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Abstract. In this paper, we use the double counting method to find
some upper bounds for the independence number of a simple graph in

terms of its order, size and maximum degree. Moreover, we determine

extremal graphs attaining equality in upper bounds. In addition, some
lower bounds for the energy of graphs in terms of their size and maximum

degree and the number of odd cycle, are determined.
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1. Introduction

Let G be a simple graph with vertex set V = {v1, v2, . . . , vn}. The number
of adjacent vertices with the vertex vi is called its degree and it is denoted by
d(vi); the maximum number between vertex degrees of G is called its maximum
degree which we denote by ∆ = ∆(G). A vertex with degree one is called a
pendant vertex and a vertex of degree zero is called an isolated vertex. A graph
G is called connected if for all distinct vertices x and y, there exists at least one
path from x to y; otherwise, it is said that G is disconnected. Any maximal
connected subgraph of G is called a connected component; and, the number of
these components is denoted by c(G).

The adjacency matrix of G, denoted by A = A(G) is a square matrix of
order n whose diagonal entries are zero and the ijth entry with i 6= j equals
the number of edges between vi and vj . Since G is a simple graph, A is
a symmetric matrix with entries 0 and 1. So, all of its eigenvalues are real
numbers. In algebraic graph theory, the set of these eigenvalues are sorted
non-increasingly and it is said to be the spectrum of G, denoted by Spec(G).
Also, if λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A, then the energy of G is
considered as:

E(G) =

n∑
i=1

|λi|.
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It may be worthy to mention that Gutman in 1978 [3] was the first researcher
that introduced the notion of the energy of graphs; however, the authors in [5]
have studied many properties of the energy of graphs.

An induced subgraph of G on X ⊆ V , denoted by G[X] is a subgraph whose
vertex set is X and for any two distinct vertices x, y ∈ X, xy is an edge of G[X]
if and only if it is an edge of G. A subset S ⊆ V of vertices of G is called an
independent set if the induced subgraph on S contains no edge. In addition, the
independence number of G is the size of the largest independent set of G and
here, we denote by α = α(G). If the vertex set of G can be partitioned in to two
disjoint independent sets, then we say that G is a bipartite graph. If moreover,
every vertex of one part is joined to every vertex of the other part, it is said
that G is a complete bipartite graph. It is well-known that bipartite graphs are
graphs with no odd cycles. Here, for any graph G, we denote the number of
odd cycles in G by co(G). So, it is clear that G is a bipartite graph if and only if
co(G) = 0. In this article, by k-connected graph, we mean k-vertex-connected
graph. For more details about basic notations and definitions, see [2, 7].

The independence number is one of the most applicable parameters in graph
theory. This concept is used in other fields of science such as Computer science,
Biology, Engineering, Chemistry, Network Security, Coding theory, Operation
research and Social sciences. Understanding the properties and applications
of the independence number is very important for solving diverse real-world
problems such as optimizing resource allocation, analyzing social networks and
etc. Moreover, there is a relation between the independence number of a graph
with its other parameters, say the clique number, the chromatic number, the
vertex cover number, the domination number. Therefore, these reasons mo-
tivates any graph theorist to study the independence number of graphs. On
the other hand, we know that the problem of determining the independence
number of a general graph is NP-hard. Hence finding upper bounds for the
independence number can be very important and useful.

In this article, we present some upper bounds for α and investigate when the
equalities hold. Moreover, we prove some results about the energy of graphs.

2. Bounds for the independence number and the energy of
graphs

First we start with the following known upper bound for independence num-
ber α of graphs. This result has been proved for k-independence number in [4]
for graphs with diameter at least k + 1. Here, we will use the double count-
ing technique to prove it. Also, a condition is found under which the equality
holds.

Theorem 2.1. If G is a connected n-vertex graph (n ≥ 2) with independence
number and maximum degree, α and ∆, respectively, then

(1) α ≤ n∆

∆ + 1
.
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Also, the equality holds if and only if α = ∆ = n− 1.

Proof. Let A be an independent set of G with |A| = α and let H be a subgraph
of G, induced on V \A. Put

F = {e = xy| e is an edge of G, x ∈ V (H) and y ∈ A}.

Since A is an independent set, any edge have an end in H. By hypothesis, G
contains no isolated verex and so,

|F | ≥ |A| = α(2)

Moreover, one can easily check that

|F | ≤ (n− α)∆.(3)

Combining (2) with (3), we have

α ≤ n∆

∆ + 1
.(4)

Also, it is clear that α = n∆
∆+1 if and only if the following three statements hold:

(a) The equality in (3) yields that any vertex of H has maximum degree;
(b) There is no edge between vertices of H;
(c) From the equality in (2), we deduce that any vertex, belonging to A, is

adjacent to one (no more) vertex of the subgraph H; and so, α = |F |.
Now, the connectivity of G implies that G satisfies all of the above three con-
ditions if and only if G ∼= βK1,α, for some β. Therefore, α = n∆

∆+1 only when
α = ∆ = n− 1. �

From the proof of Theorem 2.1, one can conclude that equality α = n∆
∆+1

holds only for star graphs. Next, we need a new notation. By ca(G), we mean
the minimum number of the connected components of the subgraphs G \ A,
when A changes on the maximum independent subsets of G.

Example 2.2. Let G be a refinement of a star of order n (a graph whose one
of its vertices is adjacent to any other of vertices). Then ∆ = n− 1 and from
Theorem 2.1, we deduce that 1 ≤ α(G) ≤ n − 1. The lower bound is attained
if and only if G is a complete graph. Also, α(G) = n − 1 if and only if G is
a star graph. About complete r-partite graph Kn1,n2,...,nr

with n1 ≥ · · · ≥ nr,
we have α ≤ n n1

n1+1 ; in particular, for the complete bipartite graph Kn1,n2
with

n1 ≥ n2, we have α = n1 ≤ nn1

n1+1 and the equality holds if and only if n2 = 1.

Theorem 2.3. For any n-vertex graph G with n ≥ 3, we have the following
upper bound for the independence number,

α ≤ n(∆− 2) + 2ca(G)

∆− 1
.
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Proof. Choose any maximum independent set A of G and let H = G\A. Let F
be the set of edges between V (H) and A. Now, we apply the double counting
principle, for the set F . Since A is an independent set and G is a connected
graph,

|F | ≥ |A| = α(5)

On the other hand,

|F | =
∑
v/∈A

(dG(v)− dH(v)) =
∑
v/∈A

dG(v)−
∑
v/∈A

dH(v)

≤ (n− α)∆− 2|E(H)|
≤ (n− α)∆− 2(n− α− c(H))

= (n− α)(∆− 2) + 2c(H).(6)

From the above two nonequalities, we conclude that

α ≤ n(∆− 2) + 2c(H)

∆− 1
.(7)

Now, let A be a maximum independent set such that c(H) = ca(G). Then we
have

α ≤ n(∆− 2) + 2ca(G)

∆− 1
,(8)

as desired. �

Next, we state an immediate consequence of the previous theorem.

Corollary 2.4. Let G be a connected graph which has no isolated vertex. Also,
assume that G contains a maximum independent set A such that the induced

subgraph on V \A is a connected graph. Then α ≤ n(∆−2)+2
∆−1 .

Proof. The assertion follows from the hypothesis (the existence of A) and the
Nonequality (8). �

Remark 2.5. It is clear that ∆ ≤ n − 1. Adding (n∆2 + ∆ − 2n∆) to both
sides of this inequality and rearranging all phraces, we have n∆(∆−2) + 2∆ ≤
n(∆− 1)2 + ∆− 1 and so,

n(∆− 2) + 2

∆− 1
≤ n(∆− 1) + 1

∆
.

So, we deduce that the upper bound for the independence number in Corollary
2.4 is better than that of Brog’s upper (see [1]).

Recall that a graphG is called a split graph if its vertex set can be partitioned
into a clique and an independent set. It is clear that the complement of a split
graph is a split graph, too.
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Example 2.6. If G is a split graph whose vertex set has been partitioned to
the clique C and the independent set A. Then any maximum independent set
of G is of the form A ∪ C ′ with C ′ ⊂ C and it is clear that G − (A ∪ C ′) is

a connected graph. So, by Corollary 2.4, α ≤ n(∆−2)+2
∆−1 . In particular, if G

is the join of a complete graph Kr and a null graph Ks, then every vertex of
C is adjacent to any vertex of A and hence α = s which is not greater than
n(∆−2)+2

∆−1 = (r+s)(r+s−3)+2
r+s−2 .

Theorem 2.7. Let G be a connected graph with m edges and it contains no
isolated vertex. Then we have

α ≤ n+ ∆−
1 +

√
(2∆− 1)2 + 8m

2
.

In addition, the equality holds if and only if G is a star graph.

Proof. Let A be a maximum independent set of G and H = G \ A. We count
the number of edges of H by using double counting. It is clear that H is a
subgraph of Kn−α and so,

(9) |E(H)| ≤ (n− α)(n− α− 1)

2

On the other hand, since the induced subgraph G[A] is an empty graph and G
contains no vertex of degree zero, so

|E(H)| = m− |F |,(10)

where F is the set of edges between A and V (H). If we use a proof similar to
that of Theorem 2.1, we have

|F | =
∑

v∈V (H)

(dG(v)− dH(v)) =
∑

v∈V (H)

dG(v)−
∑

v∈V (H)

dH(v)

=
∑

v∈V (H)

dG(v)− 2|E(H)|

≤ (n− α)∆.(11)

Now, we use the above two inequalities to deduce that:

|E(H)| ≥ m− (n− α)∆.(12)

Then we use (9) with (12), to obtain the following quadratic inequality:

α2 − (2n+ 2∆− 1)α+ n2 + (2∆− 1)n− 2m ≥ 0.(13)

Therefore, one of the following inequalities holds:

α ≥
2n+ 2∆− 1 +

√
(2∆− 1)2 + 8m

2
;

α ≤
2n+ 2∆− 1−

√
(2∆− 1)2 + 8m

2
.
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Since α ≤ n− 1, the first inequality does not hold. So,

(14) α ≤ n+ ∆−
1 +

√
(2∆− 1)2 + 8m

2
.

Also, the equality in (14) holds if and only if all of the inequalities before it
turn into equalities, this yields the following two staements:

(a) H ∼= Kn−α, by (9);
(b) By (11), H is an empty graph and every one of its vertices is adjacent

with ∆ vertices in A.

Hence, the equality holds if and only if G is a star graph. �

From Theorems 2.1 and 2.7, one can easily deduce the following consequence.

Corollary 2.8. For any connected graph G with n vertices, m edges, maximum
degree ∆, we have

α(G) ≤ min

{⌊
n∆

∆ + 1

⌋
,

⌊
n+ ∆−

1 +
√

(2∆− 1)2 + 8m

2

⌋}
.

Now, some bounds for the energy of graphs are presented. Before this, we
recall the following theorem from Wang and Ma [6] which gives a lower bound
for the energy.

Theorem 2.9. ( [6, Theorem 4.2]) For any graph G, we have E(G) ≥ 2α −
2co(G). If moreover, G is a bipartite, then E(G) ≥ 2α.

Using Theorems 2.7 and 2.9, we have the following proposition which deter-
mines another lower bound for E(G).

Proposition 2.10. For any graph G, the following lower bound for energy
holds:

E(G) ≥
√

(2∆− 1)2 + 8m− 2(∆ + co(G)) + 1.

If moreover, G contains no odd cycle, then

E(G) ≥
√

(2∆− 1)2 + 8m− (2∆− 1).

Finally, by using Theorem 2.3 and Corollary 2.10, we determine a new lower
bound for the energy of disconnected graphs.

Corollary 2.11. If G is a graph which may be disconnecred, then

E(G) ≥ 2(n− α− co(G)) ≥
√

(2∆− 1)2 + 8m− 2(∆ + co(G)) + 1.

3. Conclusion

The independence number of a graph is one of the most important and
applicable parameters in graph theory and it has many applications in diverse
fields of mathematics, biology and engineering. It has a crucial role in solving
real-world problems such as social networks, marketing, optimizing resource
allocation, resource allocation, protein folding. But since the problem of finding



Independence number in graphs and its upper bounds – JMMR Vol. 14, No. 1 (2025) 405

independence number of a graph is NP-hard, we are looking for bounds for it. In
this paper, some upper bounds in terms of the order, the size and the maximum
degree are studied. also, lower bounds for the energy of graphs are presented.
In future work, we try to find bounds for the special families of graphs and
then we will use them to prove useful bounds for the energy of graphs.
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