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ABSTRACT. Let C = gCR be a (faithfully) semidualizing bimodule. This
paper begins with the introduction of the concepts of C-fpn-injective
R-modules and C- fpp-flat S-modules. Subsequently, we investigate var-
ious properties associated with classes of modules characterized by C-
fpn-injective and C- fp,-flat dimensions. For instance, we explore Foxby
equivalence and the existence of preenvelopes and covers in relation to
these classes of modules. Finally, we analyze the exchange properties
of these classes and the connections between preenvelopes (or precovers)
and Foxby equivalence, particularly within the context of almost excellent
extensions of rings.
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1. Introduction

The notion of fp,-injective (resp. fp,-flat) modules was introduced by Wei
and Zhang in [18] as a generalization of fp-injective and F P,-injective (resp.
fp-flat and FP,-flat) modules, where fp-injective and fp-flat modules were
studied by Garkusha and Generalov in [8], and also F'P,-injective and FP,,-
flat modules were introduced by Bravo and Pérez in [2]. The extension of the
concept of a semidualizing module to a pair of general associative rings was
made by Holm and White, in [13]. Also, they studied Auslander and Bass
classes under a semidualizing bimodule, and then the notions of C-flat, C-
projective, and C-injective modules were introduced. Here, C = gCp stands
for a semidualizing bimodule. Recently, some the homological results about
relative injective and flat modules according to semidualizing bimodules have
been proved, see [11,13,19]) for more details.

In [19], Wu and Gao studied the notion of C-F P,-injective (resp. C-FP,-
flat) modules. They investigated Foxby equivalence in relation to these mod-
ules, proved that the classes FZ¢(R) and FF&(S) are preenveloping and cover-
ing, where FZ7(R) and FF&(S) are the classes of C-F P, -injective R-modules
and C-FP,-flat S-modules.
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In Section 2, we state some required concepts and results. For example,
the definitions of fp-injective, fp-flat, F'P,-injective, F'P,-flat, fp,-injective,
fpn-flat, C-F P,-injective, and C-F P,,-flat modules provide motivation for the
definition of C-fp,-injective and C-fp,-flat modules as common generaliza-
tions of these concepts. It is noteworthy that this approach enables us to deal
with several important concepts on homological theory comprehensively. So,
in Section 3, we introduce and review the concepts of C- fp,-injective (resp. C-
fpn-flat) modules as a common generalization of modules of the classes FZ¢ (R)
and WZI¢(R) (resp. FF&(S) and WF(S)), where WZe(R) and WF(S)
are considered as a class of C-weak injective R-modules and C-weak flat S-
modules. Then we obtain some results of homological relationships between
the classes fpnI(S)Sk; fpnF(R)Ska CfpnI(R)§k7 CfpnF(S)Ska AC(R)v and
Bc(S), where these classes are the class of S-modules with fp,-injective di-
mension at most k, the class of R-modules with fp,-flat dimension at most
k, the class of R-modules with C-fp,-injective dimension at most k, the class
of S-modules with C-fp,-flat dimension at most k, Auslander class, and Bass
class under faithfully semidualizing bimodules C, respectively. Then, using
these results, we investigate Foxby equivalence relative to the theses classes, see
Theorem 3.9. Also, we prove that the classes Cfp,I(R)<x and Cfp, F(S)<k
are preenveloping and covering, see Theorem 3.17.

Section 4 considering faithfully semidualizing module C' is devoted to the
exchange properties of these classes, as well as preenvelopes, precovers and
Foxby equivalence, under change of rings, see Theorems 4.7, 4.8 and 4.17.
Section 5 is dedicated to the conclusion.

2. Preliminaries

Throughout, n is a positive integer, R and S are two fixed associative rings
with units. all R- or S-modules are understood to be unital left R- or S-
modules (unless specified otherwise). ¢Mp is used to denote that M is an
(S, R)-bimodule which means that M is both a left S-module and a right R-
module, and these structures are compatible. Also, right R- or S-modules are
considered as left modules over the rings R°P? and S°P?. We use Mod R or Mod
S as a class of left R- or S-modules.

Definition 2.1. ( [2,10]) An R-module M is finitely n-presented if there is an
exact sequence

P,—P,4— - —FP— —P—F—M-—0,

where each P; is a finitely generated free R-module for all0 <i < n. FP,(R) is
considered as a class of all finitely n-presented R-modules. In casen =0,n =1
and n = oo, FPo(R), FP1(R) and FPo(R) are classes of all finitely gener-
ated, finitely presented and super finitely presented R-modules, respectively. A
ring R is n-coherent if FP,(R) C FPn11(R).
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Definition 2.2. ([2,9,24]) An R-module M is F P, -injective or (n,0)-injective
(resp. FP,-flat or (n,0)-flat) whenever Exth(D, M) = 0 (resp. Torl (D, M) =
0) for any D € FP,(R) (resp. FPn(R?)), and in case n = oo, M is weak
injective (resp. weak flat). The symbols (resp. FPp-Flat(R)) and WI(R)
(resp. WF(R)) are classes of these modules, respectively.

Definition 2.3. ( [18]) An R-module M is fp,-injective (resp. fp,-flat) when
for every exact sequence 0 — K1 — Ky with K1, Ky € FP,(R) (resp.
FPn(RP)), the induced sequence Hompg(K;, M) — Hompg(Ke, M) — 0
(resp. 0 — K1 @r M — Ko @p M) is exact. fp,I(R) (resp. fpnF(R)) is
considered as a class of these modules.

By [2, Proposition 1.7(1)], FP,-Inj(R) C fpmI(R) (resp. FP,-Flat(R) C
fpmF(R)) for any m > n. But the opposite is not true, see Example 3.3.

Definition 2.4. ( [11])

(i) An (S, R)-bimodule C = sCg is semidualizing when the following con-
ditions hold:

(a1) C € FP«(S);

(a2) C € FPo(RP);

(b1) The homothety map sy : sSs — Homper (C,C) is an isomor-
phism;

(b2) The homothety map yr : rRRr — Homg(C,C) is an isomor-
phism;

(¢) Ext(C,C) =0 = Exth., (C,C) for alli> 1.

A semidualizing bimodule sCg is faithfully semidualizing whenever Homg(C,Y) =

0 (resp. Homper (C, X) =0), thenY =0 (resp. X = 0) for every mod-

ule gY (resp. Xgr).

(i) The Auslander class Ac(R) (resp. Bass class Bo(S) ) with respect to
C consists of all R-modules A (resp. S-modules B) such that for all
i>1
(Ay) Torf(C,A) =0 (resp. Exts(C,B) =0);

(As) Exts(C,C ®g A) =0 (resp. Tor(C,Homg(C, B)) =0);

(A3) The natural evaluation homomorphism pa : A — Homg(C,C®pr
A) (resp. vp : C ®g Homg(C, B) — B) is an isomorphism of
R-modules (resp. S-modules).

By ( [13, Proposition 4.1]), we have the following equivalence:

COr—
Ac(R) ~ Be(S)
Homg (C,—)

Definition 2.5. ( [19]) An R-module M is C-F P, -injective if M = Homg(C, X)
for some X € FP,-Inj(S). An S-module N is C-FP,-flat if N = C QgrY for
some Y € FP,-Flat(R). In case n = 0o, M € WIZc(R) and N € WF(S).
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Definition 2.6. Suppose that Y = --- ﬁ) P £> Py ﬂ> U —0is a

projective resolution of U in Mod R. Then )Y is said to be Y-finitely presented
when U, Ker(f;) € FP1(R) for any ¢ > 0.
There are examples of V-finitely presented, see Example 3.5(ii).

The following proposition is similar to Proposition 7.2 and Remark 4 from
[13], but for non-commutative rings.

Proposition 2.7. The following assertions are true.
(i) A€ Ac(R) if and only if A* € Bo(RP);
(ii) B € Bc(R) if and only if B* € Ac(R°P).

Definition 2.8. The fp,-injective dimension of an S-module M is defined
such that fp,.idg(M) < k when there is an exact sequence

0—M —1Iy—LH— - — 1,1 — I, —0

in Mod S, where I; € fp,I(S) for all 0 < i < k. Also, the fp,-flat dimension
of an R-module N is defined such that fp,.fdgr(IN) < k when there is an exact
sequence

0—Jp — Jpg —> - —J1 — Jog—> N — 0

in Mod R, where J; € fp,F(R) for all 0 <14 < k. Set fp,.ids(M) = oo (resp.
fpnfdr(N) = 00) if no such k exists.

fon-ids(M) < 0 if and only if M € fp,I(S), and fp,.fdg(N) < 0 if and
only if N € fp,F(R).

In the next lemma under a faithfully semidualizing bimodule C' = ¢Cg, we
show that fp,I1(S)<k C Be(S) and fp,F(R)<k C Ac(R).

Lemma 2.9. The following assertions are true.

(i) fral(S)<i € Be(S);
(i) fpnF(R)<i € Ac(R).

Proof. (i). First, we prove that for k = 0, fp,I(S) € WI(S). Consider, Y-
finitely presented Y = -+ — P — Pj_; — - — P — Ph — U — 0
in Mod S. Then we have 0 — Ky — Py — U — 0, where Ko, Py,U €
FPn(R). Soif I € fp,I(S), then Homg(Py,I) — Homg(Ko,I) — 0 is
exact. Hence Extg (U, I) = 0, and then I € WZ(S). Consequently, fp,I(S) C
B (S) from [11, Theorem 2.2]. So for M € fp,I(S)<y we have

0O—M —Iy—§ —- — I — I, —0,

where I; € Be(S) for all 0 < ¢ < k. Therefore by [13, Corollary 6.3], M €
B (S).
(ii). Assume that N € fp,F(R)<j. Then we have

00— Jy —Jyo1 — - —J) — Jp — N —0,
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where J; € fp,F(R) for all 0 < i < k. Hence by [17, Lemma 3.53], we have
0—N*"—J] —J — - — J_1 — J; —0,
where J € fp,I(R°P) for all 0 < i < k from [18, Proposition 2.4(2)]. By

(i), JF € Be(R°P), and then from [13, Corollary 6.3] and Proposition 2.7, we
deduce that N* € Bo(R°) if and only if N € Ac(R). 0

3. Modules with C-fp,-injective and C- fp,-flat dimensions

First, we have the following definition under a (faithfully) semidualizing
bimodule C' = gCg.

Definition 3.1. An R-module M is C-fp,-injective if M = Homg(C, X) for
some X € fp,I(S). An S-module N is C-fp,-flat if N = C @r Y for some
Y € fpoF(R). We set

Cfp,I(R) = {Homs(C, X) : X € fpnI(S)}

and
Cfp,F(S)={C@rY :Y € fp,F(R)}.

Remark 3.2. (i) FI&(R) C CfpmI(R) (resp. FFH(S) € CfpnF(S))
for any m > n (see [2, Proposition 1.7(1)]). But not conversely, see
(Example 3.3);

(i) Cfpul(R) C CfpmI(R) (vesp. Cfp,F(S) C CfpmF'(S)) for any m >

n, and so we have
CfpI(R) C CfpI(R)C--- CCfp,I(R) CCfp, I(R)C---
and

Cfp,F(S) C Cfp,F(S)C - CCfp,F(S) CCfp,1F(S)C -+

(i1i)) M € CfpsoI(R) (resp. CfpoF(S)) if and only if M € WZ(R) (resp.
WFc(5)).

Recall that a ring R is said to be an (n,0)-ring or n-regular ring when every
R-module in FP,(R) is projective (see [15,24]).

Example 3.3. Suppose that K is a field, F is a K-vector space with infinite
rank, and A is a Noetherian ring of global dimension 0. Suppose also that B =
K x F is the trivial extension of K by F and R = A x B is the direct product
of A and B. By [15, Theorem 3.4(3)], R is a (2,0)-ring which is not a (1,0)-
ring. Thus, for every M in Mod R and every L € FPy(R), Exty(L, M) = 0
(resp. Torf(L, M) = 0). Hence M € FPy-Inj(R) (resp. FPy-Flat(R)), and
so M € fpaI(R) (resp. fp2F(R)). On the other hand, there is an R-module
which is not in FP;-Inj(R) (resp. FP;i-Flat(R)), since if every R-module is in
FP1-Inj(R) (resp. FP1-Flat(R)), [24, Theorem 3.9] implies that R is a (1,0)-
ring, which is a contradiction. Therefore, if C = R = S, then every R-module
is in CfpoI(R) and CfpaF(R), and there exists an R-module which is not in
FIH(R) (resp. FF&(R)).
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Definition 3.4. Let C = sCg be a faithfully semidualizing bimodule. The C'-
fpn-injective dimension of an R-module M is defined such that C fp,, idr(M) <
k when there is an exact sequence

0—M —1Iy—LH— - — 11— I, —0

in Mod R, where I; € Cfp,I(R) for all 0 < i < k. Also, the C-fp,-flat
dimension of an S-module N is defined such that C fp, fds(N) < k when there
is an exact sequence

00— Jy —Jyoy — - —>J1 — Jg— N —0

in Mod S, where where J; € C fp, F(S) for all 0 <i < k. Set Cfp,.ids(M) =
oo (resp. Cfpnfdr(N) = 00) if no such k exists.

Cfppidr(M) < 0 if and only if M € Cfp,I(R), and Cfp,.fds(N) < 0 if
and only if N € Cfp,F(S).

The finitely presented dimension of an R-module A is defined as f.p.dimz(A) =
inf{n | there is an exact sequence P,;; - P, —» -+ > P; 2Py > A -0
in Mod R, where P; is projective for all 0 < ¢ < n+ 1, and P,, P41 €
FPo(R)}. So f.p.dim(R) = sup{f.p.dimg(A) | A€ FPo(R)}. w.gldim(R)
and gl.dim(R) are the weak global dimension and global dimension of a ring R,
respectively. Also, aring R is said to be an (a, b, ¢)-ring, whenever w.gl.dim(R) =
a, gl.dim(R) = b and f.p.dim(R) = ¢ (see [16]).

Example 3.5. Let Ry = k[[z1, 22, x3, 24]] be the ring of power series in 4 inde-
terminates over a field k and that R is a valuation ring with global dimension
4.

(i) From [1, Example 2.2], R = Ry ® Ry is (4,4, 5)-ring and coherent. So,
w.gl.dim(R) = gl.dim(R) = 4, and then for every M in Mod R, we have
0—M-—Ip— I — I, — I3 — D — 0,where I; € fp,I(R)
and injective for all 0 < ¢ < 3. One easily gets that D € fp,I(R).
Therefore if C = R =S, we deduce that Cfp,.idr(M) < 4. Similarly,
it follows that C fp,.fdr(M) < 4;

(i) From (i), f.p.dim(R) = 5, and hence there is U € FPy(R) such that
f.p.dimp(U) = 5. Thus, we have a projective resolution of U

Ps— P —P—P3—PFP,—P — Ph—U—0,

where Ps, Ps € FPo(R). Also, since R is coherent, it follows that
K, :=Im(Ps — Py) is Y-finitely presented.

e Up to the end of the section, C is a faithfully semidualizing bimodule.

Lemma 3.6. The following assertions are true.

(1) Cipnl(R)<k € Ac(R);
(ii) CfpnF(S)<k € Ba(S).
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Proof. (i). Let N € Cfp,I(R). Then N = Homg(C,X) for some X €
fonI(S). By Lemma 2.9(i), X € Be(S) and so N € A¢(R) from [11, Lemma
2.9(1)]. Now, if M € Cfp,I(R)<k, then we have

0O—M —Iy—1 —- - — I}y — I, — 0,

where each I; € Cfp,I(R) and each I; € A¢(R) for all 0 < ¢ < k. Hence
by [13, Corollary 6.3], M € Ac(R).
(ii). The proof is similar to the first part. O

In the following, we investigate Foxby equivalence relative to the classes
CfpnI(R) and Cfp,F(S) as a generalization of Foxby equivalence relative to
the classes FZ7(R) and FF&(S) in [19].

Proposition 3.7. We have the following equivalences:

CQOr—
(7') CfpnI(R)Sk ~ fpnI(S)Sk ;
Homg(C,—)
C®r—

(i) fpnF(R)<k ~ CfpnF(S)<y .
Homg (C,—)

Proof. (i). Assume that M € Cfp,I(R)<j. Then, we have
0—M —Iy—1 — - — L1 — I, — 0,

where I; € Cfp,I(R) for all 0 < i < k. Thus, I; = Homg(C, X) for some
X € fppI(S). By Lemma 2.9(i), X € B¢(S), and then C® gHomg(C, X) & X.
So C ®r I; € fp,I(S) and also from Lemma 3.6(i), I; € Ac(R), and so
Tor?(C, I;) = 0 for all j > 1. By Lemma 3.6(i), M € Ac¢(R) and hence
Tor?(C, M) =0 for all j > 1. Therefore, we obtain

00— CRrM — CRrly — CRprl1 — -+ — CRprlr_1 — CRgrlp — 0,

which shows that C @ g M € fp,I(S)<k. Now, assume that N € fp,I(S)<k.
Then we have
0—N-—Ij— I — - — 1, — I —0,

where I! € fp,I(S) for all 0 <4 < k. Forall 0 <i <k, from Lemma 2.9(i),
I; € Bco(S), and so Extg(C,I]) = 0 for all j > 1. Also, by Lemma 2.9(i),
N € Bc(S) and hence Ext’(C, N) = 0 for all j > 1. Therefore, we obtain the
exact sequence

0 — Homg(C, N) — Homg(C, I)) — - -+ — Homg(C, I;,_;) — Homg(C, I},) — 0

in Mod R which shows that Homg(C,N) € Cfp,I(R)<i. Note that, if M €
CfpnI(R)<k, then from Lemma 3.6(1), M € Ac(R), and if N € fp,I(S)<k,
then by Lemma 2.9(i), N € Bc(S). Hence we have the natural isomorphisms
M = Homg(C,C ®r M) and C ® g Homg(C,N) = N.

(ii). The proof is similar to the first part. O
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Corollary 3.8. We have the following equivalences:
C®Rr—

Homg (C,—)

CO®r—
Homg (C,—)

Proof. Put k =0 in Proposition 3.7. ]

By using Lemma 3.6, Proposition 3.7, and Corollary 3.8, we get the first
main result of this section.

Theorem 3.9. (Foxby Equivalence) We have the following equivalences:

C®r—
Homg (C,—)

CORr—
fpnF(R)Sk ~ OanF(S)gk
M Homg(C,—) &

CRQr—
Ac(R) e Be(S)

Homg(C,—)

u C®r— JJ
Cfpnl(R)<k ~ frnl(S)<k
Homg (C,—)

), C®r— o
OfpnI(R) ~ fpnI(S)'
Homg(C,—)

Corollary 3.10. Let M be in Mod R and N be in Mod S. Then the following
assertions are true.

(i) M € Cfp,I(R)<y if and only if M € Ac(R) and CQrM € fp,I(S)<k;

k
(ii) N € Cfp,F(S)<k if and only if N € Bc(S) and Homg(C,N) €
fpnF(R)Sk
Proof. (i). (=) This follows from Lemma 3.6(i) and Theorem 3.9.

(<) It M e Ac(R) and C ®r M € fp,I(S)<k, then M = Homg(C,C ®g
M) and, by Theorem 3.9, Homg(C,C ®r M) € Cfp,I(R)<i. Thus M €
CfpnI(R)Sk.

(ii). The proof is similar to the first part. O

Corollary 3.11. Let X be in Mod S andY be in Mod R. Then the following
assertions are true.

(i) Homg(C, X) € Cfp,I(R)<k if and only if X € fp,I(S)<k;
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(i) C®rY € CfpoF(S)<k if and only if Y € fp,F(R)<k.

Proof. (i). Assume that Homg(C,X) € Cfp,I(R)<k. Then, by Corollary
3.10(i), Homg(C, X) € Ac(R). Thus, from [11, Lemma 2.9(1)], X € Bc(S)
and hence C ®r Homg(C, X) = X. Therefore X € fp,I(S5)<i by Theorem
3.9.

(ii). The proof is similar to the first part. O

We denote the character module of M by M* := Homyz(M,Q/Z) [17, Page
135].

Proposition 3.12. Suppose that M is in Mod R and N is Mod S. Then the
following assertions are true.

(i) M € Cfp I(R)<y if and only if M* € Cfp, F(R) <y

(Z’L) N e CfpnF(S)Sk if and only if N* € CfpnI(S"p)Sk.

Proof. (i). We argue by induction on k. Assume that k = 0. (=). Assume that
M € CfppI(R). Then M = Homg(C, X) for some X € fp,I(S). From [18,
Proposition 2.4(1)], X* € fp,F(S°P). Thus M* € Cfp, F(R°P) because M* =
Homg(C, X)* & C ®gor X* by [17, Lemma 3.55 and Proposition 2.56]. (<)
Now, assume that M* € Cfp,F(R°). Then, from Corollary 3.10(ii), M* €
Bc(R°P) and Hompger (C, M*) € fp, F(S°P). Also, by [17, Proposition 2.56 and
Theorem 2.76], (C ®r M)* = Hompger (C, M*) and so C®r M € fp,I(S) from
[18, Proposition 2.4(1)]. Since M* € Bo(R°P), M* =2 C®gor Hompor (C, M*) =
C ®gor (C®r M)* =2 Homg(C,C ®g M)* from [17, Proposition 2.56, Theorem
2.76, and Lemma 3.55]. Hence M = Homg(C,C ®p M) by [17, Lemma 3.53].
Thus M € Cfp,I(R).

Suppose that & > 0 and that k—1 is settled. Assume that M € C fp,I(R)<s.
Then we have the exact sequence

0—M—I—L—0,
where I € Cfp,I(R) and L € Cfp,I(R)<k—1. Since I* € Cfp,F(R°P), and
by [17, Lemma 3.53],
0 —L" —I"— M"—0

is an exact sequence in Mod R°P, we deduce that M € Cfp,I(R)<y if and
only if L € C'fp,I(R)<k—1 if and only if L* € C fp, F(RP)<k—1 if and only if
M* € CfpnF(RP)<y.

(ii). The proof is similar to the first part. O

Corollary 3.13. Suppose that M is Mod R and N is Mod S. Then the fol-
lowing assertions are true.

(i) M € Cfp,I(R)<k if and only if M** € Cfp,I(R)
(ii) N € Cfp,F(S)<k if and only if N** € Cfp,F(S)

Proof. This is followed by Proposition 3.12. g

ks

<
<k-

Proposition 3.14. The following assertions are true.
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(i) The class Cfp,I(R)<y is closed under direct summands, direct prod-
ucts, and direct sums;

(i) The class C fp,F(S)<y is closed under direct summands, direct prod-
ucts, and direct sums.

Proof. (i). Assume that M € Cfp,I(R)<), and M’ is a direct summand of
M. Then, by Corollary 3.10(i), M € Ac(R) and C g M € fpnI(S)<k, and
also there is M” in Mod R such that M = M’ & M”. From [13, Proposition
4.2(a)], it follows that M’ € Ac(R). Also, by [17, Theorem 2.65], we have
CRrM=(C®rM)®(C®rM") which shows from [18, Proposition 2.3(1)]
that C @g M’ € fp,I(S)<k. Thus M’ € Cfp,I(R)<) by Corollary 3.10(i).
Now, assume that {M;};cs is a family in Cfp,I(R)<k. Then, by Corollary
3.10(i), M; € Ac(R) and C®r M; € fp,I(S)<y for all j € J. Hence, from [13,
Proposition 4.2(a)], [[;c; M; € Ac(R) (resp. B;c; M; € Ac(R)). Also, we
have

0—)C®RMj—)Ioj—)Ilj—)'”—)]'k,lj—).[kj—)O,

where I;; € fp,I(S) for all 0 <7 < k. So

O—>H(C®RMJ)—> HI()]‘ —>"~—>ka_1j — Hij_)O
JjeJ jeJ jeJ jeJ

is an exact sequence, where by [18, Proposition 2.3(1)], [;c; lij € fpnI(S) for
all 0 <i <k, and so [[;,(C ®r M;) € fpnI(S)<k. Similarly, @,c,(C ®r
M;) € fpnI(S)<k. Since C' € FPi(R), from [4, Lemma 2.10(2)] we have
C@r ([lje; M;) =11;e,(C®r M;), and then C®r ([1;c; M;) € fral(S)<k-
Also, C ®r (Bj;c; M;) € fpnl(S) by [17, Theorem 2.65]. Thus [[;.; M; €
Cfpnl(R)<k (resp. D;c; M; € Cfppl(R)<k) by Corollary 3.10(i).

(ii). By using [17, Theorem 2.30 and Corollary 2.32] and [4, Lemma 2.9],
the proof is similar to the first part. O

jeJ

Suppose that F is a class of R-modules and that M is in Mod R. A morphism
f:F — M (resp. f: M — F) with F € F is said to be an F-precover
(resp. F-preenvelope) of M when Hompg(F', F) — Hompg(F’', M) — 0 (resp.
Homp(F, F') — Homp(M,F’) — 0) is exact for all F' € F. Assume that
f:F — M (resp. f: M — F) is an F-precover (resp. JF-preenvelope) of
M. Then f is said to be an F-cover (resp. F-envelope) of M whenever every
morphism g : F — F such that fg = f (resp. gf = f) is an isomorphism. The
class F is said to be (pre)covering (resp. (pre)enveloping) if each R-module has
an F-(pre)cover (resp. F-(pre)envelope) (see [6, Definitions 5.1.1 and 6.1.1]).

A duality pair over R is a pair (M, N'), where M is a class of Mod R and
N is a class of Mod R°P, subject to the following conditions:

(i) For M in Mod R, one has M € M if and only if M* € N;
(i) N is closed under direct summands and finite direct sums.
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A duality pair (M, N) is said to be (co)product-closed when M is closed under
(co)products in the category of all R-modules (see [12, Definition 2.1]).

Corollary 3.15. (Cfp,I(R)<k, CfpnF(R?)<i) and (Cfp,F(S)<k, Cfrn(S°P)<k)
are duality pairs.

Proof. From Proposition 3.12, M € Cfp,I(R)<y (resp. Cfp,F(S)<g) if and

only if M* € Cfp,F(RP)<i) (resp. Cfp,I(S°?)<y). Also, by Proposition

3.14, Cfpp F(RP)<y (resp. CfpnI(S°)<y) is closed under direct summands

and direct sums. Thus the assertions follow. U

We say that Y < X is a pure R-submodule of X, X/Y is a pure quotient of
X, and X is a pure extension of Y and X/Y if

0—AQRY — ArX — A®RrX/Y —0
is an exact sequence for every A in Mod R°P, equivalently, if
0 — Homp(B,Y) — Hompg(B, X) — Hompg(B,X/Y) — 0

is an exact sequence for every B € FP;(R) [6, Definition 5.3.6].
The next corollary shows that Cfp,I(R) and Cfp,F(S) are also closed
under pure submodules, pure quotients, and pure extensions.

Corollary 3.16. Suppose that Y < X is a pure R-submodule (resp. S-
submodule) of X. Then the following assertions are true.
(i) X € Cfp,I(R) if and only if Y € Cfp,I(R) and X/Y € Cfp,I(R);
(i) X € Cfp, F(S) if and only if Y € Cfp,F(S) and X/Y € Cfp,F(S).
Proof. The assertion is followed by Corollary 3.15 and [12, Theorem 3.1]. O

In the second main result of this section, by the use of duality pairs, we show
that C fp,I(R)<y and C fp, F(S)<} are preenveloping and covering.

Theorem 3.17. The classes C fp,I(R)<k and C fp,F(S)<y are preenveloping
and covering.

Proof. By Corollary 3.15, it is clear that (Cfp,I(R)<k, CfpnF(RP)<) and
(CfpnF(S)<k, Cfpnl(S°)<y) are duality pairs. Also, from Proposition 3.14,
the classes C' fp,I(R)<y and C fp, F(S)<y are closed under direct products and
direct sums. Therefore, from [12, Theorem 3.1], the classes C fp,I(R)<y and
CfpnF(S)<k are preenveloping and covering. O

4. C-fpp-injective and C-fp,-flat dimension of modules with
respect to change of rings

In this section, we consider, R = S and we assume that S >Risa unitary
ring extension. The ring S is said to be right R-projective, [21,23] in case,
for any Mg in Mod S" with an Ng in Mod S, Ng | Mg implies Ny | Mg,
where N | M means N is a direct summand of M. 5" is said to be a finite
normalizing extension of R when there are elements a1, - ,a, € S" such that
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ap =1, S" = Raj + - + Ra,. A finite normalizing extension S > R is said
to be an almost excellent extension in case S is flat, S;Q is projective, and
the ring S s right R-projective. An almost excellent extension S > Ris an
excellent extension in case both RS/ and S;% are free modules with a common
basis {a1, - ,an}.

In this section, we investigate modules of Cfp,I(R)<; and also, modules
of Cfp,F(R)<k under an almost excellent extension of rings, where C is a
faithfully semidualizing R-module. Throughout this section, S° > R is an

almost excellent extension.
Lemma 4.1. The following assertions are true.

(i) If X € fpuI(R)<, then Hompg (S, X) € fp.I(S )<

(ZZ) IfX S fpnF(R)Sk; then (S XRRr X) S fpnF(S )Sk'
Proof. (i). Counsider, the exact sequence 0 — K7 — Ko, where K71, Ks €
.77)”(51). By [20, Theorem 5|, K1, K5 € FP,(R). If k =0, then X € fp,I(R).
We prove that Hompg(S', X) € fp,I(S’). We have the commutative diagram

Homg (Ko, Homp(S', X)) — Hom g/ (K1, Hompg (S, X))

l% lg

Hompg (Ko, X) Homp (K, X) —0,

and so, the sequence
Homg (K5, Homg (S, X)) — Homg (K1, Homg(S', X)) — 0

is exact and hence Hompg (S, X) € fpaI(S').
Now, let X € fp,I(R)<k. Then we have

0— X —=>Xo— X3 — - — X —0,

where X; € fp,I(R) for all 0 < i < k. Since S;% is projective, there is an exact
sequence

0 — Homp(S', X) — Homp(S , Xo) —> - -+ — Homp(S', X3) — 0

in Mod S’, where HomR(Sl,XZ-) € fpnI(S,) for all 0 < i < k. So, it follows
that Homp(S', X) € fpnI(S )<

(ii). By Definition 2.8 and [18, Proposition 2.4(1)], it follows that for YV’
in Mod R, Y € fpol(R)<y if and only if Y* € fp,F(R%)<y and Y €
fonF(R)<y if and only if Y* € fp,I(R°P)<;. Thus if X € fp,F(R)<g, then
X* € fpn(R°P)<y. Hence by (i) and [17, Proposition 2.56 and Theorem 2.76],
(8" ®@p X)* = Homp(S',X*) e fpnI(SlOp)Sk, and therefore (S ®r X) €
fpnF(Sl)Sk~ 0

Lemma 4.2. Suppose that C is a (faithfully) semidualizing in Mod R. Then
CorS isa faithfully semidualizing S-module.
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Proof. By [5, Lemma 3.4], C ®p S is a semidualizing in Mod S". Assume that
Homg (C ®r S N) =0 for a N in Mod S". Then 0 = Homg (C ®r S N)
Homp(C, Homg (S, N)) 2 Homg(C, N), and so N = 0. O

Proposition 4.3. The following assertions are true.

(i) If M € Cfp,I(R)<k, then Homp(S', M) € (C @r S") fpal(S ) <k;

(i) If M € Cfp,F(R)<y, then (S @r M) € (C®r S)fpnF(S )<k

Proof. (i). Assume that M € Cfp,I(R)<k. If k =0, then M = Hompg(C, X)
for some X € fp,I(R). We have

Homp(S', M) = Homg(S ,Homg(C, X))
~ Hompg(C ®gr S/,X)
=~ Hompz(C ®r S @y S, X)
= Homg (C ®r S’ Hom(S', X)).

Since by Lemma 4.1, HomR(S/,X) € fpnI(S/) and by Lemma 4.2, C ®r S
is semidualizing S'-module, we deduce that Homg (C ®r S’ Hom(S', X)) €
(C @r S ) fpul(S). Therefore Homg(S', M) € (C ®r 8" )fpaI(S'). Also, if
M € Cfp,I(R)<p, it simply follows that Homg(S", M) € (C®rS ) fpnl(S )<k

(ii). The proof is similar to the first part. O

In the following, we give equivalent conditions for modules of C fp,I(R)<k
and also, modules of Cfp, F(R)<) under almost excellent extension of rings.

Proposition 4.4. Suppose that M s in Mod S". Then the following assertions
are equivalent:

(i) M € Cfpul (R)<i; , ,
(ii) Homp(S ,M) € (C®r S )fpnl(S )<k;
(iii) M € (C®r S ) fral(S )<k

Proof. (i)=(ii). This follows from Proposition 4.3(i).

(ii)=(iii). By [21, Lemma 1.1], ¢» M is isomorphic to a direct summand of
S"-module Homp(S", M). Then by (2) and Proposition 3.14(i), M € (C ®g
S/)fpnI(Sl)Sk-

(iii)= (i). Assume that k = 0. Then M € (C ®r S )fp.I(S), and so
M = Homg (C®pr S, X) for some X € fp,I(S’). We have M = Homg (C ®r
S", X) = Hompg(C, Homg (S, X)) = Hompg(C, X). We show that X € fp,I(R).
Assume that 0 — K; — K> is an exact sequence in Mod R, where K1, K €
FP,(R). Since S is a flat R-module, we have that 0 — K1®rS — Ky®pS'
is an exact sequence in Mod S’ where K1 @ S, K1 @r S € an(S/) by [20,
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Lemma 4]. We have the commutative diagram

Homg (Ky ®p S', X) — Homgy (K3 ®p S, X) —=0

im lg

Homp(K2, X) Homp(K7, X).

So, the sequence Homp(Ks, X) — Homp(K;,X) — 0 is exact, and then
X € fpuI(R). Therefore, we get M € Cfp,I(R). Also, if M € (C ®g
SYfpnI(S )<y, it simply follows that M € C fp,I(R)<. O

Proposition 4.5. Suppose that M is Mod S". Then the following assertions
are equivalent:

(i) M € Cfp,F(R)<k;

(ii) (8" @r M) € (CORS ) fpnF (S )<k

(iti) M € (C@r S ) fpaF(S )<k
Proof. By Propositions 4.4 and 3.12 and [17, Proposition 2.56 and Theorem
2.76], M € Cfp,F(R)<y if and only if M* € Cfp,I(R°?)<j if and only if
Hompg (S, M*) € (C @r S ) fpnl (S 7)<k if and only if (S' @z M)* € (C ®g
S) oI (S )<k if and only if (S ©@r M) € (C ®r S')fpnF(S )<k. Also,
M € Cfp,F(R)<y if and only if M* € Cfp,I(R°?)<y if and only if M* €
(C@r S ) pal(S" )<y if and only if M € (C &g S) fpaF(S )<k 0

Corollary 4.6. Suppose that R is an n-coherent ring. Then the following
assertions are true.
(i) The class (C@RrS") fpnl(S )<k is closed under extensions and cokernels
of monomorphisms;
(ii) The class (CRRrS ) fpnF (S )<y is closed under extensions and kernels
of epimorphisms.
Proof. (i). Consider, the exact sequence 0 — A — B — C' — 0 in Mod
S’ where A,C € (C ®r S/)fpnI(S')Sk. Then by Proposition 4.4, A,C €
CfpnI(R)<k. So by Remark 3.2(ii) and [19, Theorem 4.9], B € Cfp,I(R)<p,
and then B € (C®g S) fpnl(S )<k from Proposition 4.4. Similarly, if B, C €
(C@r S ) fpul(S )<k, then A€ (C®r S ) fpal(S )<k
(ii). The proof is similar to the first part by using Proposition 4.5 and [19,
Theorem 4.8]. O

Theorem 4.7. The class (C ®p S/)fpnI(SI)S;€ is preenveloping and precov-
ering.

Proof. Assume that M is in Mod S". We show that M has a (C®rS") fpnl(S )
preenvelope. Since M is Mod R, then by Theorem 3.17, M has a C' fp, [ (R)Sk
preenvelope. Assume that R-homomorphism ao: M — N is a C fpn (R)S
preenvelope of M. So by Proposition 4.3(1), Homg(S", N) € (C®rS ) fpnI(S )<k
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We prove that a Aps : M — Hompg(S', N)isa (C®rS") fpal(S ) <k-preenvelope
of $'-module M, where \y; : M —s Hompg (S , M) and a, : Homp(S', M) —
Hompg(S',N). If L € (C ®r 8)fpul(S )<k, and B : M — L is an S'-
homomorphism, then by Proposition 4.4, L € Cfp,I(R)<k, and so there is
an R-homomorphism v : N — L such that 8 = ya. Thus, we have the
following commutative diagram:

Anm
o M Homp (S, M) —~ Homp(S', N)
M
B lﬁ* \Ll
AL ’ ’
gL Homp(S', L) Homp(S',N)

L Ve

So, we have (mpv.)(asAy) = WL(’y*a*))\/M = 7p(ya) Ay = ’/TL/(ﬁ AN =
mALB = B. Therefore, we get that every S -module M hasa (C®QgrS ) fpnl(S )<k-
preenvelope. Similarly, (C ®pg ,S',)f’pnI(S/)S;~C is precovering. O

Theorem 4.8. The class (C Qg S/)fpnF(S’/)S;C is preenveloping and precov-
ering.

Proof. Assume that M isin Mod S". We prove that M has a (C®gS") fpnF (S )<-
preenvelope. Since M is in Mod R, then by Theorem 3.17, M hasa C fp, F'(R)<-
preenvelope. Assume that R-homomorphism «: M — N is a C fp, F (R)S;;—
preenvelope of M. Then by Proposition 4.3(2), (S @rN) € (C®rS ) fpnF(S )<k
We show that (S, Qra)ly : M — S @r N is a (C ®gr S,)fpnF(S,)Sk—
preenvelope of S'-module M, where Iy : M — (S' @z M) and S' ®p a :
S'@rM — S @r N.IfL € (C®rS)fpaF(S )< and f: M — L is an
Sl—homomorphism, then by Proposition 4.5, L € Cfp,F(R)<y, and so there

is an R-homomorphism v : N — L such that 8 = ya. Thus, we have the
following commutative diagram:

Las S,®Ra

S/M S/ Qr M Sl Qr N
TMm
B lSI®R5 ll
lL ' '
gL S ®pr L - S ®r N
TL S ®rvy

Thus, we have TL(S/ QR 'y)(S/ ®ra)ly = TL(S/ ®prya)ly = TlB = B, and
so every S'-module M has a (C ®g Sl)fpnF(Sl)Sk—preenvelope. Similarly,
(C®r S,)fpnF(S/)Sk is precovering. O

Corollary 4.9. The following assertions are equivalent:
(i) Every S -module has a monic (C @ S") fpnI(S")<k-cover;
(ii) Every S’ " module has an epic (C®r Sl)fpnF(S/Op)gk-preenvelope;
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(iii) Every quotient in (C @ ") fpnl(S )<k is in (C®r S ) fpnl(S )<k;
(iv) Every submodule 0f(C’®RSl)fpnF(Slop)§k isin (C’®RS/)fpnF(S,Op)

<k-

Moreover, if R is an n-coherent ring, then the above conditions are also equiv-
alent to:

(v) The kernel of any C fp,I(R)<y-precover of any R-module is in C fp,I(R)<k;
(vi) The cokernel of any C fp, F(R°P)<k-preenvelope of any R°P-module is
n CfpnF(Rop)Sk-

Proof. (i)« (iii). We first prove that (C®gS' ) fpnI(S )<} is closed under direct
sums. Assume that {M;};cs is a family in Mod S" such that every M; €
(C®r Sl)fpnI(S/)Sk. Then by Proposition 4.4, M; € Cfp,I(R)<, and then
by Proposition 3.14(1), @,c; M; € Cfpal(R)<k, and hence by Proposition
4.4, P, M;j € (Cor S")fpnI(S")<i. Therefore [7, Proposition 4] shows that
(i) and (iii) are equivalent.

(ii)<(iv). The proof is similar to that of (i)«<(iii) by using Propositions
3.14(ii), 4.5 and [3, Theorem 2.

(iii)=-(iv). Assume that N € (C’®RS')fpnF(S'Op)§k and N’ is a submodule
of N. From the short exact sequence

0— N — N— N/N —0,
we get the short exact sequence
0— (N/N)* — N* — NT —o.

By Propositions 4.5 and 3.12(ii), N € Cfp,F(R)<y, if and only if N* €
CfpnI(R)<y if and only if N* € (C ®r 8')fpnl(S )<k. Then by (iii) and
Proposition 4.4, N € (CorS ) fpal(S )< if and only if N e CfpnIl(R)<k,
and consequently by Propositions 3.12(i) and 4.5 , N' € Cfp, F(R?)<}, if and
only if N' € (C®g S ) fpaF (S ™) <i. Similarly, (iv)=>(iii) is also proved.

(1)=(v). Assume that M is in Mod S~ and that, by Theorem 4.7, f : F —
Misa (C®gS ) fpnl(S )<i-precover of M. Assume also that g : E — M is
amonic (C®g S ) fpnl(S")<p-cover of M. Then [6, Lemma 8.6.3] implies that
Ker(f)® E = F. By Proposition 4.4, F € C fp,I(R)<k, and so by Proposition
3.14(i), Ker(f) € CfpaI(R)<p.

(ii)=(vi). The proof is similar to that of (i)=(v) by using the dual of [6,
Lemma 8.6.3].

(vi)=(iv). Assume that N € (C ®g Sl)fpnF(S/Op)gk and that N is a
submodule of N. Assume also that, by Theorem 4.8, f : N — Fisa (C®gr
Sl) fonF(S /op)g g-preenvelope of N ". Then we have the following commutative
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diagram

N’ L>F—>Coker(f) —0

0—>N —=N

with exact rows. In particular, the sequence
0— N —s F — Coker(f) — 0

is exact, and then by Remark 3.2(ii) and Corollary 4.6(ii), N’ € (C®zS ) fpaF (S ™) <.
(v)=>(iii). The proof is similar to that of (vi)=-(iv) by using Corollary 4.6(i).
O

In the next proposition, we investigate the homological behavior of Auslan-
der and Bass classes under almost excellent extension of rings.
Proposition 4.10. The following assertions are true.

(i) If A€ Ac(R), then (S' ®r A) € Apg, ¢ (S);
(ii) If B € Bo(R), then Homp(S', B) € Beg ¢ (S).

’

Proof. (i). There exists an exact sequence in Mod R
o— Py — P — P4 — - — P — P —C—0,

where for all j > 0, P; € FPy(R) and free . Since A € Ac(R), we have the

exact sequence
o — Pii1®pA—Pj®rA— - — Ph®rA—CrA—0,

in Mod R and since S is flat R-module, we have the commutative diagram

S ®r (Pj+1 ®r A) S @r (C®rA) — 0

: :

(Pis1 ®r S )@y (S ®rA) —> - ——> (C@r S ) @y (S ®r A) —0,

and so Tor;9 (C ®r S5 &g A) =0 for any j > 0.
On the other hand, C ®g A € Bo(R) by [13, Proposition 4.1]. Thus we have

0 —)HOIHR(C,C(X)R A) — —>H0mR(Pj+1,C®RA) — e,
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and hence by [17, Lemma 4.86], we have the commutative diagram:

0—>Sl ®RH0mR(C’,C’®R A) S, ®r HomR(Pj+1,C®RA)
O—>HomR(C,Sl ®r (C ®r A)) HomR(Pj+1,S/ ®r (C®r A))

0——=>Homy (C®r S ,(COrS )y (S @A) —> - ——>Homy (Pj+1 @r S ,(COr S ) @y (S @r A)).
Hence Exté,(C’ @rS ,(C®rS) Dy (S @r A)) =0, and also
S @rA=S @rHomp(C,CRrA) =~ Homg (CRRS ,(CRRS )Ry (S @rA)).
Therefore (S’ ®r A) € Acg, s ().
(ii). Assume that B € Bo(R). Then by Proposition 2.7(ii), B* € Ac(R°P).
So (S"®per B*) € Ac@ por s’ (5" by (i). By [20, Theorem 5], S is in P (R),
and so [17, Lemma 3.55] implies that Hompges (S, B)* € Acspons’ (S'Op). Con-
sider, Y-finitely presented Y = --- — P — Py — C — 0 in Mod R.

Then by Lemma 4.2, Y ®g S isaY®p S,—ﬁnitely presented, and then similar
to the proof of Proposition 2.7(ii), Homg(S , M) € Bog s’ (5. O

Corollary 4.11. The following assertions are true.
(i) fouF(S) <k € Acg s (5);
(i) fpnl(S )<k € Bog s (S)-
Proof. (i). Assume that M € fp,F (S )<j. Then we have
0 — Jy —Jyoy — - —J) — Jg — M — 0,
where J; € fpnF(Sl) for all 0 < ¢ < k. By [18, Proposition 3.2], J; € fp,F(R).
So we obtain that M € fp, F(R)<g. Thus by Lemma 2.9(ii), M € Ac(R), and
hence by Proposition 4.10(i), (S ®@r M) € Acgrs’ (S"). From [21, Lemma
1.1], we see that S'-module M is isomorphic to a direct summand of S" @ M.

’

Therefore [13, Proposition 4.2] implies that M € Agg o (S ).
(ii). The proof is similar to the first part. |

Lemma 4.12. The following assertions are true.

(i) (C®rS)fpnl(S )<k € Acg s (S);

(i) (C @RS )fpnl'(S )<k € Bog,s (S )-
Proof. (i). Assume that M € (C ®r S )fpnI(S )<k. Then from Proposition
44, M € CfppI(R)<k, and so M € Ac(R) by Lemma 3.6(i). Thus from
Proposition 4.10(i), (S" ®r M) € AC®RS/(S'). By [21, Lemma 1.1}, M is iso-
morphic to a direct summand of .S "®@rM , and consequently by [13, Proposition
42], M € Acy o (S'). Similarly, (ii) will be proved. 0

’
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In the following, we investigate Foxby equivalence relative to the class (C®g
S ) fpnI(S") <) with the class fp,I(S )<k and the class (C ®r S ) fpnF (S )<k
with the class fpnF(Sl)Sk7 where S° > R is an almost excellent extension.

Proposition 4.13. We have the following equivalences:

(C®RS/)®S/—
(i) (CorS)fpal(S)er = Fpal (8 <k
Hom s (C®RrS ,—)
(C®RS/)®S/—
(ii) fPaF (S )<k ~ (C®rS)fPuF (S )<k.
Hom s (C®RS/,—)

Proof. (i). Assume that M € (C ®g S/)fpnI(S/)Sk.. Then we have
0O—M—Iy—1 — - — It — I, —0,

where I; € (C ®r S')fpnI(S") for all 0 < i < k. By Proposition 4.4, each
I, € Cfp,I(R), and so by Proposition 3.7(i) and [18, Proposition 3.2], C®rI; €
fpaI(R) if and only if C®g I; € fpaI(S'). On the other hand, by Proposition
4.4, M € Cfp,I(R)<k, and then by Lemma 3.6(1), M, I; € Ac(R). Thus, we
have

0— CRrM — CQprly — CRprl1 — -+ — CRgrlp_1 — CRprlp — 0,

where C ®p I; € Cfp,I(S") for all 0 < i < k, and hence (C @z S') @ g M =
CorM e fp,I(S )<k ,
Also, M € Agg,s(S) by Lemma 4.12(i). So we have M = Homg (C ®g
S (CorS) 0y M). ,
Now, assume that N € fp,I(S )<g. Then we have
0—N—-Xg— X — - — X} — X}, —0,

where X; € fpnI(S/) for all 0 < ¢ < k. By [18, Proposition 3.2], X; € fp,I(R).
Therefore N € fp,I(R)<y. Thus by Proposition 3.7(i), Homg(C, N) € Cfp,I(R)<k.
We have Homg (C' ®z S, N) = Hompg(C,Homg (S, N)) = Homp(C,N).
Hence Homgy (C ®g S’ N) e CfpnI(R)<k, and therefore by Proposition 4.4,
Homgy (C ®r S ,N) € (C®rS)fpal(S )<k

(ii). The proof is similar to the first part. O

In the following, we give equivalent conditions with modules of the classes
Ac(R) and Bo(R) under almost excellent extension of rings.

Proposition 4.14. Suppose that A is in Mod S'. Then the following assertions
are equivalent:

(i) Ae Ac(R);

(i) (S ®rA) € Apg,g(S);
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(iii) A€ Acg, s (S).
Proof. (i)=(ii). It is clear by Proposition 4.10(i).
(ii)=-(iii). By [21, Lemma 1.1], oA is isomorphic to a direct summand of
S’ -module S’ ®x A. Thus by [13, Proposition 4.2(1)], A € Acgrs’ (5.
(iii)=>(i). Assume that A € Agg o (S"). Then TorjS (C®rS,A) =0 for
any j > 1. Also, we have --- — P, — Py — C' — 0, where for all i > 0,
P; € FPo(R) and free. Hence, we have the commutative diagram

> (P OrS )@y A——> (Ph@r S )®g A——> (COr S )@y A—>0

N .

i P ORA—— P ®RA—— > C@RA—— >0,

where the first line is exact by (iii), and so the second line is also exact, and
hence Torf(C, A) =0 for any j > 1.

On the other hand, Ext{, (C ®r S (C®rS)®g A) =0 for any j > 1.
Since Si is a flat R-module, the sequence - -- — P; Qg S — PorS —
C®rS — 0is exact. Thus, we have the commutative diagram

0——>Homy (C@r S, (C@rS)®y A) —>Homy (P ®r S, (C®rS ) @y A) —> -

: :

0——>Homgy (C®x S ,C @r A) —————>Homy (Py ®r S ,C ®p A) ——— - -

w w

0 ——— = Homg(C,C ®r A) Homp(Po,C Qg A) ——— -+~

where the first and second lines are exact by (iii), and so the third one is also
exact, and hence Ext7,(C,C ®@g A) = 0 for any j > 1.

Also by (iii) and [17, Theorem 2.75], we have
A~ Homg (CORS , (CORS )@y A) 2 Homg (CORS , CRRA) = Hompg(C, CORA).
Consequently, A € Ac(R). O

Proposition 4.15. Suppose that B is in Mod S". Then the following assertions
are equivalent:

(i) B € Bc(R);
(ii) Homp (S, B) € Beg, 5 (S);
(iii) B € Bog, g (S).
Proof. The proof is similar to the proof of Proposition 4.14. O

Under change of rings, Auslander and Bass classes are equivalent under the
pair of functors.
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Proposition 4.16. There are the following equivalences:

(C®rS )@y~

AC®RS’(S ) ~ BC®RS’(S ).
Homs/ (C®RS, =)

Proof. From Proposition 4.14, A € AC®RS/(S/) if and only if A € Ac(R).
Thus by [13, Proposition 4.1], (C ® A) € Bo(R), and so (C @ S') @g A =
(C®RA) € Bog .5 (8") by Proposition 4.15. Also, we have A = Homp(C, C®p
A) = Homg (C®r S, (CorS ) g A).

On the other hand, by Proposition 4.15, B € BC®RS/(S/) if and only if
B € B¢(R). Thus from [13, Proposition 4.1], Homg(C, B) € Ac(R), and so
Homg (C®rS , B) = Homg(C, B) € Acgrs’ (S") by Proposition 4.14 and [17,
Theorem 2.75]. Also, we have

B~ C ®pHomg(C,B) = (C®r S )2y Homg (C @r S, B).
Therefore the assertion holds. O

By using Corollary 4.11, Lemma 4.12 and Propositions 4.10, 4.13, 4.16, we
get Foxby Equivalence under an almost excellent extension:

Theorem 4.17. (Foxby Equivalence under almost excellent extension of rings)
We have the following equivalences:

(Cors)®y -
fpnB(S) ~ (Cor S ) fpF(S)
HOmS/ (C@RS/ ,—)

(CORS)® g —
FonF (S )<k < (Con S ) fpaF(S
HOmS/ (C@RS/,f)

’

)<k

(C®RS/)®S/—

AC®RS/(S,) ~ BC®RS/ (S/)
Homs/ (C@RS/,—)

(C®RS/)®S'7 J
)<k ~ fonl(S) <k

HOmS/ (C@RSI77)

1

(C®r S )fral(S

) (Cors)ey - J
Homs/ (C@RS/,—)

Example 4.18. Let R be a (1,2,3)-ring, (for example, R = k[[z1]] ® R,
where R’ is a valuation ring with global dimension 2), see [16, Proposition
3.7]. So, w.gldim(R) = 1 and gl.dim(R) = 2. If S is the ring M, (R) of
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n by n matrices over a ring R, then by [14, Example 1], S is almost ex-
cellent extensions of R. In case R = C, for every M in Mod R, one easily
gets that Cfp,.idr(M) < 2 and Cfp,.fdr(M) < 1. So by Proposition 4.3,
(C@r ) fpnidg (Homp(S', M)) <2 and (C ®@g S') fpn-fdg (S @p M) < 1.
Also, for every M in Mod S, it follows that (C®gr S/)fpn.idsf (M) <2 and
(C®r S")fpnfdg (M) < 1. Hence by Theorem 4.11, fp,.idg/ ((C @ S') @4
M) <2 and fp,.fdg (Homg (C ®p S, M)) < 1.

5. Conclusion

Employing relative homological techniques, we have expanded several funda-
mental homological concepts to incorporate findings related to semidualizing
modules. This paper focuses on the over rings R and S, and examines the
fpn-injective R-modules and fp,-flat S-modules under a (faithfully) semidu-
alizing bimodule C' = gCg. So, we introduce and analyze the C-fp,-injective
R-modules and C-fp,-flat S-modules. Our investigation includes a study of
Foxby equivalence, duality pairs, preenvelopes and precovers concerning a pairs
of the classes C'fp,I(R)<; and Cfp,F(S)<, and also the study of the same
features under the change of rings. Given the importance of these topics in the
field of homological algebra, in the continuation of the future research work, we
suggest further investigation into the Gorenstein properties of these modules
and the relative cotorsion modules.
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