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Abstract. In this paper, we delve into the study of zero-divisor graphs

in rings equipped with an involution. Specifically, we focus on abelian
Rickart ∗-rings. Our investigation revolves around characterizing the di-

ameter of a zero-divisor graph in the context of the direct product S1⊕S2,

in relation to the diameters observed in the zero-divisor graphs of the con-
stituent ∗-rings S1 and S2.

Keywords: ∗-ring, Rickart ∗-ring, Zero-divisor graph.
2020 MSC : 16W10, 05C25.

1. Introduction

In 1988, Beck [6] embarked on a pioneering investigation into the intriguing
idea of coloring a commutative ring R by constructing its corresponding zero-
divisor graph. This graph, a simple graph, assigns vertices to the elements
of the ring R, where two distinct elements x and y are linked if and only if
their product xy equals zero. Beck’s focus primarily centered on establish-
ing connections between the clique number and the chromatic number of this
graph. Following Beck’s groundbreaking work, numerous scholars have been in-
spired to delve deeper into the intricate relationship between commutative rings
and their associated zero-divisor graphs. However, a significant advancement
came in 1999 when Anderson and Livingston [3] introduced a modification by
considering the zero-divisor graph whose vertices exclusively consisting of the
non-zero zero-divisors of the commutative ring. Furthermore, the exploration
of the zero-divisor graph of a commutative ring has been a subject of exten-
sive inquiry by several prominent researchers, including [1–4,9–13]. Expanding
beyond the realm of commutative rings, Redmond [14] in 2002 introduced and
scrutinized the concept of the zero-divisor graph for non-commutative rings.
Additionally, DeMeyer and Schneider extended this concept to semigroups in
their work [8].

Consider a graph G with vertex set V (G). The distance between any two
vertices u and v within G, denoted as d(u, v), represents the shortest path

� mnazim1882@gmail.com, ORCID: 0000-0001-8817-4336
https://doi.org/10.22103/jmmr.2024.23353.1639 © the Author(s)

Publisher: Shahid Bahonar University of Kerman
How to cite: M. Nazim, N. U. Rehman, S. A. Mir, Exploring the properties of the
zero-divisor graph of direct product of ∗-rings, J. Mahani Math. Res. 2024; 13(5): 11-20.

11

https://orcid.org/0000-0001-8817-4336
mailto:mnazim1882@gmail.com
https://orcid.org/0000-0003-3955-7941
https://orcid.org/0000-0003-4743-6859
https://doi.org/10.22103/jmmr.2024.23353.1639


12 M. Nazim, N. U. Rehman, S. A. Mir

length from u to v. If no such path exists, d(u, v) is assigned ∞. The diameter
of G, denoted diam(G), is the maximum distance observed among all pairs of
vertices: diam(G) = sup{d(u, v) : u, v ∈ V (G)}. A cycle in G refers to a closed
path, while the girth of G, denoted gr(G), signifies the length of the shortest
cycle within G. If G lacks cycles entirely, gr(G) is defined as ∞.

A graph earns the title of a complete graph when every vertex is directly
connected to all others. A complete graph with n vertices is denoted by Kn.
On the other hand, if a graph G can partition its vertex set into two distinct,
non-overlapping subsets U1 and U2 in such a manner that vertices u and v
are adjacent if and only if u ∈ U1 and v ∈ U2, then G is identified as a
complete bipartite graph. Specifically, a complete bipartite graph showcases
disjoint vertex sets, with sizes m and n respectively, denoted as Km, n. In
cases where one or both of the disjoint vertex sets are infinite, we denote the
graph as Kn, ∞ or K∞, ∞. Furthermore, a complete bipartite graph following
the pattern K1,n is often referred to as a star graph.

This paper centers on exploring the fundamental properties exhibited by zero-
divisor graphs associated with rings featuring involution. An associative ring
S is endowed with an involution, denoted by ‘∗,’ if it satisfies the conditions
(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ S. Such a ring,
equipped with the involution operation, is termed a ∗-ring. Notably, the identity
mapping qualifies as an involution if and only if the ring is commutative. In the
context of ∗-rings, an element e is deemed a projection if it satisfies e = e2 and
e = e∗. For a nonempty subset B of S, the right annihilator of B in S, denoted
r(B), comprises elements a ∈ S such that ba = 0 for all b ∈ B. A key concept
in the study of ∗-rings is that of Rickart ∗-rings, where every element’s right
annihilator is generated, as a right ideal, by a projection in S. It’s noteworthy
that every Rickart ∗-ring includes unity. For each element a within a Rickart
∗-ring, there exists a unique projection e satisfying ae = a and ax = 0 if and
only if ex = 0. This projection is referred to as the right projection of a,
denoted by RP (a). Specifically, r({a}) = (1 − RP (a))S. Analogously, the left
annihilator l({a}) and the left projection LP (a) are defined for each element
a within a Rickart ∗-ring S. Moreover, the set of projections P (S) within a
Rickart ∗-ring S forms a lattice, denoted by L(P (S)), under the partial order
‘e ≤ f if and only if e = fe = ef ’. Notably, the lattice operations are defined
as e ∨ f = f + RP (e(1 − f)) and e ∧ f = e − LP (e(1 − f)). Further insights
into Rickart ∗-rings can be found in Berberian [7].

Patil and Waphare [5] introduced a novel concept in the realm of ∗-rings,
defining the zero-divisor graph associated with such structures. Here is the
essence of their construction: Consider a ∗-ring S. They devised a graph that
encapsulates the structure of S, with vertices representing nonzero left zero-
divisors, defined as {x( 6= 0) ∈ S : xy = 0 for some nonzero y ∈ S}. Notably,
two distinct vertices x and y are connected in this graph if and only xy∗ = 0.
Termed as the zero-divisor graph of the ∗-ring S, this graph is symbolized by
Γ∗(S).
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In this paper, we have established a set of theorems that provide insights
into the diameter of the zero-divisor graph associated with the direct product
S1⊕S2, relative to the diameters of the zero-divisor graphs of S1 and S2. Here,
S1 and S2 represent ∗-rings, while S1 ⊕S2 forms a ∗-ring with componentwise
involution. Additionally, we have derived several properties concerning ∗-rings
whose zero-divisor graphs exhibit diameter-two characteristics.

2. Preliminaries

In [5], Patil and Waphare proposed an extension of the concept of zero-
divisor graphs for ∗-rings, which generalizes the traditional notion established
for commutative rings when the identity map is regarded as an involution.

Definition 2.1. Let S be a ∗-ring. We associate a simple undirected graph
Γ∗(S) to S whose vertex set is V ∗(Γ∗(S)), where V (Γ∗(S)) = {x ∈ S : xy = 0
for some nonzero y ∈ S} and V ∗(Γ∗(S)) = V (Γ∗(S)) \ {0} and two distinct
vertices x and y are adjacent if and only if xy∗ = 0.

Before starting the characterization of the diameter of direct product of ∗-
rings, we will collect some known results, which will be use in sequel. This
theorem due to Patil and Waphare [5], which gives a sufficient condition for
a∗ ∈ V ∗(Γ∗(S)) whenever a ∈ V ∗(Γ∗(S)).

Theorem 2.2. [5, Theorem 2.1] Let S be a left Artinian ∗-ring with unity
and a ∈ S. Then a ∈ V ∗(Γ∗(S)) if and only if a∗ ∈ V ∗(Γ∗(S)).

Now, we state a result which gives a characterization for Γ∗(S) to be com-
plete.

Theorem 2.3. [5, Theorem 2.2] Let S be a left Artinian ∗-ring with unity.
Then Γ∗(S) is complete if and only if either S = Z2 ⊕ Z2 or V ∗(Γ∗(S))2 = 0.

Theorem 2.4. [5, Proposition 3.3] Let S be an abelian Rickart ∗-ring. Then
Γ∗(S) is connected and diam(Γ∗(S)) ≤ 3.

We begin with the following lemma.

Lemma 2.5. Let S be a left Artinian abelian Rickart ∗-ring and diam(Γ∗(S)) =
1. Then (S)2 6= 0 implies S 6= V (Γ∗(S)).

Proof. Assume that diam(Γ∗(S)) = 1. Then Γ∗(S) is complete and hence
by Theorem 2.3, we get S = Z2 ⊕ Z2 or V (Γ∗(S))2 = 0. If S = Z2 ⊕ Z2,
then S 6= V (Γ∗(S)). On the other hand, assume that V (Γ∗(S))2 = 0 and
ifS = V (Γ∗(S)), then (S)2 = 0, a contradiction. �

As a component of our examination into the direct products of ∗-rings, we
found it beneficial to derive certain outcomes concerning diameter-two ∗-rings,
similar to those derived by Anderson and Livingston [3] for diameter-one rings.
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Lemma 2.6. Let S be a left Artinian abelian Rickart ∗-ring such that diam(Γ∗(S)) =
2 and V (Γ∗(S)) is a subring in S (not necessarily proper) of S. Then for all
a, b ∈ V (Γ∗(S)), there exists a nonzero c such that ac = bc = 0.

Proof. Let a, b ∈ V (Γ∗(S)). If either a = b = 0 or a = b, the proof is trivial, as
the condition diam(Γ∗(S)) = 2 guarantees the existence of the required element
c. Hence, we consider the scenario where a and b are distinct and nonzero. If a
and b are adjacent, meaning ab∗ 6= 0, then by the property diam(Γ∗(S)) = 2,
there must exist an element c ∈ V ∗(Γ∗(S)) such that ac∗ = bc∗ = 0. Thus, we
assume that a and b are nonadjacent that is, ab∗ = 0. Consider a+b and observe
that a+b 6= a and a+b 6= b. If a+b = 0 then a = −b and hence bb∗ = 0. Thus,
c = b∗ suffices. Therefore, we assume a+ b 6= 0. Since V (Γ∗(S)) is a subring of
S, we have a + b ∈ V ∗(Γ∗(S)). Also, we assume that aa∗ 6= 0 and bb∗ 6= 0 else
choose c = a∗ or c = b∗, respectively. Let P = {a′ ∈ V ∗(Γ∗(S)) : aa′ = 0} and
Q = {b′ ∈ V ∗(Γ∗(S)) : bb′ = 0}. Observe that b∗ ∈ P and a∗ ∈ Q, hence P and
Q are nonempty. If P ∩Q 6= ∅, then choose c ∈ P ∩Q. Assume P ∩Q = ∅ and
consider a+ b. Since aa∗ 6= 0 we have (a+ b)∗ /∈ P and similarly, (a+ b)∗ /∈ Q.
Since diam(Γ∗(S)) = 2, there exists d∗ ∈ P such that a − d − (a + b) is a
path in Γ∗(S). Then 0 = (a + b)d∗ = ad∗ + bd∗ = cd∗ and so d∗ ∈ Q, a
contradiction. �

This exploration into diameter-two graphs yields intriguing results that stand
on their own merit. Many of these results revolve around the characterization
of Γ∗(S) as either a complete bipartite graph or one that closely resembles it.

Lemma 2.7. Let S be an abelian Rickart ∗-ring and Γ∗(S)) be the zero-divisor
graph of S. If Γ∗(S)) does not manifest as a complete bipartite graph, yet
a complete bipartite subgraph can be derived by removing certain edges from
Γ∗(S), then V (Γ∗(S)) is a subring of S.

Proof. Let x, y ∈ V (Γ∗(S)). Clearly xy ∈ V (Γ∗(S)) and −x ∈ V (Γ∗(S)). Now,
we have to show that x + y ∈ V (Γ∗(S)). As edges can be selectively removed
from Γ∗(A) to create a complete bipartite graph, we can infer the existence
of nonempty sets U and U ′ satisfying the conditions U ∪ U ′ = V (Γ∗(S)),
U ∩ U ′ = ∅, and uv∗ = 0 for all u ∈ U, v ∈ U ′. If x ∈ U and y ∈ U , then
take v ∈ U ′. We have (x + y)v∗ = xv∗ + yv∗ = 0. Thus, x + y ∈ V (Γ∗(S)).
Likewise, for x ∈ U ′ and y ∈ U ′. Therefore, we may assume, without loss
of generality, that x ∈ U and y ∈ U ′. Since Γ∗(S) is not complete bipartite,
there exists an edge that does not connect a vertex of U to a vertex of U ′.
Let it lie between u1, u2 ∈ U . Then u1(y + u2)∗ = u1y

∗ + u1u
∗
2 = 0, so either

y + u2 = 0, y + u2 ∈ U ′, or y + u2 ∈ U . If y + u2 = 0, then 0 = y0 =
y(y+u2)∗ = yy∗+ yu∗2 = yy∗. So (x+ y)y∗ = xy∗+ yy∗ = 0 + 0 = 0 and hence
x + y ∈ V (Γ∗(S)). If y + u2 ∈ U ′, then 0 = x(y + u2)∗ = xy∗ + xu∗2 = xu∗2,
and hence (x + y)u∗2 = xu∗2 + yu∗2 = 0 + 0 = 0, that is, x + y ∈ V (Γ∗(S)). If
y + u2 ∈ U , then for any v ∈ U ′, we have 0 = (y + u2)v∗ = yv∗ + u2v

∗ = yv∗.
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Thus, (x + y)v∗ = xv∗ + yv∗ = 0 + 0 = 0. Therefore, x + y ∈ V (Γ∗(S)). This
completes the proof of the lemma. �

Utilizing the lemmas outlined above, we establish the following theorem,
which closely resembles Theorem 2.8 presented in [3] for zero-divisor graphs
with a diameter of two. This theorem serves as an analogue in the context of
diameter-two zero-divisor graphs.

Theorem 2.8. Let S be a left-Artinian abelian Rickart ∗-ring. If Γ∗(S) is not
complete bipartite but has a complete bipartite subgraph induced by removing
only edges from Γ∗(S), then for all a, b ∈ V (Γ∗(S)) there exists nonzero element
c in S such that ac = bc = 0.

Proof. By Lemma 2.7, V (Γ∗(S)) is a subring of S. We have to show that
V (Γ∗(S)) = V (V (Γ∗(S))). To prove this, let x ∈ V (Γ∗(S)). Then there
exists a nonzero y ∈ A such that xy = 0, that is, y∗x∗ = 0, which shows
that y∗ ∈ V (Γ∗(S)). Using Theorem 2.2, we have y ∈ V (Γ∗(S)) and hence
V (Γ∗(S)) = V (V (Γ∗(S))). If diam(Γ∗(V (Γ∗(S)))) = 1 then by Lemma 2.5,

V (Γ∗(S))
2

= 0 and the result is trivial. If diam(Γ∗(V (Γ∗(S)))) = 2 then
Lemma 2.6, yields the required result. �

3. Direct Product of ∗-Rings

Now, we are in a position to classifying the diameters of zero-divisor graph
of direct product of rings with involution.

Theorem 3.1. Let S1 and S2 be two left Artinian abelian Rickart ∗-rings such
that diam(Γ∗(S1)) = diam(Γ∗(S2)) = 1 and let S = S1⊕S2 with componentwise
involution. Then:

(i) diam(Γ∗(S)) = 1 if and only if (S1)2 = (S2)2 = 0.
(ii) diam(Γ∗(S)) = 2 if and only if (S1)2 = 0 and (S2)2 6= 0 or (S1)2 6= 0

and (S2)2 = 0.
(iii) diam(Γ∗(S)) = 3 if and only if (S1)2 6= 0 and (S2)2 6= 0.

Proof. (i) (⇐) Suppose that (S1)2 = (S2)2 = 0. Then x1x2 = 0 for all x1, x2 ∈
S1. Likewise, y1y2 = 0 for all y1, y2 ∈ S2. Thus, we get (x1, y1) · (x2, y2)∗ =
(x1x

∗
2, y1y

∗
2) = (0, 0) for all (x1, y1), (x2, y2) ∈ A, and hence diam(Γ∗(S)) = 1.

(⇒) Let diam(Γ∗(S)) = 1 and (S1)2 6= 0. Then there exist nonzero elements
x1, x2 ∈ S1 such that x1x2 6= 0. This shows that (x1, 0) · (x∗2, 0)∗ = (x1x2, 0) 6=
(0, 0) for (x1, 0), (x∗2, 0) ∈ V ∗(Γ∗(S)), and hence diam(Γ∗(S)) > 1, which is a
contradiction.

(ii) (⇐) Suppose that (S1)2 = 0 and (S2)2 6= 0 then by (i), diam(Γ∗(S)) > 1.
However, since (S1)2 = 0, there must exists a nonzero x ∈ S1 such that xy = 0
for all y ∈ S1. Let (x1, y1) and (x2, y2) be any two distinct vertices of Γ∗(S)
which are non-adjacent. Observe that, (x, 0) 6= (x1, y1) and (x, 0) 6= (x2, y2)
otherwise, (x1, y1) · (x2, y2)∗ = (0, 0). Thus, we have (x1, y1)− (x, 0)− (x2, y2)
is a path in Γ∗(S) and so diam(Γ∗(S)) ≤ 2. Hence, diam(Γ∗(S)) = 2.
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(⇒) Let (S1)2 = (S2)2 = 0. Then, by (i), we have diam(Γ∗(S)) = 1. Now,
suppose that (S1)2 6= 0 and (S2)2 6= 0, but diam(Γ∗(S)) = 2. Therefore by
Lemma 2.5, since (S1)2 6= 0, there must exists u ∈ S1 \ V (Γ∗(S1)). Likewise,
since (S2)2 6= 0 there must exist v ∈ S2 \ V (Γ∗(S2)). Let x ∈ V (Γ∗(S1)),
y ∈ V (Γ∗(S2)). Observe that, (u, y∗) and (x∗, v) are vertices of Γ∗(S) such
that (u, y∗) · (x∗, v)∗ = (ux, v∗y∗) 6= (0, 0). Since diam(Γ∗(S)) = 2, there must
be some (a, b) ∈ V ∗(Γ∗(S)) such that (u, y∗)−(a, b)−(x∗, v) is a path in Γ∗(S).
Thus, ua∗ = x∗a∗ = 0, which gives a = 0, and y∗b∗ = vb∗ = 0, we have b = 0.
Consequently, (a, b) = (0, 0), leads to a contradiction. Hence, it must be the
case that either (S1)2 = 0 and (S2)2 6= 0 or (S1)2 6= 0 and (S2)2 = 0.

(iii) Result follows from (i) and (ii). �

Theorem 3.2. Let S1 and S2 be left Artinian abelian Rickart ∗-rings such that
diam(Γ∗(S1)) = 1, diam(Γ∗(S2)) = 2 and let S = S1 ⊕S2 with componentwise
involution. Then:

(i) diam(Γ∗(S)) 6= 1.
(ii) diam(Γ∗(S)) = 2 if and only if S1 = V (Γ∗(S1)) or S2 = V (Γ∗(S2)).

(iii) diam(Γ∗(S)) = 3 if and only if S1 6= V (Γ∗(S1)) and S2 6= V (Γ∗(S2)).

Proof. (i) Since diam(Γ∗(S2)) = 2, there exist y1, y2 ∈ V ∗(Γ∗(S2)), y1 6= y2,
such that y1y

∗
2 6= (0, 0). This means that (0, y1) · (0, y2)∗ = (0, y1y

∗
2) 6= (0, 0)

for (0, y1), (0, y2) ∈ V ∗(Γ∗(S)). Therefore, diam(Γ∗(S)) > 1.
(ii) (⇐) Assuming S1 = V (Γ∗(S1)), let x1 ∈ V ∗(Γ∗(S1)). According to

Lemma 2.5, (x∗1, 0) annihilates any elements of V (Γ∗(S)), implying diam(Γ∗(S)) ≤
2. However, from (i), we know diam(Γ∗(S)) > 1, necessitating diam(Γ∗(S)) =
2. Now, suppose S2 = V (Γ∗(S2)). If (x1, y1) and (x2, y2) are distinct ele-
ments of V ∗(Γ∗(S)) and (x1, y1) · (x2, y2)∗ 6= (0, 0). According to Lemma 2.6,
there exists a nonzero y3 such that y1y3 = y2y3 = 0. Notably, (0, y∗3) cannot
be equal to (x1, y1) or (x2, y2); otherwise, (x1, y1) · (x2, y2)∗ = (0, 0). Thus,
(x1, y1)− (0, y∗3)− (x2, y2) forms a path in Γ∗(S), leading to diam(Γ∗(S)) ≤ 2.
Consequently, as per (i), diam(Γ∗(S)) = 2.

(⇒) Assume that S1 6= V (Γ∗(S1)) and S2 6= V (Γ∗(S2)) but diam(Γ∗(S)) =
2. Let x ∈ V (Γ∗(S1)), y ∈ V (Γ∗(S2)), u ∈ S1 \ V (Γ∗(S1)) and v ∈ S2 \
V (Γ∗(S2)). Since diam(Γ∗(S)) = 2, there must exist (a, b) ∈ V ∗(Γ∗(S)) such
that (x, v)(a, b)∗ = (u, y) · (a, b)∗ = 0. Then xa∗ = ua∗ = 0 so a = 0, and
vb∗ = yb∗ = 0, so b = 0. Therefore, (a, b) = (0, 0), which is not an element of
V ∗(Γ∗(S)), leads to a contradiction.

(iii) Proof follows from (i) and (ii). �

Theorem 3.3. Let S1, S2 be left Artinian abelian Rickart ∗-rings such that
diam(Γ∗(S1)) = 1, diam(Γ∗(S2)) = 3 and let S = S1 ⊕S2 with componentwise
involution. Then:

(i) diam(Γ∗(S)) 6= 1.
(ii) diam(Γ∗(S)) = 2 if and only if S1 = V (Γ∗(S1)).

(iii) diam(Γ∗(S)) = 3 if and only if S1 6= V (Γ∗(S1)).
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Proof. (i) Since diam(Γ∗(S2)) = 3, there must exist y1, y2 ∈ V ∗(Γ∗(S2)), y1 6=
y2 with y1y

∗
2 6= 0. This means that (0, y1) · (0, y2)∗ = (0, y1y

∗
2) 6= (0, 0), for

(0, y1), (0, y2) ∈ V ∗(Γ∗(S)), it follows that diam(Γ∗(S)) > 1.
(ii) (⇐) Let S1 = V (Γ∗(S1)). Then by Lemma 2.5, (S1)2 = 0 that is

x1x2 = 0 for all x1, x2 ∈ S1. Let (x1, y2), (x2, y2) ∈ V ∗(Γ∗(S)) such that
(x1, y1) · (x2, y2)∗ 6= (0, 0). Thus y1y

∗
2 6= 0 and so, y1 6= 0 and y2 6= 0. It

is clear that (x1, y1) − (x1, 0) − (x2, y2) is a path in Γ∗(S), and hence by (i),
diam(Γ∗(S)) = 2.

(⇒) Assume that S1 6= V (Γ∗(S1)) but diam(Γ∗(S)) = 2. Let u ∈ S1 \
V (Γ∗(S1)). Since diam(Γ∗(S2)) = 3, there are distinct y1, y2 ∈ V ∗(Γ∗(S2)),
with y1y

∗
2 6= 0 and there is no y3 ∈ V ∗(Γ∗(S2)), such that y1y

∗
3 = y2y

∗
3 = 0.

Since (u, y1) · (u, y2)∗ = (uu∗, y1y
∗
2) 6= (0, 0), and diam(Γ∗(S)) = 2, there must

be some (a, b) ∈ V ∗(Γ∗(S)) such that (u, y1) · (a, b)∗ = (u, y2) · (a, b)∗ = 0.
Thus, ua∗ = 0, so, it gives that a = 0. Hence, we must have b ∈ V ∗(Γ∗(S2))
such that y1b

∗ = y2b
∗ = 0, giving b = 0, a contradiction.

(iii) Proof follows from (i) and (ii).
�

Theorem 3.4. Let S1 and S2 be left Artinian abelian Rickart ∗-rings such that
diam(Γ∗(S1)) = diam(Γ∗(S2)) = 2 and let S = S1 ⊕ S2 with componentwise
involution. Then:

(i) diam(Γ∗(S)) 6= 1.
(ii) diam(Γ∗(S)) = 2 if and only if S1 = V (Γ∗(S1)) or S2 = V (Γ∗(S2)).

(iii) diam(Γ∗(S)) = 3 if and only if S1 6= V (Γ∗(S1)) and S2 6= V (Γ∗(S2)).

Proof. (i) Since diam(Γ∗(S1)) = 2, so there must exist x1, x2 ∈ V ∗(Γ∗(S1)),
x1 6= x2 with x1x

∗
2 6= 0. This means that (x1, 0) · (x2, 0)∗ = (x1x

∗
2, 0) 6= (0, 0),

for (x1, 0), (x2, 0) ∈ V ∗(Γ∗(S)), and hence diam(Γ∗(S)) > 1.
(ii) (⇐) Without loss of generality, let S1 = V (Γ∗(S1)). Then by Lemma

2.6, for all x1, x2 ∈ V (Γ∗(S1)), there exists a nonzero x3 ∈ S1 such that x1x3 =
x2x3 = 0. So, for any (x1, y1), (x2, y2) ∈ V ∗(Γ∗(S)), there exists (x∗3, 0) ∈
V ∗(Γ∗(S)) such that (x1, y1) · (x∗3, 0)∗ = (x2, y2) · (x∗3, 0)∗ = (0, 0). If, without
loss of generality, (x2, y2) = (x∗3, 0), then we have (x1, y1) · (x2, y2)∗ = (0, 0).
Thus, diam(Γ∗(S)) ≤ 2 and hence by (i), it must be that diam(Γ∗(S)) = 2.
Similarly, if S2 = V (Γ∗(S2)), then diam(Γ∗(S)) ≤ 2 and hence again by (i)
diam(Γ∗(S)) = 2.

(⇐) Assume that S1 6= V (Γ∗(S1)), S2 6= V (Γ∗(S2)) and diam(Γ∗(S)) = 2.
Let x ∈ V (Γ∗(S1)), y ∈ V (Γ∗(S2)). Then, there must exist m ∈ S1\V (Γ∗(S1))
and n ∈ S2\V (Γ∗(S2)). Consider the vertices (x, n), (m, y) of Γ∗(S). Since
(x, n) · (m, y)∗ = (xm∗, ny∗) 6= (0, 0) and diam(Γ∗(S)) = 2, there exists (a, b) ∈
V ∗(Γ∗(S)) such that (x, n) · (a, b)∗ = (m, y) · (a, b)∗ = (0, 0). Then, ma∗ =
nb∗ = 0, this implies that (a, b) = (0, 0), a contradiction.

(iii) The result follows from (i) and (ii). �
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Theorem 3.5. Let S1,S2 be left Artinian abelian Rickart ∗-rings such that
diam(Γ∗(S1)) = 2, diam(Γ∗(S2)) = 3 and let S = S1 ⊕S2 with componentwise
involution. Then:

(i) diam(Γ∗(S)) 6= 1.
(ii) diam(Γ∗(S)) = 2 if and only if S1 = V (Γ∗(S1)).

(iii) diam(Γ∗(S)) = 3 if and only if S1 6= V (Γ∗(S1)).

Proof. (i) The proof follows a similar structure to that of Theorem 3.4 (i)
(ii) (⇐) Equivalent to the proof of Theorem 3.4 (ii)
(⇒) Assume S1 6= V (Γ∗(S)), but diam(Γ∗(S)) = 2. Let u ∈ S1 \V (Γ∗(S1)).

Since diam(Γ∗(S2)) = 3, there must exist y1, y2 ∈ V ∗(Γ∗(S2)), y1 6= y2, y1y
∗
2 6=

0 such that there is no y3 ∈ V ∗(Γ∗(S2)) with y1y
∗
3 = y2y

∗
3 = 0. Consider

elements (u, y1) and (u, y2) of V ∗(Γ∗(S)). Since (u, y1)·(u, y2)∗ = (uu∗, y1y
∗
2) 6=

(0, 0) and diam(Γ∗(S)) = 2, there must exist some (a, b) ∈ V ∗(Γ∗(S)) such that
(u, y1) · (a, b)∗ = (u, y2) · (a, b)∗ = (0, 0). Then ua∗ = 0, so it must be that
a = 0. Also, we must have b ∈ V ∗(Γ∗(S2)) such that y1b

∗ = y2b
∗ = 0. Which

is a contradiction, since we assume that no such b exists.
(iii) By (i) and (ii). �

Theorem 3.6. Let S1,S2 be left Artinian abelian Rickart ∗-rings such that
diam(Γ∗(S1)) = diam(Γ∗(S2)) = 3 and let S = S1 ⊕ S2 with componentwise
involution. Then diam(Γ∗(S)) = 3.

Proof. Since diam(Γ∗(S1)) = 3, there must exist x1, x2 ∈ V ∗(Γ∗(S1)), x1 6= x2

with x1x
∗
2 6= 0 and there is no x3 ∈ V ∗(Γ∗(S1)) such that x1x

∗
3 = x2x

∗
3 = 0.

Likewise, there must exist y1, y2 ∈ V ∗(Γ∗(S2)), y1 6= y2 with y1y
∗
2 6= 0 and there

is no y3 ∈ V ∗(Γ∗(S2)) such that y1y
∗
3 = y2y

∗
3 = 0. Consider elements (x1, y1)

and (x2, y2) of V ∗(Γ∗(S)). Since (x1, y1) · (x2, y2)∗ = (x1x
∗
2, y1y

∗
2) 6= (0, 0),

that is, diam(Γ∗(S)) > 1. If diam(Γ∗(S)) = 2, then there must exist some
(a, b) ∈ V ∗(Γ∗(S)) such that (x1, y1) · (a, b)∗ = (x2, y2) · (a, b)∗ = (0, 0). Then
x1a
∗ = x2a

∗ = 0, follows that a = 0. Also, it must be that b ∈ V ∗(Γ∗(S2)),
such that y1b

∗ = y2b
∗ = 0, giving b = 0, a contradiction. Hence, we must have

diam(Γ∗(S)) = 3. �
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