion matrix.

• TrueNegative(TN): The number of samples that are correctly iden-
tified and belong to the negative class.
• FalsePositive(FP ): The number of samples that are incorrectly
identified and actually belong to the negative class.
• FalseNegative(FN): The number of samples that are incorrectly as-
signed to the negative class and actually belong to the positive class.
Using the confusion matrix, we can calculate metrics such as accu-
racy, sensitivity, and specificity of the model as follows:

(8) Accuracy =
TP + TN

TP + TN + FP + FN

(9) Sensitivity =
TP

TP + FN

(10) Specificity =
TP

TN + FP

These metrics provide insights into different aspects of the model’s
performance and help evaluate its effectiveness in classification tasks.
Accuracy is not always the best metric for imbalanced datasets so
we use metrics such as sensitivity, specificity to better evaluate the
model performance. Additionally, we used the 10-fold cross-validation
method for model evaluation, which prevents biased results.

4.3. Execution System. All simulations and experiments were per-
formed on a system with an Intel 2.7 GHz 7-core processor, 12 GB
RAM, and Windows 10 operating system. The algorithms and meth-
ods were implemented using MATLAB software version 2018.

4.4. Handling Class Imbalance. Certainly, addressing class imbalance
is crucial for ensuring the robustness and fairness of our proposed
method. Here’s how we handle class imbalance and mitigate bias in
our model training process. We analyze the distribution of classes in
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the dataset to identify imbalance. We assign higher weights to mi-
nority class samples during model training to ensure they contribute
more to the overall loss function, thereby giving them proportionate
importance. We choose algorithms that inherently handle class im-
balance well, such as algorithms like SVM with class weighting. Also,
we utilize evaluation metrics that are robust to class imbalance, such
as sensitivity, Precision-Recall curve, rather than relying solely on
accuracy. We focus on selecting informative features that can help
the model distinguish between classes effectively, reducing the im-
pact of imbalance. We employ stratified 10-fold cross-validation to
ensure that each fold retains the proportion of classes similar to that
in the original dataset, preventing overfitting and bias. By imple-
menting these strategies, our proposed method aims to ensure fair
representation of each class and mitigate bias introduced by imbal-
anced datasets, thereby enhancing the reliability and applicability of
our findings.

4.5. Initial Parameters. In the paper, the initial parameters of dif-
ferent methods have been carefully configured to optimize their per-
formance in data analysis and predictions. This includes selecting
the algorithm type, specifying relevant parameters, and conducting
necessary experiments to fine-tune the model’s performance. Table
4 illustrates these settings.
These initial parameter settings are adjusted based on experimenta-

Table 4. Initial parameters and variables.

Method Parameter Initial value

Differential evo-
lution

Population Size
Mutation Rate
Mutation Rate

50
0.1
0.9

SVM
Kernel Type

Regularization Parameter (C)
Gamma(for RBF kernel)

RBF
1.0
0.1

Neural network
Number of Layers
Neurons per Layer
Activation Function

3
128, 64, 32

ReLU

C4.5
Pruning Method

Confidence Threshold
Reduced Error Pruning

0.25

Logistic regres-
sion

Regularization Parameter (C)
Solver

Maximum Iterations

1.0
’lbfgs’
100

tion and empirical validation to achieve optimal results in the context
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of the study’s dataset. Naive Bayes classifiers do not have complex
parameters like regularization or specific solver options as seen in
Logistic Regression or Support Vector Machines. Instead, they rely
on the assumption of independence among features given the class
label, making them simple yet effective for many classification tasks.
Therefore, no specific parameters need to be set initially for Naive
Bayes beyond the basic implementation of the algorithm itself.

5. Experimental Results

In this section, we will compare the performance of the proposed
method with other approaches. Firstly, the convergence behavior
of the Differential Evolution algorithm can be observed in Figure 6.
According to the information, the rate of decrease in the objective
function error is initially high and then slows down after the sixth
iteration. At this point, the algorithm reaches an almost optimal
combination of problem features. The penalty weights for misclas-
sification and the number of features are assumed to be equal in
this experiment. Next, Table 5 presents the confusion matrix for

Figure 6. The best value of the objective function during
different iterations.

the C4.5 method. The total number of samples is 1000 patients.
This method achieved the worst performance for the average class,
reaching an accuracy of 86.79%. The best performance is observed
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for the high-risk class with an accuracy rate of 98.51%. The overall
performance of the method is also shown in each case.

Table 5. Confusion matrix for C4.5.

High Low Mid Total Accuracy

High 330 0 5 335 98.51
Low 0 375 25 400 93.75
Mid 20 15 230 265 86.79
Total 350 390 260 1000 93.50

Similar results for the Neural Network method are provided in
Table 6. Generally, the performance of the Neural Network method
is worse than the C4.5 decision tree, with an overall accuracy of
91.30% in cancer diagnosis. Similarly, for the average class, it had
the most challenging classification task, correctly identifying only
84.91% of the disease cases.

Table 6. Confusion matrix for Neural network.

High Low Mid Total Accuracy

High 334 8 2 344 97.09
Low 17 382 25 424 90.09
Mid 20 15 197 232 84.91
Total 371 405 224 1000 91.30

The next method is the Naive Bayes algorithm, and its confusion
matrix is shown in Table 7. The performance of the Naive Bayes
method is close to the C4.5 method and has created a more uni-
form distribution among the different data classes. This method has
achieved almost similar accuracy percentages in the high, low, and
average classes, indicating its stability and robustness on different
and imbalanced data.

Table 7. Confusion matrix for Naive bayesian.

High Low Mid Total Accuracy

High 315 10 8 333 94.59
Low 27 371 10 408 90.93
Mid 8 5 246 259 94.98
Total 350 386 264 1000 93.20
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Table 8 illustrates the performance of the Logistic Regression
method. On average, this method had the worst performance. Its
accuracy of 89.7% is significantly lower compared to similar methods.
Finally, Table 9 presents the performance of the proposed method

Table 8. Confusion matrix for logistic regression.

High Low Mid Total Accuracy

High 332 15 15 362 91.71
Low 7 340 25 372 91.40
Mid 6 35 225 266 84.59
Total 345 390 265 1000 89.70

in the form of a confusion matrix. As evident, the proposed method
effectively increased the accuracy rate, reaching 99.4% overall. Here,
the reliability and stability of the results are comparable to the Naive
Bayes method. The overall improvement of the proposed method
compared to the C4.5, Neural Network, Naive Bayes, and Logistic
Regression methods is 4.7%, 7.2%, 5%, and 11% respectively. The
results indicate that the proposed method has achieved its primary
goal of improving the accuracy of lung cancer prediction. Regard-
ing the interpretation of results, on dataset 1, which consists of real
and meaningful data (Table 3), the proposed model evaluated three
features age, smoking, and polluted air, as highly important and
impactful. The findings of the proposed model align with medical
theories in this area. Figure 7 introduces the specificity and sensi-

Table 9. Confusion matrix for proposed method.

High Low Mid Total Accuracy

High 354 0 1 355 99.72
Low 3 345 0 348 99.14
Mid 0 2 295 297 99.33
Total 357 347 296 1000 99.40

tivity measures to the comparison process on dataset 1. The results
demonstrate that the proposed method outperforms in other mea-
sures as well [17]. The simultaneous increase in both specificity and
sensitivity measures indicates that the proposed method has accu-
rately distinguished between true positive and true negative diag-
noses, without errors. Therefore, this method can be generalized
to other sensitive diseases (e.g., infectious diseases, acute diseases
requiring quarantine) as well. Figure 8 depicts the accuracy results
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Figure 7. Efficiency criteria for different methods on dataset
1.

of various models on Dataset 2. As evident, the proposed method
outperforms other methods on this dataset as well. However, an
important point to note is the decrease in accuracy across all meth-
ods in Dataset 2 compared to Dataset 1. This decrease in accuracy
is due to greater diversity and heterogeneity of data in Dataset 2
compared to Dataset 1. Table 10 presents the results for examining
the achievement of the second objective of the research. The results
demonstrate that the proposed method not only improves the di-
agnostic accuracy but also enhances the speed of the process. The
performance of the feature selection process is clearly evident here.
The reduction in the number of features has made the proposed
method faster compared to the baseline support vector machine,
without compromising accuracy. It is worth noting that performing
initial parameter settings significantly affects the response time of
each method.

6. Adaptability to New Data

Here, we discuss the mechanisms that can be implemented for up-
dating or retraining the model in response to new data or evolving
patterns: Incremental Learning: Implementing incremental learning
techniques allows the model to learn continuously from new data
without retraining from scratch. This can be particularly useful in
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Figure 8. Efficiency criteria for different methods on dataset
2.

Table 10. Comparison of accuracy and time of different
methods.

Dataset 1 Dataset 2
Accuracy Time Accuracy Time

C4.5 93.5 0.017 77.3 0.005
Neural Network 91.3 0.026 83.4 0.013
Naive Bayesian 93.2 0.029 85.12 0.011
Vector Machine 92.5 0.031 80.2 0.021
Logistic Regres-
sion

89.7 0.012 86.6 0.007

Proposed
Method

99.4 0.16 77.3 0.09

adapting to new patterns while preserving previously learned knowl-
edge. Online Learning Algorithms: These algorithms can update
the model in real-time as new data points arrive, making the model
adaptable to changes in data distribution. Scheduled Retraining:
Establishing a schedule for periodic retraining of the model ensures
that it incorporates the latest data and adapts to any changes in the
data distribution. This can be done weekly, monthly, or based on the
volume of new data accumulated. Data Drift Detection: Implement-
ing data drift detection mechanisms can alert when the statistical



364 A. Khatibi Bardsiri

properties of the input data change. Techniques such as monitoring
feature distributions or using drift detection algorithms can trigger
retraining when significant drift is detected. Ensemble Learning: Us-
ing ensemble methods such as stacking or boosting can enhance the
model’s adaptability. New models can be trained on the latest data
and combined with existing models to improve overall performance
and adapt to new trends. By incorporating these mechanisms, we
aim to ensure that the proposed model remains adaptable and con-
tinues to provide accurate predictions in the face of new data and
evolving data distributions. Future work will focus on implement-
ing and testing these strategies to maintain the model’s efficacy over
time.

7. Conclusion and Future Work

Lung cancer is one of the most important and dangerous diseases
worldwide. Providing a low-cost and highly accurate method can
significantly contribute to the early and cost-effective diagnosis of
this disease, in addition to medical and pathological approaches. In
the literature review, it was observed that there are various machine
learning methods whose performance depends on different aspects,
including the dataset used for their application. In this paper, a
combined method of support vector machine classifier with parti-
cle swarm optimization algorithm was introduced for more accurate
prediction of lung cancer. The experimental results demonstrated
that the proposed method achieves satisfactory results compared
to five other methods: C4.5 decision tree, neural network, Naive
Bayes classifier, logistic regression, and Qu et al. method. Further-
more, empirical results showed that by selecting an optimal number
of features and adjusting appropriate parameters, both the accuracy
and speed can be effectively improved. Proposed model can become
computationally expensive and memory-intensive when dealing with
large datasets, which is often the case in medical applications where
extensive patient data is involved. Also, it can be sensitive to noisy
data and outliers, potentially affecting its performance, especially in
datasets where noise is prevalent or data quality is varied. Future
work may involve the use of other classification algorithms in the
field of machine learning or the utilization of different optimization
algorithms for further enhancement of the proposed method.
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