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Abstract. Given a fuzzy normed space, we will introduce the notion

of fuzzy near best approximation as a generalization of the notion of

fuzzy best approximation. Some basic properties are characterized and
also many examples for illustration are presented. Also, the hereditary

properties of the fuzzy near best approximation on direct sum and tensor

product of linear spaces are discussed.
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1. Introduction

The logic and theory of fuzzy sets were introduced by L. Zadeh [13] in 1956.
Many structures and concepts have been researched and investigated by follow-
ing fuzzy logic in all sciences. Along with classical logic, many mathematicians
have done research in the field of fuzzy logic and fuzzy mathematics [4, 5, 9].
The theory of the best approximation as a part of the research field in func-
tional analysis has been of interest to many researchers for a long time [6].
Recently, the fuzzy best approximation has attracted the attention of some re-
searchers [2,8,10,11]. The main motivation of this paper is a generalization of
the notion of the fuzzy best approximation, which is called the fuzzy near best
approximation. The organization of the paper is as follows. In section 2, some
definitions and concepts in the classical and fuzzy best approximation theory
are presented. In section 3, the definition of the fuzzy near best approximation
and some of its basic properties are stated. In section 4, the hereditary prop-
erties of the fuzzy near best approximation on direct sum and tensor product
of linear spaces are discussed. In section 5, the conclusion about the paper is
stated.
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2. Preliminaries

Let X be a normed linear space and Y be a subset of X. If x ∈ X, then the
distance of x from Y is denoted by d(x, Y ) that is

d (x, Y ) = inf {‖x− y‖ s.t. y ∈ Y } .
An element y ∈ Y is said to be the best approximation to x ∈ X from Y
if ‖x− y‖ = d(x, Y ). The set of all best approximations to x ∈ X from Y
is denoted by PY (x). If for any x ∈ X, PY (x) 6= ∅, then we say that Y
is proximinal in X. Also, if for any x ∈ X, PY (x) is singleton, then Y is a
Chebyshev subset of X. A sequence {yn}n ⊆ Y is called a minimizing sequence
for x ∈ X if limn→∞ ‖x− yn‖ = d (x, Y ) [6].

An element yn ∈ Y is said to be a near best approximation to x within a
relative distance ρ ≥ 0 if,

‖x− yn‖ ≤ (1 + ρ)
∥∥x− xb∥∥ = (1 + ρ)d (x, Y )

where xb is the best approximation to x from Y [7]. The set of all near best
approximations to x ∈ X from Y is denoted by PnY (x).
Let {Xi}i∈I be a family of linear spaces. Then the algebraic direct sum of the
spaces Xi, i.e.,∑

i∈I
Xi =

{
x = (xi)i∈I

∣∣∣∣xi = 0 for all but finitely many i ∈ I
}

with the pointwise vector-space operations as follows, is a linear space,

x+ y = (xi + yi)i∈I

and
αx = (αxi)i∈I

for all x, y ∈
∑
i∈I Xi and α ∈ C or R [1].

Also, let X and Y be linear spaces over C or R. Then the algebraic tensor
product of X and Y is denoted by X ⊗ Y . If X ′ and Y ′ are the dual spaces
of X and Y respectively, then for all x ∈ X and y ∈ Y , the map x ⊗ y :
X ′ × Y ′ −→ C (or R) defined by

(x⊗ y) (f, g) = f (x) g (y) , f ∈ X ′, g ∈ Y ′

is a bilinear map. For the basic properties concerning the tensor product of
linear spaces, we refer the reader to [3].

Definition 2.1. [9]Let X be a linear space. A function N : X × R −→ [0, 1]
is said to be fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R :

1- N (x, t) = 0 for t ≤ 0.
2- N (x, t) = 1 for every t ∈ R+ if and only if x = 0 .

3- N (cx, t) = N
(
x, t
|c|

)
for every c 6= 0 and t ∈ R.

4- N (x+ y, s+ t) ≥ min {N (x, s) , N (y, t)} for every s, t ∈ R.
5- N (x, .) is non-decreasing on R and limt→∞N (x, t) = 1.
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Note that by part 3 of Definition 2.1, N (−x, t) = N (x, t) for all x ∈ X and
t ∈ R.
The notion of t−best approximation in fuzzy metric spaces was first introduced
by [11] and then followed by [2, 10,12].

Definition 2.2. [8]Let Y be a nonempty subset of a fuzzy normed space
(X,N). For x ∈ X and t ∈ R, let

d (Y, x, t) = sup {N (x− y, t) , y ∈ Y } .
An element y0 ∈ Y is said to be a fuzzy best approximation to x from Y if

N (x− y0, t) = d (Y, x, t) ,

for all t ∈ R. The set of all fuzzy best approximations to x from Y is denoted

by P fY (x).

3. Fuzzy near best approximation and its basic properties

In this section, we introduce the notion of fuzzy near best approximation
and investigate some basic properties concerning this notion.

Definition 3.1. Let X be a linear space and Y be a subset of X. Also let
N : X ×R −→ [0, 1] be a fuzzy norm on X. An element y0 ∈ Y is said to be a
fuzzy near best approximation to x from Y within a relative distance ρ ≥ 0 if,

N (x− y0, t) ≥ N
(
x− Y, t

1 + ρ

)
for all t ∈ R, where

N

(
x− Y, t

1 + ρ

)
:= sup

{
N

(
x− y, t

1 + ρ

)
, y ∈ Y

}
= d(Y, x,

t

1 + ρ
).

The set of all fuzzy near best approximations to x from Y within the relative

distance ρ is denoted by P
fn(ρ)
Y (x).

Remark 3.2. Trivially the notion of fuzzy best approximation is nothing else
than fuzzy near best approximation within the relative distance ρ = 0.

Proposition 3.3. Let (X,N) be a fuzzy normed space and Y be a nonempty
subset of X. Also let x, y ∈ X, z ∈ Y, ρ ≥ 0 and α ∈ R. Then

1- If P
fn(ρ)
Y (x) 6= ∅, then P

fn(ρ)
αY (αx) = αP

fn(ρ)
Y (x)

2- If α 6= 0, then P
fn(ρ)
Y (αx) = αP

fn(ρ)
Y
α

(x)

3- P
fn(ρ)
Y (x+ z) = P

fn(ρ)
Y−z (x) + z

4- P
fn(ρ)
Y+y (x+ y) = P

fn(ρ)
Y (x) + y.

Proof. We’ll prove the first part. The rest of the parts are easily verified. In the

case where α = 0, the equality trivially holds. For α 6= 0, let z0 ∈ P fn(ρ)αY (αx).
Then

N (αx− z0, t) ≥ N
(
αx− αY, t

1 + ρ

)
, (∀t ∈ R) .
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Therefore

N

(
x− z0

α
,
t

|α|

)
≥ N

(
x− Y, t

|α| (1 + ρ)

)
, (∀t ∈ R) .

Replacing t by |α| t, we have

N
(
x− z0

α
, t
)
≥ N

(
x− Y, t

1 + ρ

)
, (∀t ∈ R) .

So
z0
α
∈ P fn(ρ)Y (x). Hence z0 ∈ αP fn(ρ)Y (x).

Conversely, let z0 ∈ αP fn(ρ)Y (x). Then
z0
α
∈ P fn(ρ)Y (x). Therefore

N
(
x− z0

α
, t
)
≥ N

(
x− Y, t

1 + ρ

)
, (∀t ∈ R) .

So

N (αx− z0, |α| t) ≥ N
(
x− Y, t

1 + ρ

)
, (∀t ∈ R) .

Replacing t by
t

|α|
, we have

N (αx− z0, t) ≥ N
(
x− Y, t

|α| (1 + ρ)

)
= N

(
αx− αY, t

1 + ρ

)
, (∀t ∈ R) .

Then z0 ∈ P fn(ρ)αY (αx). So we can conclude that P
fn(ρ)
αY (αx) = αP

fn(ρ)
Y (x). �

Proposition 3.4. Let (X,N) be a fuzzy normed linear space and Y be a subset
of X. Then every fuzzy best approximation to x ∈ X from Y is a fuzzy near
best approximation to x from Y within every relative distance ρ ≥ 0.

Proof. Let y0 ∈ P fY (x). So N (x− y0, t) = N (x− Y, t) for all t ∈ R. We shall

show that N (x− y0, t) ≥ N
(
x− Y, t

1 + ρ

)
for all t ∈ R and every ρ ≥ 0. Let

y ∈ Y and t ∈ R. So by Definition 2.1 part 5,

N

(
x− y, t

1 + ρ

)
≤ N (x− y, t) ≤ N (x− Y, t) = N (x− y0, t) .

It follows that N

(
x− y, t

1 + ρ

)
≤ N (x− y0, t) for all t ∈ R and y ∈ Y . Hence

sup

{
N

(
x− y, t

1 + ρ

)
, y ∈ Y

}
≤ N (x− y0, t)

for all t ∈ R. Therefore

N

(
x− Y, t

1 + ρ

)
≤ N (x− y0, t)
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for all t ∈ R, providing y0 ∈ P fn(ρ)Y (x). �

Proposition 3.5. Let (X,N) be a fuzzy normed linear space, Y be a subset of

X, x ∈ X, and ρ ≥ 0. If Y is convex, then P fY (x) and P
fn(ρ)
Y (x) are convex.

Proof. Since the proof method is similar, we only deal with the proof of the

convexity of P
fn(ρ)
Y (x). Let y1, y2 ∈ P fn(ρ)Y (x) and 0 < α < 1. So by Definition

2.1, for all t ∈ R we have

N (x− (αy1 + (1− α) y2) , t)

= N (αx+ (1− α)x− (αy1 + (1− α) y2) , αt+ (1− α) t)

= N (α (x− y1) + (1− α) (x− y2) , αt+ (1− α) t)

≥ min {N (α (x− y1) , αt) , N ((1− α) (x− y2) , (1− α) t)}
= min {N (x− y1, t) , N (x− y2, t)}

≥ N
(
x− Y, t

1 + ρ

)
.

Hence αy1 + (1− α) y2 ∈ P fn(ρ)Y (x). �

The following example shows that the converse of Proposition 3.5 is not true
in general.

Example 3.6. Suppose that X = R, Y = {1, 2}, x = 0, and ρ = 0.5. Also let

N (x, t) =

{
0, t ≤ |x|
1, t > |x|

be a fuzzy norm on X. Clearly, P fY (0) = {1}, P fn(ρ)Y (0) = {1} and, the set
{1} is convex but, Y is not convex.

The next example shows that the notion of fuzzy near best approximation
is different from the notion of fuzzy best approximation.

Example 3.7. Suppose that X = R, Y = [1, 1.5], x = 0 and ρ = 0.5. Also let

N (x, t) =

{
0, t ≤ |x|
1, t > |x|

be a fuzzy norm on X. Then, P fY (0) = {1} and P
fn(0.5)
Y (0) = Y . Generally for

0 ≤ ρ ≤ 0.5, P
fn(ρ)
Y (0) = [1, 1 + ρ]. Indeed, if 0 < t ≤ 1, then N (1, t) = 0 and

for all y ∈ Y , t ≤ y. So N (y, t) = 0 for all y ∈ Y . It follows that N (Y, t) = 0.
Hence N (1, t) = N (Y, t) for all 0 < t ≤ 1. If t > 1, then N (1, t) = 1
and so N (Y, t) = 1. Therefore N (1, t) = N (Y, t) for all t ∈ R. This shows

that 1 ∈ P fY (0). If 1 < y0 ≤ 1.5, then for t = 1 +
y0 − 1

2
, N (y0, t) = 0

and N(Y, t) = N (1, t) = 1. It follows that 0 = N (y0, t) 6= N (Y, t) = 1 for

t = 1 +
y0 − 1

2
. So y0 /∈ P fY (0). Hence P fY (0) = {1}.
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Now we will show that P
fn(0.5)
Y (0) = [1, 1.5] = Y . Let y0 ∈ [1, 1.5]. If t ≤ y0,

then N (y0, t) = 0 and
2

3
t ≤ 2

3
y0 ≤

2

3

(
3

2

)
= 1. So N

(
y,

2

3
t

)
= 0 for all

y ∈ [1, 1.5]. It follows that N

(
Y,

2

3
t

)
= 0. Hence N (y0, t) ≥ N

(
Y,

2

3
t

)
for all t ≤ y0. If t > y0, then N (y0, t) = 1 ≥ N

(
Y,

2

3
t

)
. Therefore

N (y0, t) ≥ N

(
Y,

2

3
t

)
for all t ∈ R. Hence y0 ∈ P

fn(0.5)
Y (0). This shows

that P
fn(0.5)
Y (0) = [1, 1.5] = Y .

Example 3.8. Suppose that X = R, Y = (0, 1), x = 0 and ρ ≥ 0. Also let

N (x, t) =

{
0, t ≤ |x|
1, t > |x|

be a fuzzy norm on X. Then P fY (0) = P
fn(ρ)
Y (0) = ∅. Indeed, since P fY (0) ⊆

P
fn(ρ)
Y (0), it’s enough to prove that P

fn(ρ)
Y (0) = ∅. Let y0 ∈ Y be an arbitrary

element. Choose n ∈ N such that
1

n
<

y0
1 + ρ

. So if t = y0, then

0 = N (y0, t) < N

(
1

n
,

t

1 + ρ

)
= 1.

It follows that

0 = N (y0, t) < N

(
Y,

t

1 + ρ

)
= 1.

Hence y0 /∈ P fn(ρ)Y (0) and so P
fn(ρ)
Y (0) = ∅.

Proposition 3.9. Let X be a linear space, Y be a subset of X and N : X ×
R −→ [0, 1] be a fuzzy norm on X. For any ρ ≥ 0, x ∈ Y , P

fn(ρ)
Y (x) = {x}.

Proof. Clearly, N (x− x, t) = N (0, t) = 1 ≥ N

(
x− Y, t

1 + ρ

)
for all t > 0.

Hence, N (x− x, t) ≥ N

(
x− Y, t

1 + ρ

)
for all t ∈ R. This shows that x ∈

P
fn(ρ)
Y (x). Now let y0 ∈ P fn(ρ)Y (x). Then for all t > 0

N (x− y0, t) ≥ N
(
x− Y, t

1 + ρ

)
≥ N

(
x− x, t

1 + ρ

)
= 1.

Therefore N (x− y0, t) = 1 for all t > 0. Hence, x− y0 = 0. Then y0 = x. �
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Theorem 3.10. Let X be a linear space, Y be a subset of X and N : X×R −→
[0, 1] be a fuzzy norm on X. For x ∈ X, if ρ1 ≤ ρ2, then P

fn(ρ1)
Y (x) ⊆

P
fn(ρ2)
Y (x).

Proof. If y0 ∈ P fn(ρ1)Y (x), then

N (x− y0, t) ≥ N
(
x− Y, t

1 + ρ1

)
.

Since for all t ∈ R and y ∈ Y

N

(
x− y, t

1 + ρ1

)
≥ N

(
x− y, t

1 + ρ2

)
,

N

(
x− Y, t

1 + ρ1

)
≥ N

(
x− Y, t

1 + ρ2

)
.

Therefore

N (x− y0, t) ≥ N
(
x− Y, t

1 + ρ2

)
.

It follows that y0 ∈ P fn(ρ2)Y (x). �

The following example shows that the converse of Theorem 3.10 is not true.

Example 3.11. Suppose that X = R, Y = {1, 2}, x = 0, ρ1 = 0.5, and
ρ2 = 0.25. Also let

N (x, t) =

{
0, t ≤ |x|
1, t > |x|

be a fuzzy norm on X. Clearly, {1} = P
fn(ρ1)
Y (0) ⊆ P

fn(ρ2)
Y (0) = {1} but,

ρ1 > ρ2.

Theorem 3.12. Let X be a linear space, Y be a subset of X and N : X×R −→
[0, 1] be a fuzzy norm on X. If x ∈ X and ρ1 ≥ ρ2 ≥ ρ3 ≥ . . . such that ρm −→
ρ as m −→∞, then P

fn(ρ)
Y (x) ⊆

⋂∞
m=1P

fn(ρm)
Y (x). In particular, if N (z, .) is

lower semicontinuous at every z ∈ x−Y , then P
fn(ρ)
Y (x) =

⋂∞
m=1P

fn(ρm)
Y (x).

Proof. By Theorem 3.10, since ρm ≥ ρ for all m ∈ N,

P
fn(ρ)
Y (x) ⊆ P fn(ρ1)Y (x)

P
fn(ρ)
Y (x) ⊆ P fn(ρ2)Y (x)

...

P
fn(ρ)
Y (x) ⊆ P fn(ρm)

Y (x) ,m ∈ N.
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Then P
fn(ρ)
Y (x) ⊆

⋂∞
m=1P

fn(ρm)
Y (x).

If y0 ∈
⋂∞
m=1P

fn(ρm)
Y (x) and N (z, .) is lower semicontinuous for every z ∈

x− Y , then for all m ∈ N and for all t ∈ R we have

N (x− y0, t) ≥N
(
x− Y, t

1 + ρm

)
≥N

(
x− y, t

1 + ρm

)
, y ∈ Y.

Since N (x− y, .) is lower semicontinuous for all x− y and
t

1 + ρm
≤ t

1 + ρ
for

every m ∈ N,

N (x− y0, t) ≥ lim
m−→∞

N

(
x− y, t

1 + ρm

)
=N

(
x− y, t

1 + ρ

)
, y ∈ Y.

So

N (x− y0, t) ≥ sup

{
N

(
x− y, t

1 + ρ

)
, y ∈ Y

}
=N

(
x− Y, t

1 + ρ

)
.

Hence
⋂∞
m=1P

fn(ρm)
Y (x) ⊆ P

fn(ρ)
Y (x) . It follows that

⋂∞
m=1P

fn(ρm)
Y (x) =

P
fn(ρ)
Y (x) . �

4. Fuzzy Near Best Approximation On Direct Sum And Ten-
sor Product Of Linear Spaces

We use the following lemma in the proof of Proposition 4.2 and Theorem
4.6.

Lemma 4.1. Let 0 ≤ ai ≤ 1 and 0 ≤ bi ≤ 1 for all 1 ≤ i ≤ m. Then

min

{
min {ai, bi}

∣∣∣∣1 ≤ i ≤ m}
= min

{
min

{
ai

∣∣∣∣1 ≤ i ≤ m} ,min

{
bi

∣∣∣∣1 ≤ i ≤ m}} .
Proof. It’s obvious. �

Proposition 4.2. Let {(Xi, Ni)}i∈I be a family of fuzzy normed spaces. Then(∑
i∈I Xi, N

)
is a fuzzy normed space, where N :

(∑
i∈I Xi

)
× R −→ [0, 1] is

defined by

N
(
(xi)i∈I , t

)
= inf

{
Ni (xi, t)

∣∣∣∣i ∈ I} .
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Proof. To prove the above proposition, we only prove conditions 4 and 5 of
Definition 2.1 and we leave the rest to the reader. To prove the fourth part,
suppose that (xi)i∈I , (yi)i∈I ∈

∑
i∈I Xi and s, t ∈ R. So xi = 0 and yi = 0 for

all but finitely many ik ∈ I, 1 ≤ k ≤ m. Clearly if s+ t ≤ 0, then the inequality

(1) N
(
(xi)i∈I + (yi)i∈I , s+ t

)
≥ min

{
N
(
(xi)i∈I , s

)
, N
(
(yi)i∈I , t

)}
holds. Also if s+ t > 0, s ≤ 0 or t ≤ 0, then obviously inequality 1 holds.

Let s+ t > 0, s > 0 and t > 0. Then

N
(
(xi)i∈I + (yi)i∈I , s+ t

)
= N

(
(xi + yi)i∈I , s+ t

)
inf
{
Ni (xi + yi, s+ t)

∣∣i ∈ I}
≥ inf

{
min {Ni (xi, s) , Ni (yi, t)}

∣∣i ∈ I}
= min

{
min {Nik (xik , s) , Nik (yik , t)} , 1

∣∣∣∣1 ≤ k ≤ m}
= min

{
min {Nik (xik , s) , Nik (yik , t)}

∣∣∣∣1 ≤ k ≤ m}
= min

{
min

{
Nik (xik , s)

∣∣∣∣1 ≤ k ≤ m} ,min

{
Nik (yik , t)

∣∣∣∣1 ≤ k ≤ m}}
= min

{
inf

{
Ni (xi, s)

∣∣∣∣i ∈ I} , inf

{
Ni (yi, t)

∣∣∣∣i ∈ I}}
= min

{
N
(
(xi)i∈I , s

)
, N
(
(yi)i∈I , t

)}
.

To prove the fifth part, suppose that (xi)i∈I ∈
∑
i∈I Xi. So xi = 0 for all but

finitely many ik ∈ I, 1 ≤ k ≤ m. Hence

lim
t−→∞

N
(
(xi)i∈I , t

)
= lim
t−→∞

{
inf

{
Ni (xi, t)

∣∣∣∣i ∈ I}}
= lim
t−→∞

{
min

{
Nik (xik , t) , 1

∣∣∣∣1 ≤ k ≤ m}}
= lim
t−→∞

{
min

{
Nik (xik , t)

∣∣∣∣1 ≤ k ≤ m}}
= min

{
lim
t−→∞

Nik (xik , t)

∣∣∣∣1 ≤ k ≤ m}
= min {1}
= 1.

Since Ni (xi, .) is increasing for all xi ∈ Xi, N
(
(xi)i∈I , .

)
is increasing for all

(xi)i∈I . �



30 A. R. Khoddami, R. Tourani

Corollary 4.3. Let Ni : Xi × R −→ [0, 1] be a fuzzy norm on Xi for i =
1, 2, . . . , n. Then N : X1 ×X2 × · · · ×Xn × R −→ [0, 1] defined by

N ((x1, x2, . . . , xn) , t) = min {N1 (x1, t) , N2 (x2, t) , . . . , Nn (xn, t)}

is a fuzzy norm on X1 ×X2 × · · · ×Xn.

Proposition 4.4. Let {(Xi, Ni)}ni=1 be a finite family of fuzzy normed spaces
and N : X1 ×X2 × · · · ×Xn × R −→ [0, 1] is defined by

N ((x1, x2, . . . , xn) , t) = min {N1 (x1, t) , N2 (x2, t) , . . . , Nn (xn, t)} .

Also let Yi ⊆ Xi, xi ∈ Xi and ρi ≥ 0 for all 1 ≤ i ≤ n. Then
(2)

P
fn(ρ1)
Y1

(x1)×P fn(ρ2)Y2
(x2)×· · ·×P fn(ρn)Yn

(xn) ⊆ P fn(max{ρi})
Y1×Y2×···×Yn (x1, x2, . . . , xn) .

Proof. Let (y1, y2, . . . , yn) ∈ P
fn(ρ1)
Y1

(x1) × P fn(ρ2)Y2
(x2) × · · · × P fn(ρn)Yn

(xn).

Then y1 ∈ P fn(ρ1)Y1
(x1), y2 ∈ P fn(ρ2)Y2

(x2), . . . , yn ∈ P fn(ρn)Yn
(xn). Therefore

N1 (x1 − y1, t) ≥ N1

(
x1 − z1,

t

1 + ρ1

)
≥ N1

(
x1 − z1,

t

1 + max1≤i≤n {ρi}

)
N2 (x2 − y2, t) ≥ N2

(
x2 − z2,

t

1 + ρ2

)
≥ N2

(
x2 − z2,

t

1 + max1≤i≤n {ρi}

)
...

Nn (xn − yn, t) ≥ Nn
(
xn − zn,

t

1 + ρn

)
≥ Nn

(
xn − zn,

t

1 + max1≤i≤n {ρi}

)
for every zi ∈ Yi and t ∈ R.
From previous lines we get that, for all zi ∈ Y i,

min
1≤i≤n

{Ni(xi − yi, t)} ≥ min
1≤i≤n

{
Ni

(
xi − zi,

t

1 + max1≤i≤n {ρi}

)}
= N

(
(x1, · · · , xn)− (z1, · · · , zn),

t

1 + max1≤i≤n {ρi}

)
which gives

N ((x1, · · · , xn)− (y1, · · · , yn), t)

= min
1≤i≤n

{Ni(xi − yi, t)}

≥ sup
(z1,z2,...,zn)∈Y1×Y2×···×Yn

{
N

(
(x1, x2, . . . , xn)− (z1, z2, . . . , zn) ,

t

1 + max1≤i≤n {ρi}

)}
= N

(
(x1, x2, . . . , xn)− Y1 × Y2 × · · · × Yn,

t

1 + max1≤i≤n {ρi}

)
.
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Hence

N ((x1, x2, . . . , xn)− (y1, y2, . . . , yn) , t)

≥ N
(

(x1, x2, . . . , xn)− Y1 × Y2 × · · · × Yn,
t

1 + max1≤i≤n {ρi}

)
.

�

In the next example, we will show that the converse of inclusion 2 is not
true in general.

Example 4.5. Let X1 = X2 = R, Y1 = Y2 = [1, 3], and Ni : Xi × R −→ [0, 1]
is defined by

Ni (α, t) =

{
0, t ≤ |α|
1, t > |α|

for i = 1, 2. Assume that N ((x, y) , t) = min (N1 (x, t) , N2 (y, t)), ρ = 1, x1 = 0

and x2 =
1

2
. Then we have

P
fn(1)
Y1

(0) = [1, 2]

P
fn(1)
Y2

(
1

2

)
= [1,

3

2
]

P
fn(1)
Y1

(0)× P fn(1)Y2

(
1

2

)
= [1, 2]× [1,

3

2
].

It is easy to see that

N ((x, y) , t) =

{
0, t ≤ max (|x| , |y|)
1, t > max (|x| , |y|)

for all x, y, t ∈ R. Also a sufficient effort can be applied to show that

P
fn(1)
Y1×Y2

(
(0,

1

2
)

)
= [1, 2]× [1,

5

2
].

Theorem 4.6. Let (X,N1) and (Y,N2) be fuzzy normed spaces. Also let BX
and BY be the bases of X and Y respectively. Define N : (X ⊗ Y )×R −→ [0, 1]
by

N

 n∑
j=1

αjxj ⊗ yj , t

 = min

{
N1 (αjxj , t) , N2 (αjyj , t)

∣∣∣∣1 ≤ j ≤ n} ,
where xj ∈ BX , yj ∈ BY , n ∈ N, αj ∈ C and t ∈ R. Then (X ⊗ Y,N) is a fuzzy
normed space.

Proof. (1) : The proof that N is well-defined is based under the assumption
that every z ∈ X ⊗ Y admits a unique representation z =

∑n
j=1 αjxj ⊗ yj .

Indeed, Let (z, s) = (w, t) ∈ (X ⊗ Y ) × R. So z = w and s = t. Hence
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there exists an n ∈ N, {xj}nj=1 ⊆ BX , {yj}nj=1 ⊆ BY and αj , βj ∈ C such that

z =
∑n
j=1 αjxj ⊗ yj and w =

∑n
j=1 βjxj ⊗ yj . It follows that αj = βj for all

1 ≤ j ≤ n. Therefore

min

{
N1 (αjxj , s) , N2 (αjyj , s)

∣∣∣∣1 ≤ j ≤ n}
= min

{
N1 (βjxj , t) , N2 (βjyj , t)

∣∣∣∣1 ≤ j ≤ n} ,
providing N (z, s) = N (w, t).
In the sequel, we will prove parts 2, 3, 4 and 5 of Definition 2.1.
(2) : Let z =

∑n
j=1 αjxj ⊗ yj and N (z, t) = 1 for all t > 0. So

min

{
N1 (αjxj , t) , N2 (αjyj , t)

∣∣∣∣1 ≤ j ≤ n} = 1

for all t > 0. It follows that N1 (αjxj , t) = N2 (αjyj , t) = 1 for all 1 ≤ j ≤ n
and for all t > 0. Hence αjxj = 0 and αjyj = 0 for all 1 ≤ j ≤ n. Therefore
αj = 0 for all 1 ≤ j ≤ n. This shows that z = 0 ⊗ 0. Also for all t > 0, since
0⊗ 0 = 0x⊗ y for all x ∈ BX and y ∈ BY ,

N (0⊗ 0, t)

= N (0x⊗ y, t)
= min {N1 (0, t) , N2 (0, t)}
= min {1}
= 1.

(3) : Let c 6= 0 and
∑n
j=1 αjxj ⊗ yj ∈ X ⊗ Y . So

N

c n∑
j=1

αjxj ⊗ yj , t


= N

 n∑
j=1

cαjxj ⊗ yj , t


= min

{
N1 (cαjxj , t) , N2 (cαjyj , t)

∣∣∣∣1 ≤ j ≤ n}
= min

{
N1

(
αjxj ,

t

|c|

)
, N2

(
αjyj ,

t

|c|

) ∣∣∣∣1 ≤ j ≤ n}

= N

 n∑
j=1

αjxj ⊗ yj ,
t

|c|

 ,

for all t ∈ R.
(4) : Let z, w ∈ X ⊗ Y and s, t ∈ R. Without loss of generality we can assume
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that z =
∑n
j=1 αjxj ⊗ yj and w =

∑n
j=1 βjxj ⊗ yj , where n ∈ N, αj , βj ∈

C, {xj}nj=1 ⊆ BX and {yj}nj=1 ⊆ BY . Indeed, if z =
∑m1

p=1 α
′
px
′
p ⊗ y′p and w =∑m2

q=1 α
′′
qx
′′
q ⊗ y′′q , then X1 = span

{
x′p, x

′′
q | 1 ≤ p ≤ m1, 1 ≤ q ≤ m2

}
and Y1 =

span
{
y′p, y

′′
q | 1 ≤ p ≤ m1, 1 ≤ q ≤ m2

}
are finite dimensional vector spaces. So

X1 ⊗ Y1 is a finite dimensional subspace of X ⊗ Y , with the basis BX1⊗Y1
⊆

BX ⊗BY . Since z, w ∈ X1⊗Y1, z =
∑n
j=1 αjxj ⊗ yj and w =

∑n
j=1 βjxj ⊗ yj ,

where n = dimX1 ⊗ Y1, αj , βj ∈ C, {xj ⊗ yj}nj=1 ⊆ BX1⊗Y1
⊆ BX ⊗BY .

Hence

N

 n∑
j=1

αjxj ⊗ yj +

n∑
j=1

βjxj ⊗ yj , s+ t


= N

 n∑
j=1

(αj + βj)xj ⊗ yj , s+ t


= min

{
N1 ((αj + βj)xj , s+ t) , N2 ((αj + βj) yj , s+ t)

∣∣∣∣1 ≤ j ≤ n}
= min

{
N1 (αjxj + βjxj , s+ t) , N2 (αjyj + βjyj , s+ t)

∣∣∣∣1 ≤ j ≤ n}
≥ min

{
min (N1 (αjxj , s) , N1 (βjxj , t)) ,min (N2 (αjyj , s) , N2 (βjyj , t))

∣∣∣∣1 ≤ j ≤ n}
= min

{
min (Aj , Bj) ,min (Cj , Dj)

∣∣∣∣1 ≤ j ≤ n}
= min

{
min

{
Aj , Cj

∣∣∣∣1 ≤ j ≤ n} ,min

{
Bj , Dj

∣∣∣∣1 ≤ j ≤ n}}

= min

N
 n∑
j=1

αjxj ⊗ yj , s

 , N

 n∑
j=1

βjxj ⊗ yj , t

 ,

where

Aj = N1 (αjxj , s) ,

Bj = N1 (βjxj , t) ,

Cj = N2 (αjyj , s) ,

Dj = N2 (βjyj , t) .
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(5) : Let s < t and z =
∑n
j=1 αjxj ⊗ yj . Clearly N1 (αjxj , s) ≤ N1 (αjxj , t)

and N2 (αjyj , s) ≤ N2 (αjyj , t) for all 1 ≤ j ≤ n. So

min

{
N1 (αjxj , s) , N2 (αjyj , s)

∣∣∣∣1 ≤ j ≤ n}
≤ min

{
N1 (αjxj , t) , N2 (αjyj , t)

∣∣∣∣1 ≤ j ≤ n} .
It follows that

N

 n∑
j=1

αjxj ⊗ yj , s

 ≤ N
 n∑
j=1

αjxj ⊗ yj , t

 .

Hence N (z, .) : R −→ [0, 1] is increasing for all z ∈ X ⊗ Y . Also

lim
t−→∞

N (z, t)

= lim
t−→∞

min

{
N1 (αjxj , t) , N2 (αjyj , t)

∣∣∣∣1 ≤ j ≤ n}
= min

{
lim
t−→∞

N1 (αjxj , t) , lim
t−→∞

N2 (αjyj , t)

∣∣∣∣1 ≤ j ≤ n}
= min {1}
= 1.

�

Theorem 4.7. Let X and Y be linear spaces and N : (X ⊗ Y ) × R −→ [0, 1]
be a fuzzy norm. Then for all x ∈ X \ {0} and y ∈ Y \ {0}, the maps Nx :
Y × R −→ [0, 1] and Ny : X × R −→ [0, 1], where Nx (z, t) = N (x⊗ z, t) and
Ny (w, t) = N (w ⊗ y, t), are fuzzy norms on Y and X respectively.

Proof. We only prove that Nx : Y × R −→ [0, 1] is a fuzzy norm for all x ∈
X \ {0}.
(1) : Let z ∈ Y and t ≤ 0. So Nx (z, t) = N (x⊗ z, t) = 0.
(2) : If z = 0, then Nx (0, t) = N (x⊗ 0, t) = N (0⊗ 0, t) = 1 for all t > 0.
Also if Nx (z, t) = 1 for all t > 0, then N (x⊗ z, t) = 1 for all t > 0. It follows
that x ⊗ z = 0 ⊗ 0. Since x 6= 0, there exists f ∈ X ′ such that f (x) 6= 0.
Let g ∈ Y ′ be an arbitrary element. As x ⊗ z is a bilinear map on X ′ × Y ′,
(x⊗ z) (f, g) = (0⊗ 0) (f, g). So f (x) g (z) = 0 for all g ∈ Y ′. Since f (x) 6= 0,
g (z) = 0 for all g ∈ Y ′. It follows that z = 0.
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(3) : Let c 6= 0 and z ∈ Y . So

Nx (cz, t)

= N (x⊗ cz, t)
= N (cx⊗ z, t)

= N

(
x⊗ z, t

|c|

)
= Nx

(
z,

t

|c|

)

for all z ∈ Y and t ∈ R.
(4) : Let z1, z2 ∈ Y and s, t ∈ R. So

Nx (z1 + z2, s+ t)

= N (x⊗ (z1 + z2) , s+ t)

= N (x⊗ z1 + x⊗ z2, s+ t)

≥ min (N (x⊗ z1, s) , N (x⊗ z2, t))
= min (Nx (z1, s) , Nx (z2, t)) .

(5) : Let s < t and z ∈ Y . So N (x⊗ z, s) ≤ N (x⊗ z, t). It follows that
Nx (z, s) ≤ Nx (z, t). Hence Nx (z, .) : R −→ [0, 1] is increasing and

lim
t−→∞

Nx (z, t)

= lim
t−→∞

N (x⊗ z, t)

=1

for all z ∈ Y . Therefore Nx : Y × R −→ [0, 1] is a fuzzy norm. �

Example 4.8. Let X = Y = R2 be linear spaces over R with the bases BX =
BY = {e1 = (1, 0) , e2 = (0, 1)}. Also let N1 = N2 : R2×R −→ [0, 1] be defined
by

Ni

 2∑
j=1

αjej , t

 =

{
0, t ≤ max (|α1| , |α2|)
1, t > max (|α1| , |α2|)

for i = 1, 2. Clearly N1 and N2 are fuzzy norms on R2. According to Theorem
4.6, if N : (X ⊗ Y )× R −→ [0, 1] is defined by

N (α1e1 ⊗ e1 + α2e1 ⊗ e2 + α3e2 ⊗ e1 + α4e2 ⊗ e2, t)

= min

(
N1 (α1e1, t) , N1 (α2e1, t) , N1 (α3e2, t) , N1 (α4e2, t)
N2 (α1e1, t) , N2 (α2e2, t) , N2 (α3e1, t) , N2 (α4e2, t)

)
,
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then the equalities

N2 (α1e1, t) = N1 (α1e1, t) ,

N2 (α2e2, t) = N1 (α2e1, t) ,

N2 (α3e1, t) = N1 (α3e2, t) ,

N2 (α4e2, t) = N1 (α4e2, t)

implies,

N (α1e1 ⊗ e1 + α2e1 ⊗ e2 + α3e2 ⊗ e1 + α4e2 ⊗ e2, t)
= min {N1 (α1e1, t) , N1 (α2e1, t) , N1 (α3e2, t) , N1 (α4e2, t)}

=

{
0, t ≤ max (|αi| , 1 ≤ i ≤ 4)

1, t > max (|αi| , 1 ≤ i ≤ 4) .

Let x0 = −1

5
e1, y0 = −2e2,K1 = BX ,K2 = BY ,K = BX⊗Y = BX ⊗ BY

and ρ =
1

10
. Also let P

fn( 1
10 )

K1
(x0) and P

fn( 1
10 )

K2
(y0) be the set of all fuzzy

near best approximations to x0 and y0 within the relative distance ρ =
1

10
with

respect to the fuzzy norms N1 and N2 respectively. If P
fn( 1

10 )
K (x0 ⊗ y0) is the

set of all fuzzy near best approximations to x0 ⊗ y0 within the relative distance

ρ =
1

10
with respect to the fuzzy norm N , then a straightforward calculation

reveals that

P
fn( 1

10 )
K1

(x0) = {e2}

P
fn( 1

10 )
K2

(y0) = {e1}

P
fn( 1

10 )
K (x0 ⊗ y0) = {e1 ⊗ e2} 6= {e2 ⊗ e1} .

This example shows that there is no relation between P
fn( 1

10 )
K (x0 ⊗ y0) and

P
fn( 1

10 )
K1

(x0)⊗ P fn( 1
10 )

K2
(y0).

5. Conclusion

In this paper some basic properties of a generalized notion of fuzzy best ap-
proximation are presented. Many hereditary properties concerning this notion
are given. Also many examples for illustration are presented. In the future, we
will look for deeper theoretical results and more detailed applications of this
concept.
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