
ON THE ZHANG-POWER SERIES DISTRIBUTIONS WITH

APPLICATION TO LIFETIME MODELING

H. Memarbashi , J. Etminan , and M. Chahkandi �

Article type: Research Article

(Received: 28 June 2024, Received in revised form 21 November 2024)

(Accepted: 13 December 2024, Published Online: 15 December 2024)

Abstract. Many recent probability distributions are introduced by com-

pounding the well-known continuous distributions with the power series

distribution. In this paper, we provide a general closed-form expression
for the cumulative distribution function of this class. Then, we intro-

duce a new four parameter lifetime distribution called Zhang-power se-

ries (ZPS) distribution. This distribution is very useful in the lifetime,
reliability and extreme-value data analysis. The distribution properties

including survival function, hazard function and limiting behavior of the

probability density and hazard functions are studied. The method of
maximum likelihood estimation is used to estimate the model parame-

ters. Applications to real data sets are given to show the flexibility and

potentiality of the proposed model.

Keywords: Maximum likelihood estimation, Monte Carlo simulation, Power
series distribution, Zhang distribution.
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1. Introduction

In many fields such as business, environment, actuarial science, biomedi-
cal science, survival analysis and industrial reliability, we need to find an ap-
propriate model for fitting the lifetime data. On the other hand, classical
probability distributions do not provide adequate fits to real data. Therefore,
several methods for generating new probability distributions by adding one or
more parameters have been presented in the literature. Recently, some new
families of distributions have been introduced by compounding useful lifetime
distributions. In a known approach, one may consider a series (parallel) sys-
tem with N component lifetimes X1, . . . , XN , where N is a random variable,
and then study the lifetime of the system, i.e. T = min{X1, X2, . . . , XN}
(T = max{X1, X2, . . . , XN}). After considering different discrete distributions
for N and continuous distributions for the lifetimes of the components, we can
find some new distributions with flexible hazards. Exponential-geometric (EG),
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exponential-Poisson (EP) and exponential-logarithmic (EL) distributions pro-
posed by Adamidis and Loukas [1], Kus [15] and Tahmasbi and Rezaei [30],
respectively, are some examples of distributions which are produced in this di-
rection. Chahkandi and Ganjali [8] introduced exponential-power series (EPS)
distributions which contain as special cases the EP, EG and EL distributions.
Silva et al. [26] studied the extended Weibull power series (EWPS) family,
which includes as special models the EPS and Weibull power series (WPS)
family introduced by Morais and Barreto-Souza [21]. Some of other new works
have included: exponentiated generalized gamma distribution by Cordeiro et
al. [11]; exponentiated Weibull-Poisson distribution by Mahmoudi and Sep-
ahdar [18]; exponentiated Weibull-logarithmic distribution by Mahmoudi et
al. [19]; a general family of continuous lifetime distributions by Asgharzadeh
et al. [6]; Weibull Rayleigh by Faton and Elbatal [12]; the generalized gamma
power series distribution by Silva et al. [27]; generalized modified Weibull power
series (GMWPS) by Bagheri et al. [7], and a new four-parameter distribution by
Alizadeh et al. [4]. Some other recent works have studied by Ahmad et al. [2],
Roozegar et al. [24], Alizadeh [5], Moakofi [20], Hassan et al. [14], Shakha-
treh [25] and Soliman Hassan [29]. In the sequel, we present a general form for
finding new distributions in this manner. Some authors considered a parallel
system instead of the series system and followed the same approach, see for ex-
ample Alizadeh et al. [3] and Mahmoodian [17]. Transmutation of the baseline
distribution is also another approach for constructing the new distributions, we
refer to Rahman et al. [23] and Pandey et al. [22] for more details.

In this paper, we are motivated to introduce a new distribution for fitting
the lifetime data. We first consider a general case in which N is a discrete
random variable from a power series distribution truncated at zero, and the
component lifetimes follow from a general distribution F . Then, we obtain the
probability density function (pdf), cumulative distribution function (cdf) and
hazard function of the lifetime of a series system. In the sequel, we will consider

F (x) = (1− eθ(1−ex
β
))α known as Zhang distribution, introduced by Zhang

(2004), and define the new class of distributions known as Zhang-power series
(ZPS) distribution. The Zhang distribution, just like exponentiated-Weibull
distribution, is very useful in the lifetime, reliability and extreme-value data
analysis. It is known that the lifetime distribution of many electronic and
mechanical products usually has non-monotone failure rate. In some reliability
situations such as life-cycle of the products because of aging and wearout,
we have high initial and eventual failure rates that conclude bathtub shape
failure rate. The high initial failure rate may be because of undiscover defects
and starting to wear-out the items after some period of time causes the high
eventual failure rate. The ZPS distribution includes decreasing and different
shapes of the bathtub failure rates and is useful for modeling these cases. Some
properties of the new proposed distribution such as the density function, the
hazard rate and some properties of the kth order statistic are given in Section
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3. The Zhang logarithmic distribution as a especial case of the new introduced
family of distribution is discussed in Section 4. In Section 5, we consider some
real data sets to show the flexibility and potentiality of the new distribution in
finding the appropriate model.

2. A general class

. Let X1, ..., XN be a random sample from a continuous distribution F , where
N is a discrete random variable from a power series distribution (truncated

at zero) with probability function P (N = n) =
anλ

n

C(λ)
, n = 1, 2, . . ., where

C(λ) =
∞∑
n=1

anλ
n, an > 0 and λ > 0. The power series family of distributions

includes Binomial, Poisson, Geometric and Logarithmic distributions. Table
5 in the Appendix contains some useful quantities for power series family of
distributions. Let T = min(X1, ..., XN ), and N is independent of Xi, i =
1, 2, . . ., then the conditional cdf of T |N = n is given by

FT |N=n(x) = P (T ≤ x|N = n) = 1−
(
F̄ (x)

)n
; x > 0,(1)

where F̄ (.) is the survival function of F . The marginal cdf of T can be found
as

G(x) = P (T ≤ x)

=

∞∑
n=1

P (T ≤ x,N = n)

=

∞∑
n=1

P (T ≤ x|N = n)P (N = n)

=

∞∑
n=1

anλ
n

C(λ)

(
1−

(
F̄ (x)

)n)
= 1−

∞∑
n=1

an
(
λF̄ (x)

)n
C(λ)

= 1−
C
(
λF̄ (x)

)
C(λ)

; x > 0, λ > 0.(2)

The respective pdf, hazard and reversed hazard functions of this general class
of distributions are as follows:

(3) g(x) = G′(x) =
λf(x)C ′

(
λF̄ (x)

)
C(λ)

,

(4) h(x) =
g(x)

Ḡ(x)
=
λf(x)C ′(λF̄ (x))

C
(
λF̄ (x)

) ,
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and

r(x) =
λf(x)C ′(λF̄ (x))

C(λ)− C(λF̄ (x))
.(5)

These representations help us to find some new distributions by compound-
ing the well-known continuous distributions and power series family. For ex-
ample, the EG, EP, EL, EPS, EWPS, GMWPS and some other distributions
are produced based on this idea.

3. The class of ZPS distributions

. Chen [9] proposed a two-parameter lifetime distribution with bathtub shape
or increasing hazard function as

Fc(x;β, θ) = 1− eθ
(
1−ex

β
)
, x > 0.(6)

Zhang [33] introduced a new three-parameter distribution by adding a shape
parameter on the Chen distribution given by

FZ(x;α, β, θ) =

(
1− eθ

(
1−ex

β
))α

, x > 0,(7)

where α > 0, β > 0 and θ > 0.
The pdf and hazard function of Zhang distribution are

fZ(x;α, β, θ) = αβθxβ−1ex
β

(Ψ(x;β, θ))α−1(1−Ψ(x;β, θ)),(8)

and

hZ(x;α, β, θ) =
αβθxβ−1ex

β

(Ψ(x;β, θ))α−1(1−Ψ(x;β, θ))

1− (Ψ(x;β, θ))α
,

respectively, where Ψ(x;β, θ) = 1− eθ(1−ex
β
).

Figure 1 shows the flexibility of hZ(x;α, β, θ) for different values of parameters.
Thus, we consider Zhang distribution for the component lifetimes and power
series distribution (truncated at zero) for N , and then study the distribution of
T = min{X1, . . . , XN}. From Eq. (2), the cdf of the new family of distribution,
Zhang-power series (ZPS) distribution, is given by

(9) FZPS(x;α, β, θ, λ) = 1−
C
(
λF̄ (x)

)
C(λ)

= 1− C (λ (1− (Ψ(x;β, θ))
α

))

C(λ)
.

The pdf and hazard function of the ZPS distribution are given, respectively, as

fZPS(x;α, β, θ, λ) =λαθβxβ−1ex
β

(Ψ(x;β, θ))
α−1

(1−Ψ(x;β, θ))

× C ′ (λ (1− (Ψ(x;β, θ))
α

))

C(λ)
,(10)
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Figure 1. Plot of the hazard function for different values of parame-
ters.

and

hZPS(x;α, β, θ, λ) =λαθβxβ−1ex
β

(Ψ(x;β, θ))
α−1

(1−Ψ(x;β, θ))

× C ′ (λ (1− (Ψ(x;β, θ))
α

))

C (λ (1− (Ψ(x;β, θ))
α

))
.(11)

The following propositions present the limiting behavior of the cdf and hazard
function of the ZPS distribution.

Proposition 3.1. The Zhang distribution is a limiting distribution of the ZPS
when λ→ 0+.

Proof.

lim
λ→0+

FZPS(x;α, β, θ, λ) = 1− lim
λ→0+

C (λ (1− (Ψ(x;β, θ))
α

))

C(λ)

= 1− lim
λ→0+

∞∑
n=1

an(λ(1− (Ψ(x;β, θ))α))n

∞∑
n=1

anλn

= 1− lim
λ→0+

a1(λ(1− (Ψ(x;β, θ))α)) +
∞∑
n=2

an(λ(1− (Ψ(x;β, θ))α))n

a1λ+
∞∑
n=2

anλn

= 1− (1− (Ψ(x;β, θ))α)

= (1− eθ(1−e
xβ ))α,(12)
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where the fourth equality is derived from the Hopital’s rule and replacing λ
with zero. �

Proposition 3.2. The behavior of the hazard function when x → 0+ and
x→∞ is as follows:

lim
x→0+

hZPS(x;α, β, θ, λ) = 0, and lim
x→∞

hZPS(x;α, β, θ, λ) =∞.

Order statistics play an important role in several areas of statistical inference.
They are also important in studying the lifetime of k-out-of-n systems in relia-
bility analysis. Therefore, we now discuss some properties of the order statistic
from the class of ZPS distributions.

Let X1:n < . . . < Xn:n denote the order statistics from a random sample
X1, ..., Xn with distribution F . It is not difficult to verify that the cdf of kth

order statistic can be expressed as

Fk:n(x) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n−k
l

)
(−1)

l

k + l
(F (x))

k+l
.(13)

Thus, the cdf and pdf of kth order statistic of ZPS distribution are as

FZPS(k)(x;α, β, θ, λ) = k

(
n

k

) n−k∑
l=0

(
n−k
l

)
(−1)l

k + l

(
1− C (λ (1− (Ψ(x;β, θ))

α
))

C(λ)

)k+l
.

(14)

and

fZPS(k)(x;α, β, θ, λ) = k

(
n

k

) n−k∑
l=0

(
n− k
l

)
(−1)lλαθβxβ−1ex

β

(Ψ(x;β, θ))
α−1

× (1−Ψ(x;β, θ))
C ′ (λ (1− (Ψ(x;β, θ))

α
))

C(λ)

×
(

1− C (λ (1− (Ψ(x;β, θ))
α

))

C(λ)

)k+l−1
,(15)

respectively.

3.1. Maximum likelihood estimation. In this section, we obtain the esti-
mation of parameters by using the maximum likelihood (ML) method. Let
x1, ..., xn be n observations of a random sample from ZPS distribution and our
unknown parameter vector be θ = (α, β, θ, λ). The log-likelihood function of
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ZPS distribution is given by

`(θ) = n (log λ+ logα+ log θ + log β) + (β − 1)

n∑
i=1

log xi

+(α− 1)

n∑
i=1

log (Ψ(xi;β, θ)) +

n∑
i=1

(xβi + θ(1− ex
β
i ))

−n log (C (λ)) +

n∑
i=1

log(C ′(λ(1− (Ψ(xi;β, θ))
α))).(16)

The associated score function is Un(θ) =

(
∂`

∂α
,
∂`

∂β
,
∂`

∂θ
,
∂`

∂λ

)
, where

∂`

∂α
,
∂`

∂β
,
∂`

∂θ

and
∂`

∂λ
are the partial derivatives of the log-likelihood function. Thus, we have

∂`

∂α
=
n

α
+

n∑
i=1

log (Ψ(xi;β, θ))− λ
n∑
i=1

{
(Ψ(xi;β, θ))

α
log (Ψ(xi;β, θ))

× C ′′ (λ (1− (Ψ(xi;β, θ))
α

))

C ′ (λ (1− (Ψ(xi;β, θ))
α

))

}
,

∂`

∂β
=
n

β
+

n∑
i=1

log xi + (α− 1)

n∑
i=1

θex
β
i xβi log xi (1−Ψ(xi;β, θ))

Ψ(xi;β, θ)

+

n∑
i=1

xβi log xi −
n∑
i=1

θxβi log xi e
xβi − λα

n∑
i=1

{
(Ψ(xi;β, θ))

α−1
θxβi log xi e

xβi

× (1−Ψ(xi;β, θ))
C ′′ (λ (1− (Ψ(xi;β, θ))

α
))

C ′ (λ (1− (Ψ(xi;β, θ))
α

))

}
,

∂`

∂θ
=
n

θ
− (α− 1)

n∑
i=1

(1− ex
β
i )(1−Ψ(xi;β, θ))

Ψ(xi;β, θ)
+

n∑
i=1

(1− ex
β
i )

+ λα

n∑
i=1

{
(1− ex

β
i ) (Ψ(xi;β, θ))

α−1
(1−Ψ(xi;β, θ))

× C ′′ (λ (1− (Ψ(xi;β, θ))
α

))

C ′ (λ (1− (Ψ(xi;β, θ))
α

))

}
,

and

∂`

∂λ
=
n

λ
− nC ′(λ)

C(λ)
+

n∑
i=1

(
1− (Ψ(xi;β, θ))

α
)C ′′ (λ (1− (Ψ(xi;β, θ))

α
))

C ′ (λ (1− (Ψ(xi;β, θ))
α

))
.

The maximum likelihood estimations of the parameters may be found by solving
the above system of nonlinear equations with respect to α, β, θ and λ. Since
the system has no closed form solution in α, β, θ and λ, we have to use a
numerical method such as the Newton-Raphson procedure to find the solution.
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As a special case of the ZPS class, we study Zhang-Logarithmic distribution
in the next section.

4. Zhang logarithmic distribution

The Zhang logarithmic (ZL) distribution is a special case of ZPS class ob-
tained from compounding the logarithmic distribution and Zhang distribution.
The Logarithmic distribution is a member of power series distributions with

an =
1

n
and C(λ) = − log(1− λ). From Eqs. (9) and (10), the cdf and pdf of

ZL distribution are given by

FZL(x;α, β, θ, λ) = 1− log (1− λ (1− (Ψ(x;β, θ))
α

))

log (1− λ)
,(17)

and

fZL(x;α, β, θ, λ) =
λαθβxβ−1 ex

β

(Ψ(x;β, θ))
α−1

(1−Ψ(x;β, θ))

log (1− λ) (λ (1− (Ψ(x;β, θ))
α

)− 1)
,(18)

where α > 0, β > 0, θ > 0 and 0 < λ < 1. Figure 2 shows the plots of the pdf
of ZL distribution for several combinations of the parameters. We find that
the density function is unimodal or decreasing when α or β are greater or less
than 1. The hazard function of ZL distribution can be found as
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Figure 2. Plots of the pdf of ZL distribution for different values of

parameters.

hZL(x;α, β, θ, λ) =
λαβθxβ−1 ex

β

(Ψ(x;β, θ))
α−1

(1−Ψ(x;β, θ))

log
(

1− λ (1− (Ψ(x;β, θ))
α

)
)(
λ (1− (Ψ(x;β, θ))

α
)− 1

) .
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Plots of the hazard function of ZL distribution for some values of the parame-
ters α, β, θ and λ are given in Figure 3. Figure 3 shows that the hazard function
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Figure 3. Plots of the hazard function of the ZL distribution for sev-
eral values of parameters.

of ZL has different shapes including decreasing and bathtub shape. This im-
plies that ZL distribution is suitable for monotonic and non-monotonic hazard
behaviors which are more likely to be encountered in real life.

Now, we find the maximum likelihood estimators of the parameters of ZL
distribution. Let x1, ..., xn be n observations of a random sample from ZL
distribution with unknown parameter vector θ = (α, β, θ, λ). From Eqs. (16)
and (18), we have

`(θ) =n
(

log λ+ logα+ log θ + log β
)

+ (β − 1)

n∑
i=1

log xi

+ (α− 1)

n∑
i=1

log (Ψ(xi;β, θ)) +

n∑
i=1

(
xβi + θ(1− ex

β
i )
)

− n log
(
− log(1− λ)

)
−

n∑
i=1

log
(
1− λ (1− (Ψ(xi;β, θ))

α
)
)
.(19)

The score function is Un(θ) =

(
∂`

∂α
,
∂`

∂β
,
∂`

∂θ
,
∂`

∂λ

)
, and the maximum likeli-

hood estimate of θ can be obtained by solving Un(θ) = 0. The normal equations
are as

∂`

∂α
=
n

α
+

n∑
i=1

log (Ψ(xi;β, θ))−
n∑
i=1

λ (Ψ(xi;β, θ))
α

log (Ψ(xi;β, θ))

(1− λ (1− (Ψ(xi;β, θ))
α

))
= 0,
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∂`

∂β
=
n

β
+

n∑
i=1

log xi + (α− 1)

n∑
i=1

θ log xi x
β
i e
xβi (1−Ψ(xi;β, θ))

Ψ(xi;β, θ)

+

n∑
i=1

xβi log xi −
n∑
i=1

θ log xi x
β
i e
xβi − θλα

n∑
i=1

{
log xi x

β
i e
xβi

× (1−Ψ(xi;β, θ)) (Ψ(xi;β, θ))
α−1

(1− λ (1− (Ψ(xi;β, θ))
α

))

}
= 0,

∂`

∂θ
=
n

θ
− (α− 1)

n∑
i=1

(1− ex
β
i )(1−Ψ(xi;β, θ))

Ψ(xi;β, θ)
+

n∑
i=1

(
1− ex

β
i

)
+

n∑
i=1

{
λα
(

1− ex
β
i

)
× (Ψ(xi;β, θ))

α−1
(1−Ψ(xi;β, θ))

(1− λ (1− (Ψ(xi;β, θ))
α

))

}
= 0,

and

∂`

∂λ
=
n

λ
+

n

(1− λ) log(1− λ)
+

n∑
i=1

(1− (Ψ(xi;β, θ))
α

)

(1− λ (1− (Ψ(xi;β, θ))
α

))
= 0.

These nonlinear system can be numerically solved by MATLAB or R software.
We will use the ‘bbmle’ package in R to obtain the estimations of the parame-
ters.

4.1. Monte Carlo simulation study. In this section, we use the simulation
study to check the performance and accuracy of the maximum likelihood es-
timates of the ZL model parameters. The following algorithm can be used to
generate random data from ZL distribution using the inverse cdf of ZL distri-
bution.

Algorithm I (Generating random data from ZL distribution)

1. Generate Ui ∼ Uniform(0, 1); i = 1, ..., n.

2. SetXi =

log

1− 1

θ
log

1−
(

1− 1

λ

(
1− e(1−Ui) log(1−λ)

)) 1

α





1

β

.

The simulation study is repeated N = 10000 times that the size of the samples
are n = 25, 50, 75, 100, 200, 400, 600 and the parameter values are I : α =
0.2, β = 0.7, θ = 0.4, λ = 0.5 and II : α = 0.6, β = 0.4, θ = 0.3, λ = 0.1.
We compute four quantities in this simulation study to verify the performance
of the estimators.

1. Relative average bias (RAB) of the ML estimator of θ: 1
Nθ

N∑
i=1

(θ̂i − θ).

2. Relative root mean squared error (RRMSE) of ML estimator of θ:

( 1
Nθ2

N∑
i=1

(θ̂i − θ)2)0.5.
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3. Coverage probability (CP) of 0.95 confidence intervals of θ.
4. Average width (AW) of 0.95 confidence intervals of the parameter θ.

Table 1 shows these items for different sample sizes. From the results of Table
1, we find that as n increases, the average widths decrease and the RMSEs and
average biases tend to zero. The CP of the confidence intervals are also quite
close to 95%. The approximate confidence intervals for the parameters is de-
rived using the asymptotic distribution of the MLEs. Under certain regularity

conditions, the limiting distribution of the vector
√
n(α̂−α, β̂−β, θ̂−θ, λ̂−λ),

as n → ∞, is a four-dimensional normal distribution with mean zero and co-
variance matrix Σ−1, where Σij is the (i, j)-th entry of the Fisher information
matrix, given by

Σij = −E(
∂2

∂θi∂θj
log(fZL(x;θ))).

The asymptotic behavior remains valid if Σ is replaced by Σ̂−1, where Σ̂ is the

Fisher information matrix with (α, β, θ, λ) replaced by (α̂, β̂, θ̂, λ̂). Using this
approximation, 100(1 − α) percent confidence intervals for α, β, θ, and λ are
as follows:

α̂± Z1−α2

√
Σ̂−111 , β̂ ± Z1−α2

√
Σ̂−122 , θ̂ ± Z1−α2

√
Σ̂−133 , λ̂± Z1−α2

√
Σ̂−144 ,

where Zα is the lower α-th percentile of the standard normal distribution.

Table 1. Monte Carlo simulation results

I II

Parameter n RAB RRMSE CP AW RAB RRMSE CP AW
α 25 2.700 64.258 0.949 16.988 0.242 0.626 0.999 1.287

50 0.580 2.795 0.942 2.908 −0.002 0.766 0.876 1.747
75 −0.220 1.985 0.931 2.058 −0.040 0.536 0.902 1.311
100 −0.260 1.715 0.923 1.698 −0.003 0.458 0.916 1.122
200 −0.305 1.255 0.898 1.109 0.020 0.320 0.934 0.766
400 −0.215 0.950 0.897 0.783 0.003 0.216 0.945 0.523
600 −0.180 0.765 0.917 0.639 0.006 0.173 0.954 0.422

β 25 0.325 0.721 0.986 4.183 −0.452 0.885 0.945 2.363
50 0.287 0.555 0.994 2.644 0.095 0.347 0.992 0.848
75 0.268 0.485 0.997 2.015 0.052 0.265 0.992 0.669
100 0.230 0.420 0.996 1.625 0.030 0.230 0.991 0.575
200 0.182 0.330 0.998 1.022 −0.002 0.165 0.993 0.395
400 0.121 0.238 0.993 0.656 −0.010 0.122 0.993 0.273
600 0.087 0.184 0.987 0.510 −0.010 0.107 0.992 0.219

θ 25 1.227 6.562 0.992 9.201 1.370 2.310 0.962 2.845
50 0.262 2.052 0.994 4.455 0.127 0.683 0.961 1.751
75 0.005 1.452 0.992 3.272 1.157 0.570 0.972 1.407
100 −0.087 1.172 0.989 12.738 −0.127 0.520 0.977 1.241
200 −0.235 0.840 0.977 1.858 0.120 0.417 0.982 0.865
400 −0.202 0.655 0.9569 1.334 0.097 0.337 0.989 0.588
600 −0.165 0.567 0.951 1.106 −0.077 0.297 0.988 0.464

λ 25 0.130 0.602 0.944 6.006 −2.090 3.360 0.979 3.856
50 0.194 0.576 0.950 4.091 −1.640 3.060 0.974 4.439
75 0.224 0.568 0.925 3.284 −1.440 2.830 0.984 3.538
100 0.212 0.558 0.895 2.878 −1.410 2.780 0.986 3.133
200 0.228 0.536 0.829 2.031 −1.210 2.520 0.994 2.133
400 0.178 0.506 0.807 1.575 −0.990 2.280 0.998 1.405
600 0.128 0.464 0.823 1.375 −0.790 2.030 0.999 1.053
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The rth moment of a random variable X from the ZL distribution, denoted by
µ′r, is given by

µ′r = E(Xr) =

∞∫
0

xrfZL(x)dx =

∞∑
n=1

P (N = n)E(Xr
(1)),

where E(Xr
(1)) is the rth moment of the first order statistics of the Zhang

distribution. Due to the complexity of the distribution, it is not possible to
provide a closed-form expression for the expected value of E(Xr). Therefore,
the moments of the distribution are computed numerically and reported in
Table 2. We have also presented the related measures such as coefficient of
variation (CV), coefficient of skewness (CS), and coefficient of kurtosis (CK)
of the ZL distribution in Table 2. These measures are calculated as follows:

CV =

√
E(X − µ′1)2

µ′1
=

√
µ′2
µ′1
− 1,

CS =
E(X − µ′1)3√
(E(X − µ′1)2)3

=
µ′3 − 3µ′1µ

′
2 + 2µ′31

(µ′2 − µ′21 )3/2
,

CK =
E(X − µ′1)4

(E(X − µ′1)2)2
=
µ′4 − 4µ′1µ

′
3 + 6µ′21 µ

′
2 − 3µ′41

(µ′2 − µ′21 )2
.

The Lorenz and Bonferroni curves are widely used tools for analyzing inequal-
ity and distribution in various domains. In medicine, these curves help assess
the distribution of healthcare resources or treatment outcomes across popula-
tions. In the context of income and poverty, they are instrumental in measuring
economic disparities and understanding wealth distribution. Similarly, in reli-
ability and insurance, these curves are used to model risk distribution and to
make informed decisions regarding policy pricing and resource allocation. The
Lorenz and Bonferroni curves for the ZL distribution are given by

L(x) =
1

µ1
′

F−1
ZL(x)∫
0

yfZL(y)dy =
1

µ1
′

x∫
0

F−1ZL(y)dy,

and

B(x) =
1

xµ1
′

F−1
ZL(x)∫
0

yfZL(y)dy,

respectively. Figure 4 illustrates the Lorenz curves for the ZL distribution
corresponding to selected parameters, which is calculated numerically.
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Table 2. Moments and some related measures for selected values
of the parameters.

Moments (α = 1, β = 1, θ = 1, λ = 0.8) (α = 2, β = 1, θ = 1, λ = 0.2) (α = 0.5, β = 1, θ = 0.3, λ = 0.5)

µ′1 0.4267 0.8060 0.6968
µ′2 0.3276 0.8094 0.9425
µ′3 0.3307 0.9385 1.5959
µ′4 0.3931 1.2085 3.0668
CV 0.8939 0.4958 0.9700
CS 1.2011 0.4468 0.9789
CK 4.1110 2.8054 3.1472
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Figure 4. Lorenz curve for the ZL distribution.

5. Real data applications

. In this section, we analyze two real data sets to demonstrate the performance
of the ZPS distribution in practice. We illustrate the superiority of the ZL
distribution from the new class as compared to some of the previous models.
We compare the fit of the ZL distribution with nine distributions as given in
the Appendix. The following criteria are used to compare the performance of
the models.

1. Akaike Information Criterion (AIC):

AIC = 2k − 2 log(L).

2. Corrected Akaike Information Criterion (AICC):

AICC = AIC +
2k(k + 1)

n− k − 1
.
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3. Bayesian Information Criterion (BIC):

BIC = k log(n)− 2 log(L).

4. Sum of Squares (SS) from the probability plots:

SS =

n∑
i=1

(
p(i) −

i− 0.375

n+ 0.25

)2

,

where L = L(θ̂) is the value of the likelihood function calculated at the param-
eter estimates, n is the number of observations, k is the number of estimated
parameters and where p(i) = Fθ̂(x(i)) is the value of the distribution function
calculated at the parameter estimates.

To verify which distribution provides the best fit for the data, we calculate
the p-values of Kolmogorov-Smirnov test and the goodness-of-fit test statistics
W ∗ and A∗ as follows.

1. Cramer von Mises statistic:

W ∗ =
1

12n
+

n∑
i=1

(
2i− 1

2n
− p(i)

)2

,

2. Anderson-Darling statistic:

A∗ = −n− 1

n

n∑
i=1

(2i− 1)
{

log(p(i)) + log(1− p(n−i+1))
}
.

In general, the smaller the values of W ∗ and A∗, the better the fit. For more
details of these statistics, see Chen and Balakrishnan [10].

Now, we consider two real data sets to verify the performance of the new
class of distributions in practice.

5.1. Plasma concentrations data.
. The first data set contains 66 observations of plasma concentrations of in-
domethicin (mcg/ml). Warahena-Liyanage and Pararai [31] show that Lindly
logarithmic distribution provides the best fit for the data. Table 3 lists the
MLEs of the model parameters and the values of model selection criteria. The
values of AIC, AICC, BIC and SS show that the ZL distribution performs the
best for the data. Also, based on the goodness-of-fit statistics W ∗ and A∗, we
find that the ZL distribution is better than the LL distribution and is the best
fit for the plasma concentrations data.

Figure 5 shows the fitted densities, histogram and observed probability ver-
sus predicted probability of plasma concentrations data.

5.2. Glass fibres data set.



On the Zhang-power series distributions with... – JMMR Vol. 14, No. 1 (2025) 519

Table 3. Estimates of models for plasma concentration data

Distribution α̂ β̂ θ̂ λ̂ −2 logL AIC AICC BIC SS KS(p.value) W∗ A∗

ZL 10.271 0.820 0.430 0.999 37.37 45.36 46.02 54.13 0.151 0.192 0.149 0.865
Z 1157 0.091 5.126 - 55.51 63.51 64.165 72.27 0.235 0.199 0.233 1.432
LL - 1.122 - 0.754 61.09 65.09 65.28 69.47 0.160 0.370 0.162 1.205
LP - 1.660 - 1.403 61.81 65.09 65.28 69.47 0.200 0.210 0.203 1.371
LG - 1.577 - 0.553 61.19 65.09 65.28 69.47 0.165 0.352 0.166 1.220
EL - 1.331 - 0.617 61.27 65.27 65.28 69.64 0.161 0.379 0.162 1.206
EG - 1.300 - 0.402 61.32 65.32 65.28 69.70 0.164 0.359 0.165 1.215
EP - 1.321 - 0.966 61.51 65.32 65.28 69.70 0.178 0.287 0.178 1.263
L - 2.213 - - 64.35 66.35 66.41 68.54 0.369 0.050 0.365 2.182
W - 0.957 - 1.684 62.64 65.32 65.28 69.70 0.228 0.167 0.228 1.478
G - 1.659 - 0.982 62.84 66.84 67.03 71.22 0.271 0.107 0.270 1.675

Figure 5. Histogram, fitted density and probability plots for plasma
concentration data.

. The second data set is 63 observations obtained from Smith and Naylor [28]
represent the strengths of 1.5 cm glass fibres, measured at the National Phys-
ical Laboratory, England. Results of fitting the ZL and other mentioned dis-
tributions are given in Table 4. These results show that the ZL and Weibull
distributions have better fit than the other proposed models.

Table 4. Estimates of models for glass fibres data

Distribution α̂ β̂ θ̂ λ̂ −2 logL AIC AICC BIC SS KS(p.value) W∗ A∗

ZL 1.949 1.683 0.173 0.0007 28.547 36.547 37.237 45.120 0.160 0.194 0.165 0.933

LL - 0.996 - 0.0001 162.558 166.558 166.758 170.845 3.302 5.6× e−9 3.332 16.245

LP - 0.996 - 0.0001 162.559 166.559 166.759 170.845 3.301 5.6× e−9 3.332 16.245

LG - 0.996 - 5.25× e−5 162.558 166.558 166.758 170.845 3.302 5.6× e−9 3.332 16.245

EL - 0.664 1.68× e−11 177.660 181.660 181.860 185.947 7.374 1.7× e−10 7.406 34.389

EG - 0.664 - 1.39× e−11 177.661 181.660 181.860 185.947 3.831 1.7× e−10 3.862 18.426

EP - 0.664 - 6.14× e−6 177.661 181.661 181.861 185.947 3.831 1.7× e−10 3.862 18.426

L - 0.996 - - 162.557 164.557 164.623 166.700 3.302 5.6× e−9 3.332 16.245
W - 5.781 - 0.0600 30.414 34.414 34.614 38.700 0.211 0.097 0.215 1.241
G - 11.574 - 17.4400 47.903 51.903 52.103 56.189 0.559 0.004 0.566 3.087
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Figure 6. Histogram, fitted density and probability plots for plasma

concentration data.

6. Conclusion

In this paper, we provided a general closed-form expression for the cumu-
lative distribution function of a class of distributions that can be found by
compounding the well-known continuous distributions with the power series
distribution. Then, we proposed a new class of four-parameter lifetime distri-
butions called the ZPS distribution. Some mathematical properties of the cu-
mulative distribution, probability density and failure rate functions of the ZPS
distribution are examined. In the sequel, we considered the ZL distribution as a
special case of the new proposed distribution and presented a simulation study
to exhibit the performance and accuracy of the maximum likelihood estimators
of the parameters. Real data applications are also presented to illustrate the
usefulness and applicability of the ZL distribution. The results of goodness-of-
fit tests showed that the ZL distribution has better fit than some other recent
introduced models.
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13. Appendix A

Some useful quantities for power series family of distributions are given in
Table 5.

Table 5. Useful quantities of some members of power series fam-
ily.

Dis. C(λ) C′(λ) C′′(λ) C′′′(λ) C−1(λ) an Par. Space

Poisson eλ − 1 eλ eλ eλ log(1 + λ) (n!)−1 (0,∞)

Geometric λ(1− λ)−1 (1− λ)−2 2(1− λ)−3 6(1− λ)−4 λ(1 + λ)−1 1 (0, 1)

Logarithmic − log(1− λ) (1− λ)−1 (1− λ)−2 2(1− λ)−3 1− e−λ n−1 (0, 1)

Binomial (1 + λ)m − 1 m
(1+λ)1−m

m(m−1)

(1+λ)2−m
m(m−1)(m−2)

(1+λ)3−m
(1 + λ)

1
m − 1

(
m
n

)
(0, 1)

The list of nine distributions which are compared with ZL distribution in Sec-
tion 4.

1. Lindley- logarithmic (LL) distribution, introduced by Warahena-Lianage
and Pararai [31], with given pdf as

fLL(x;β, λ) =
λβ2(1 + x)e−βx

(β + 1) log(1− λ)

(
λ

(
1 + β + βx

β + 1

)
e−βx − 1

) ,(20)

where x > 0, β > 0, 0 < λ < 1.
2. The Lindley geometric (LG) distribution, introduced and studied by

Zakerzadeh and Mahmoudi [32], with density function

fLG(x;β, λ) =
β2(1− λ)(1 + x)e−βx

(β + 1)[1− λ( 1+β+βx
β+1 )e−βx]

2 , x > 0, β > 0, 0 < λ < 1.
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3. The Lindley Poisson (LP) distribution, introduced and studied by Gui
et al. [13], given by

fLP (x;β, λ) =
λβ2(1 + x)eλ(

1+β+βx
β+1 )e−βx−βx

(β + 1)(eλ − 1)
, x > 0, β > 0, λ > 0.

4. The pdf of exponential-logarithmic (EL) distribution, introduced by
Tahmasbi and Rezaei [30], given by

fEL(x;β, λ) =
βλ e−βx

log(1− λ) (λ e−βx − 1)
, x > 0, β > 0, 0 < λ < 1,

5. Exponential-geometric (EG) distribution, introduced by Adamidis and
Loukas [1], which is given by

fEG(x;β, λ) =
β(1− λ)e−βx

(1− λe−βx)2
, x > 0, β > 0, 0 < λ < 1,

6. Exponential-Poisson (EP) distribution, introduced by Kus [15], which
is expressed as

fEP (x;β, λ) =
λβe−βxeλe

−βx

eλ − 1
, x > 0, β > 0, λ > 0,

7. Lindley (L) distribution, introduced by Lindley [16], with the following
pdf

fL(x) =
β2

β + 1
(1 + x)e−βx, x > 0, β > 0,(21)

8. Weibull (W) distribution with pdf

fW (x;β, λ) = λβxβ−1e−λx
β

, x > 0, β > 0, λ > 0,

9. Gamma (G) distribution with pdf

fG(x;β, λ) =
βλxλ−1e−βx

Γ(λ)
, x > 0, β > 0, λ > 0.
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