
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,993 |
تعداد دریافت فایل اصل مقاله | 3,580,059 |
The adjacency dimension of some path related trees | ||
Journal of Mahani Mathematical Research | ||
دوره 14، شماره 1 - شماره پیاپی 31، فروردین 2025، صفحه 369-386 اصل مقاله (521.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2024.22886.1576 | ||
نویسندگان | ||
Elham Hardany؛ Ali Behtoei* | ||
Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box: 34149-16818, Qazvin, Iran | ||
چکیده | ||
Since the problem of computing the adjacency dimension of a graph is NP-hard, finding the adjacency dimension of special classes of graphs or obtaining good bounds on this invariant is valuable. In this paper we determine the properties of each adjacency resolving set of paths. Then, by using these properties, we determine the adjacency dimension of broom and double broom graphs. | ||
کلیدواژهها | ||
Adjacency resolving set؛ Adjacency dimension؛ Path؛ Broom؛ Tree | ||
مراجع | ||
[1] Brigham, R.C., Chartrand, G., Dutton, R.D., & Zhang, P. (2003). Resolving domination in graphs. Math. Bohem., 128(1), 25-36. https://doi.org/10.21136/mb.2003.133935
[2] Buczkowski, P.S., Chartrand, G., Poisson, C., & Zhang, P. (2003). On k-dimensional graphs and their bases. Period. Math. Hung., 46(1), 9-15. https://doi.org/10.1023/A:1025745406160
[3] Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., & Wood, D.R. (2007). On the metric dimension of Cartesian product of graphs. SIAM J. Discrete Math., 21(2), 423-441. https://doi.org/10.1137/050641867
[4] Charon, I., Hudry, O., & Lobstein, A. (2003). Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci., 290(3), 2109-2120. https://doi.org/10.1016/s0304-3975(02)00536-4
[5] Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. (2000). Resolvability in Graphs and the Metric Dimension of a Graph. Discrete Appl. Math., 105(3), 99-113. https://doi.org/10.1016/s0166-218x(00)00198-0
[6] Chartrand, G., Saenpholphat, V., & Zhang, P. (2003). The independent resolving number of a graph. Math. Bohem., 128(4), 379-393. https://doi.org/10.21136/mb.2003.134003
[7] Estrada-Moreno, A., Ramrez-Cruz, Y., & Rodriguez-Velazquez, J. A. (2016). On the adjacency dimension of graphs. Appl. Anal. Discrete Math., 10(1), 102-127. https://doi.org/10.2298/aadm151109022e
[8] Fernau, H., & Rodriguez-Velazquez, J. A. (2014). Notions of metric dimension of corona products: combinatorial and computational results, in: Computer science theory and applications. Springer, Cham, Lect. Notes Comput. Sci., 84(1), 153- 166. https://doi.org/10.1007/978-3-319-06686-8 [9] Fernau, H., & Rodriguez-Velazquez, J. A. (2018). On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math., 23(6), 183-202. https://doi.org/10.1016/j.dam.2017.11.019 [10] Harary, F. (1969). Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London.
[11] Harary, F., & Melter, R. A. (1976). On the Metric Dimension of a Graph. Ars Combin., 2(1), 191-195.
[12] Haynes, T.W., Henning, M.A., & Howard, J. (2006). Locating and total dominating sets in trees. Discrete Appl. Math., 154(8), 1293-1300. https://doi.org/10.1016/j.dam.2006.01.002
[13] Iswadi, H., Baskoro, E.T., & Simanjuntak, R. (2011). On the metric dimension of corona product of graphs. Far East J. Math. Sci., 52(2), 155-170. http://pphmj.com/journals/fjms.htm
[14] Jannesari, M. (2023). On lower bounds for the metric dimension of graphs. J. Mahani math. res., 12(1), 35-41. https://doi.org/10.22103/jmmrc.2022.19121.1211
[15] Jannesari, M. (2024). Metric dimension of lexicographic product of some known graphs. J. Mahani math. res., 13(1), 269-277. https://doi.org/10.22103/jmmr.2023.20814.1384
[16] Jannesari, M., & Omoomi, B. (2012). The metric dimension of the lexicographic product of graphs. Discrete Math., 312(22), 3349-3356. https://doi.org/10.1016/j.disc.2012.07.025
[17] Jannesari, M. (2022). Graphs with constant adjacency dimension. Discrete Math. Algorithms Appl., 14(4), 1-12. https://doi.org/10.1142/s1793830921501342
[18] Johnson, M. (1993). Structure{activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Statist., 3(2), 203-236. https://doi.org/10.1080/10543409308835060
[19] Khuller, S., Raghavachari, B., & Rosenfeld, A. (1996). Landmarks in graphs. Discrete Appl. Math., 70(1), 217-229. https://doi.org/10.1016/0166-218x(95)00106-2
[20] Okamoto, F., Phinezy, B., & Zhang, P. (2010). The local metric dimension of a graph. Math. Bohem., 135(3), 239-255. https://doi.org/10.21136/mb.2010.140702
[21] Rodrguez-Velazquez, J. A., & Fernau, H. (2018). On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math., 236(1), 183-202. https://doi.org/10.1016/j.dam.2017.11.019 [22] Saenpholphat, V., & Zhang, P. (2004). Conditional resolvability in graphs: a survey. Int. J. Math. Math. Sci., 38(2), 1997-2017. https://doi.org/10.1155/s0161171204311403
[23] Sebo, A., & Tannier, E. (2004). On metric generators of graphs. Math. Oper. Res., 29(2), 383-393. https://doi.org/10.1287/moor.1030.0070
[24] Slater, P.J. (1975). Leaves of trees. Congr. Numer., 14(1), 549-559.
[25] Yero, I.G., Kuziak, D., & Rodriquez-Velazquez, J.A. (2011). On the metric dimension of corona product graphs. Comput. Math. Appl., 61(9), 2793-2798. https://doi.org/10.1016/j.camwa.2011.03.046 | ||
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 131 |