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Abstract. This paper focuses on the study of Hom-groups. A Hom-
group (G, ∗, α) is the non-associative generalization of the classical group

G whose associativity and unitality are twisted by a compatible bijec-

tive map α. We present more properties of Hom-groups, Hom-subgroups,
Hom-normal subgroups, Hom-quotient groups and Hom-group homomor-

phisms with examples. We prove the Zassenhaus Butterfly Lemma of

Hom-groups as a major result of this paper.
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1. Introduction

The concept of Hom-Lie algebras was introduced by Hartwig et al. in [6]
in their study of deformations of the Witt and Virasoro algebras. Since the
introduction of Hom-Lie algebras, many researchers have worked on expanding
and extending the concept to include other Hom-like structures such as Hom-
Lie groups, Hom-Hopf algebras, Hom-coalgebras and Hom-bialgebras. For full
details, the readers should see ([2], [3], [5], [6], [11-13], [15-19], [21-24]). Has-
sanzadeh [8], Laurent-Gengouxa and Makhlouf [13] have shown in their works
that the twisting map in the Hom-group (G,α) needs not to be invertible as it
was taken in the previous works. Using the invertibiliy of α, Hassanzadeh [7]
studied and obtained many interesting properties of the Hom-group including
Hom-group representations and Hom-group cohomology. Following the notions
introduced and used to study Hom-groups by Hassanzadeh in [7, 8], Liang et
al. [14] extensively studied Hom-groups. Many basic and fundamental prop-
erties of Hom-groups were presented with interesting examples. They proved
first, second and third isomorphism theorems of Hom-groups. They introduced
the concept of Hom-group action and proved the first Sylow theorem for Hom-
groups. In [1], Agboola et al. for the first time introduced the concept of
neutrosophic Hom-group. Many examples of both the Hom-groups and neu-
trosophic Hom-groups were presented. They presented basic and fundamental
properties of neutrosophic Hom-groups. In addition, they studied neutrosophic
morphisms of neutrosophic Hom-groups along with their properties and they
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established a kind of morphism relationship that exists between a neutrosophic
Hom-group G(I) and a Hom-group G×G. In the present paper, we follow the
concepts introduced by Hassanzadeh [7, 8] and Liang et al. [14] to further study
and obtain more properties of Hom-groups. Specifically, we present more prop-
erties of Hom-groups, Hom-subgroups, Hom-normal subgroups, Hom-quotient
groups and Hom-group homomorphisms with examples. As a major result of
this paper, we prove the Zassenhaus Butterfly Lemma of Hom-groups.

1.1. Recalls. In this subsection, we will recall the definition, basic notations
and properties of Hom-groups as presented by Basdouri et al. in [3], Hassan-
zadeh in [7, 8], Liang et al. in [14] and Jiang etal. in [10] which we are going
to use in the sequel.

Definition 1.1. [10] Let G be a nonempty set, ∗ : G × G → G a binary
operation on G, α : G → G a bijective set map and 1 ∈ G a distinguished
element. The quadruple (G, ∗, α, 1) is called a Hom-group if the following
conditions hold:

(i) The product map α satisfies the Hom-associativity property

α(g) ∗ (h ∗ k) = (g ∗ h) ∗ α(k) ∀g, h, k ∈ G.
(ii) The product map α is multiplicative that is

α(g ∗ k) = α(g) ∗ α(h) ∀g, h ∈ G.
(iii) The element 1 ∈ G called the unit element satisfies the Hom-unitary

conditions

g ∗ 1 = 1 ∗ g = α(g) ∀g ∈ G.
(iv) For every element g ∈ G, there exists an element g−1 ∈ G such that

g ∗ g−1 = g−1 ∗ g = 1.

If there is no confusion, we may omit the multiplication sign ∗. In that
case g ∗ h will be written simply as gh.

(v) For any g ∈ G, there exists k ∈ N satisfying the Hom-invertibility
condition

αk(gg−1) = αk(g−1g) = 1.

If only conditions (i) and (ii) are satisfied, G is called a Hom-semigroup.
A Hom-semigroup with condition (iii) is called a Hom-monoid and a
Hom-monoid with condition (iv) is called a Hom-group.

In (v), the smallest such k is called the invertibility index of g. If
the invertibility index of g ∈ G is k, then the invertibility index of α(g)
is k − 1.

Example 1.2. [1] Let C be the set of complex numbers and let ∗ : C×C→ C
be the binary operation on C defined by z1 ∗ z2 = z1 + z2 ∀z1, z2 ∈ C. Let
α : C → C be a mapping defined by α(z) = z ∀z ∈ C. Then (C, ∗, α, 0) is an
abelian Hom-group.
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Proposition 1.3. [14] Let G be a Hom-group.

(a) The unit element of G is unique.
(b) For any element g, h ∈ G:
(i) α(1) = 1;

(ii) g−1 is unique;
(iii) (g−1)−1 = g;
(iv) (gh)−1 = h−1g−1;
(v) (α(g))−1 = α(g−1).

Proof. See [14]. �

Proposition 1.4. [14] Let G be a Hom-group.

(a) If there is an element g ∈ G such that gg = α(g) = g1, then g = 1.
(b) If the elements g, h, k ∈ G satisfy gh = gk or hg = kg, then h = k.
(c) For any g, h, k ∈ G:
(i) α−1(gh) = α−1(g)α−1(h);

(ii) (α−1(g)h)k = g(hα−1(k)).

Proof. See [14]. �

Proposition 1.5. [7] Let (G,µ) be a group and let α : G → G be a group
automorphism. Then (G,α ◦ µ, α) is a Hom-group.

Proof. See [1] �

Definition 1.6. [7] Let H be a nonempty subset of a Hom-group (G,α) that
is closed under the binary operation in G. H is said to be a Hom-subgroup of
G if (H,α) is itself a Hom-group under the binary operation inherited from G
and we write H ≤ G.

Proposition 1.7. [14] Let H and K be two Hom-subgroups of a Hom-group
G.

(a) (i) 1H = 1G.
(ii) for each h ∈ H, h−1H = h−1G .
(b) (i) H ∩K ≤ G.
(ii) H ∪K ≤ G if and only if H ⊂ K or K ⊂ H.

Proof. See [14]. �

Definition 1.8. [14] Let H be a Hom-subgroup of a Hom-group G and let
g ∈ G. The sets gH an Hg are defined respectively by {gh : h ∈ H} and
{hg : h ∈ H}. gH is called a Hom-left coset of H in G while Hg is called a
Hom-right coset of H in G. The set of all distinct Hom-left cosets of H in G is
denoted by G/H.

Generally, gH 6= Hg except if G is abelian. However, if gH = Hg ∀g ∈ G,
then H is called a Hom-normal subgroup of G and we write H CG.

Proposition 1.9. [14] Let H be a Hom-subgroup of a finite Hom-group G.
For all g, h ∈ G, the following statements are equivalent:
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(i) gH = hH;
(ii) gH ∩ hH 6= ∅;

(iii) g−1h ∈ H;
(iv) α(h) ∈ gH;
(v) α(g)H = α(h)H.

Proof. See [14]. �

Proposition 1.10. [14] Let H be a Hom-subgroup of a Hom-group G. For
all g ∈ G, the following statements are equivalent:

(i) gH = Hg;
(ii) for h ∈ H, (gh)α(g−1) ∈ H;

(iii) (gH)α(g−1) ⊆ H;
(iv) (gH)α(g−1) = H;
(v) α(g)H = Hα(g).

Proof. See [14]. �

Lemma 1.11. [14] Let (G, ∗, α) be a Hom-group. Let H ≤ G and N C G.
Then, NH = HN ≤ G.

Proof. See [14]. �

Proposition 1.12. [14] If H is a Hom-normal subgroup of a Hom-group
(G, ∗, α), then (G/H,�, β) is a Hom-group, where � is defined for any aH, bH ∈
G/H by aH � bH = a ∗ bH and β is defined for any aH ∈ G/H by β(aH) =
α(a)H.

Proof. See [14]. �

Definition 1.13. [14] Let (G,α) and (H,β) be two Hom-groups. The map
φ : G → H is called a Hom-group homomorphism if φ satisfies the following
two conditions:

(i) for any g, h ∈ G, φ(gh) = φ(g)φ(h);
(ii) for all g ∈ G, β(φ(g)) = φ(α(g)).

In addition, if φ is a bijection, then we call φ an isomorphism and we write
G ∼= H.

Definition 1.14. [14] The map φ : (G,α) → (H,β) is called a weak Hom-
group homomorphism if φ(1G) = 1H and β ◦ α(gk) = (φ ◦ α(g))(φ ◦ α(k))
∀g, k ∈ G.

Proposition 1.15. [14] Let φ : (G,α) → (H,β) be a Hom-group homomor-
phism. Then,

(i) φ(1G) = 1H ;
ii) for all g ∈ G, φ(g−1) = (φ(g))−1;

(iii) KerφCG;
(iv) Imφ ≤ H.
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Proof. See [14]. �

Proposition 1.16. Let φ : (G,α)→ (H,β) be a Hom-group homomorphism.

(a) If A ≤ G and B ≤ H, then,
(i) φ(A) ≤ H;

(ii) φ−1(B) ≤ G.
(b) (i) φ is a monomorphism if and only if Kerφ = {1G};
(ii) φ is an epimorphism if and only if Imφ = H;
(iii) φ is an isomorphism if and only if Kerφ = {1G} and Imφ = H.

Proof. See [14]. �

Proposition 1.17. [14] (First Isomorphism Theorem) Let φ : (G,α)→ (H,β)
be a Hom-group homomorphism. Then, G/Kerφ ∼= Imφ. If φ is a Hom-group
epimorphism, then, G/Kerφ ∼= H.

Proof. See [14]. �

Lemma 1.18. [14] If G is a Hom-group such that H ≤ G and N CG, then,
HN = NH ≤ G.

Proof. See [14]. �

Proposition 1.19. [14] (Second Isomorphism Theorem) Let G be a Hom-
group such that H ≤ G and N CG. Then,

(i) H ∩N CH;
(ii) N CNH;
(iii) H/(H ∩N) ∼= NH/N .

Proof. See [14]. �

Proposition 1.20. [14] (Third Isomorphism Theorem) Let (G,α) be a Hom-
group such that M CG, N CG and N ≤M . Then,

(i) (M/N,µ)C (G/N, µ);
(ii) (G/N)/(M/N) ∼= G/M .

Proof. See [14]. �

Proposition 1.21. Let (G,α) be a Hom-group and let H,K ≤ G. If H and
K satisfy the following three conditions:

(i) G = HK;
(ii) H ∩K = {1};
(iii) ∀h ∈ H, k ∈ K, we have hk = kh,

then G ∼= H ×K.

Proof. See [14]. �
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2. Main Results

In this section, we will study and give more fundamental properties of Hom-
groups and provide examples.

Proposition 2.1. Let (G, ∗, α) be a Hom-group. Then, the unital element
1 ∈ G is the only idempotent element in G.

Proof. By definition, 1∗1 = α(1) = 1 which shows that 1 ∈ G is an idempotent
element. Suppose that 1 6= u ∈ G is also another idempotent element in G.
Then, u2 = u which implies that u(u − 1) = 0. Since u cannot be 0 or 1, it
follows that such a u does not exist in G and therefore, 1 is the only idempotent
element in G. �

Lemma 2.2. Let (G,α) be a Hom-group. Then for any g ∈ G:

(i) (α−1(g))−1 = α−1(g−1);
(i) (α−1(g−1))−1 = α−1(g);

(iii) (α(g)α−1(g−1))−1 = α−1(g)α(g−1) = α−1(g)α2(g−1) = gα(g−1).

Proof. (i) It is sufficient to show that the inverse of α−1(g) is α−1(g−1). To
this end,

α−1(g)α−1(g−1) = α−1(gg−1) = 1 and also,

α−1(g−1)α−1(g) = α−1(g−1g) = 1.

The required result follows from the uniqueness of the inverse element in G.
(ii) It suffices to show that the inverse of α−1(g−1) is α−1(g). To this end,

α−1(g−1)α−1(g) = α−1(g−1g) = 1 and also,

α−1(g)α−1(g−1) = α−1(gg−1) = 1.

The required result follows from the uniqueness of the inverse element in G.
(iii)

(α(g)α−1(g−1))−1 = (α−1(g−1))−1(α(g))−1

= α−1(g)α(g−1).(1)

= α(α−1(gg−1)[α−1(g)α(g−1)]

= (α−1(gg−1)α−1(g))α2(g−1)

= α−1(g)α2(g−1).(2)

From (1), we have

(α(g)α−1(g−1))−1 = α−1(g)α(g−1)

= (α−1(g)α(g−1))α(α−1(gg−1)

= α(α−1(g))(α(g−1)α−1(gg−1))

= gα(g−1).(3)

The required results follow from (1), (2) and (3). �
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Proposition 2.3. Let (G,α) be a Hom-group and let g, h ∈ G. Then, G is an
abelian Hom-group if and only if (gh)2 = g2h2.

Proof. Suppose that (gh)2 = g2h2. Then, (gh)(gh) = (gg)(hh) and so,

(gh)αα−1(gh) = (gg)αα−1(hh)

⇒ α(g)(hα−1(gh)) = α(g)(gα−1(hh)).

By premultiplying both sides by α2(g−1), we have

α2(hα−1(gh) = α2(gα−1(hh))

⇒ (α(h)α(g))α2(h) = (α(g)α(h))α2(h).

By postmultiplying both sides by α3(h−1), we have

α3(hg) = α3(gh))

hg = gh

and therefore, G is abelian.
Conversely, suppose that G is abelian. Then,

(gh)2 = (gh)(gh) = (gh)αα−1(gh) = α(g)(hα−1(gh))

= α(g)(αα−1(h)(α−1(g)α−1(h)) = α(g)((α−1(h)(α−1(g))h)

= α(g)((α−1(hg)h) = α(g)((α−1(gh)αα−1(h))

= α(g)(g(α−1(h)α−1(h))) = α(g)(gα−1(h2))

= g2h2.

�

Corollary 2.4. Let (G,α) be a Hom-group such that g2 = 1 ∀g ∈ G. Then G
is an abelian Hom-group. More generally, if G is a Boolean Hom-group, then
G is an abelian Hom-group.

Proposition 2.5. Let (G,α) be a Hom-group and let g, h ∈ G. G is an abelian
Hom-group if and only if (gh)−1 = g−1h−1.

Proof. Suppose that (gh)−1 = g−1h−1. Then, h−1g−1 = g−1h−1 so that

α2(h−1)α2(g−1) = α2(g−1)α2(h−1).

After some manipulations, we have

α6(hg) = α6(gh)

hg = gh

and therefore, G is abelian.
Conversely, suppose that G is abelian. Then, (gh)−1 = (hg)−1 = g−1h−1.

�

Proposition 2.6. Let (G,α) be a Hom-group and let g, h, k be any elements
of G. If gk = α(hk) , then g = h.
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Proof. Suppose that gk = α(hk). Then, gk = 1(gk) = α(gk) = α(g)α(k) =
α(hk) = α(h)α(k) which implies that α(g)α(k) = α(h)α(k) so that α2(g)1 =
α2(h)1 from which we obtain α3(g) = α3(h) and therefore, g = h. �

Example 2.7. Let (G, ∗) be a Klein 4-group where G = {1, a, b, c} and let
α : G → G be a group automorphism defined by α(1) = 1, α(a) = c, α(b) =
a, α(c) = b. Then, by Proposition 1.5, (G,α ◦ ∗, α) is a Hom-group shown in
the Cayley table below.

α ◦ ∗ 1 a b c
1 1 c a b
a c 1 b a
b a b 1 c
c b a c 1

.

It is observed that (G,α ◦ ∗, α) has no nontrivial Hom-subgroup.

Example 2.8. Let (G, ∗) be the group of integers modulo 8 that is G = Z8 =
{0, 1, 2, 3, 4, 5, 6, 7} and let α : G → G be a group automorphism defined by
α(0) = 0, α(1) = 7, α(2) = 6, α(3) = 5, α(4) = 4, α(5) = 3, α(6) = 2, α(7) = 1.
Then, by Proposition 1.5, (G,α ◦ ∗, α) is a Hom-group shown in the Cayley
table below.

α ◦ ∗ 0 1 2 3 4 5 6 7
0 0 7 6 5 4 3 2 1
1 7 6 5 4 3 2 1 0
2 6 5 4 3 2 1 0 7
3 5 4 3 2 1 0 7 6
4 4 3 2 1 0 7 6 5
5 3 2 1 0 7 6 5 4
6 2 1 0 7 6 5 4 3
7 1 0 7 6 5 4 3 2

.

It can easily be checked that (G,α◦∗, α) is non-cyclic, and it has two nontrivial
Hom-subgroups H = {0, 4} and K = {0, 2, 4, 6}. Since 4× 0 = 0, 4× 1 = 4 and
4×2 = 4+4 = 0, it follows that H is a cyclic Hom-subgroup of order 2 generated
by 4, that is H =< 4 >. For K, we have 2×0 = 0, 2×1 = 2, 2×2 = 2 + 2 = 4;
4×0 = 0, 4×1 = 4, 4×2 = 4+4 = 0; and 6×0 = 0, 6×1 = 6, 6×2 = 6+6 = 4;
it follows that K is not cyclic, that is K 6=< 2 >,< 4 >,< 6 >. Lastly, since
o(H) = 2, o(K) = 4, and the order of the Hom-group (G,α ◦ ∗, α) is 8, it
follows that both H and K satisfy Lagrange’s theorem.

Proposition 2.9. Let H be a subset of a Hom-group (G, ∗, α).

(a) H is a Hom-subgroup of G if the following conditions hold:
(i) H 6= ∅;
(ii) for any g, h ∈ H, then, gh ∈ H ;
(iii) for all h ∈ H, then, h−1 ∈ H.
(b) H is a Hom-subgroup of G if the following conditions hold:
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(i) H 6= ∅;
(ii) for any g, h ∈ H, then, gh−1 ∈ H.

Proof. Easy. �

Proposition 2.10. Let (G, ∗, α) be an abelian Hom-group and let H be a subset
of G defined by H = {g ∈ G : g = g−1}. Then, H is a Hom-subgroup of G for
all g ∈ G.

Proof. Suppose that G is abelian. It is clear that H 6= ∅ since 1 = 1−1 ∈ H.
Let g, h ∈ H be arbitrary. Then g = g−1 and h = h−1 so that gh−1 =
g−1h = g−1(h−1)−1 = (gh−1)−1 ∈ H. According to Proposition 2.9, H is a
Hom-subgroup of G. �

Example 2.11. Let (G, ∗) be a group where G = {±1,±i}, i2 = −1 and let
α : G → G be a group automorphism defined by α(1) = 1, α(−1) = −i, α(i) =
i, α(−i) = −1. Then, by Proposition 1.5, (G,α ◦ ∗, α) is a Hom-group shown
in the Cayley table below.

α ◦ ∗ 1 −1 i −i
1 1 −i i −1
−1 −i i −1 1
i i −1 1 −i
−i −1 1 −i i

.

It is observed that (G,α◦∗, α) has only one nontrivial Hom-subgroup H = {1, i}
which is cyclic generated by i, that is H =< i >.

Proposition 2.12. Let A and B be Hom-normal subgroups of Hom-groups
(G,α) and (H,β), respectively. Then, A×B CG×H.

Proof. Suppose that ACG and BCH. Then clearly, A×B 6= ∅ since (1G, 1H) ∈
A × B, and we have, (ga)α(g−1) ∈ A and (hb)β(h−1) ∈ H for (g, h) ∈ G ×
H and (a, b) ∈ A × B. Now, let (a, b), (c, d) ∈ A × B be arbitrary. Then,
(a, b)(c, d)−1 = (a, b)(c−1, d−1) = (ac−1, bd−1) ∈ A × B. This shows that
A×B ≤ G×H. For Hom-normality, consider ((g, h)(a, b))(α(g−1), β(h−1)) =
(ga, hb)(α(g−1), β(h−1)) = ((ga)α(g−1), (hb)β(h−1)) ∈ A × B. Accordingly,
A×B CG×H. �

Definition 2.13. Let A be a subset of the Hom-group (G,α). C(A), the
centralizer of A in G, is defined by C(A) = {g ∈ G : ag = ga ∀a ∈ A}.

Proposition 2.14. (i) C(A) ≤ G.
(ii) If A is an abelian Hom-subgroup of G, then AC C(A).

Proof. (i) C(A) 6= ∅ since 1 ∈ C(A). Next, suppose that g, h ∈ C(A) are arbi-
trary. Then, ga = ag and ha = ah so that h−1a−1 = a−1h−1. Now, (gh−1)a =
(gh−1)α(α−1(a)) = α(g)(h−1α−1(a)) = α(g)(α−1(a)h−1)) = (gα−1(a))α(h−1) =
(α−1(a)g)α(h−1) = a(gh−1). Hence, gh−1 ∈ C(A) and C(A) ≤ G.
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(ii) Suppose that A is an abelian Hom-subgroup of G. Then, a ∈ A im-
plies that a ∈ C(A) ∀a ∈ A. Suppose that g ∈ C(A). Then, ga = ag and
(ga)α(g−1) = (ag)α(g−1) = α(a)(gg−1) = α(a)1 = α2(a) ∈ A. Accordingly,
AC C(A). �

Definition 2.15. Let A be a subset of the Hom-group (G,α). N(A), the
normalizer of A in G, is defined by N(A) = {g ∈ G : gA = Ag}.

Proposition 2.16. (i) N(A) ≤ G.
(ii) If A is a Hom-subgroup of G, then ACG if and only if N(A) = G.

Proof. (i) N(A) 6= ∅ since 1 ∈ N(A). Next, suppose that g, h ∈ N(A) are
arbitrary. Then gA = Ag and hA = Ah so that h−1A = Ah−1. Now, for
a ∈ A, (gh−1)a = (gh−1)α(α−1(a)) = α(g)(h−1α−1(a)) = α(g)(α−1(a)h−1) =
(gα−1(a))α(h−1) = (α−1(a)g)α(h−1) = a(gh−1). Hence, (gh−1)A = A(gh−1),
gh−1 ∈ N(A) and N(A) ≤ G.
(ii) The proof is the same as the case of the classical group and so omitted. �

Lemma 2.17. Let (G,α) be a Hom-group and let H,K CG. Then, HK CG.

Proof. Suppose that H,K C G. Then, for any g ∈ G, there exist h ∈ H,
k ∈ K such that (gh)α(g−1) ∈ H and (gk)α(g−1) ∈ K. Again, there ex-
ist x ∈ H, y ∈ K such that x = (gh)α(g−1) and y = (gk)α(g−1). Now,
xy = ((gh)α(g−1))((gk)α(g−1)) = (α(g)(hg−1))(α(g)(kg−1)) ∈ HK, and,
(g(xy))α(g−1) = α(g)((α(g)(hg−1))(α(g)(kg−1))g−1) ∈ HK. Hence, HK C
G. �

Example 2.18. (i) Let (G,α ◦ ∗, α) be the Hom-group of Example 2.11
and let H = {1, i} be its Hom-subgroup. It can easily be checked that
HCG. Distinct Hom-left cosets of H in G are H and −iH which form
the partitions of G and G/H = {H,−iH}.

(ii) Let (G,α ◦ ∗, α) be the Hom-group of Example 2.8 and let H = {0, 4}
and K = {0, 2, 4, 6} be its Hom-subgroups. Distinct Hom-left cosets of
H in G are H, 1 +H, 2 +H and 3 +H which are the partitions of G
and G/H = {H, 1 + H, 2 + H, 3 + H}. Also, distinct Hom-left cosets
of K in G are K and 1 + K which also form the partitions of G and
therefore, G/K = {K, 1 +K}.

(iii) Let G/H be as defined in Example 2.18 (i) and consider the Cayley
table below.

� H −iH
H H −iH

−iH −iH H
.

It can easily be checked that (G/H,�, β) is a Hom-group.
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(iv) Let G/H and G/K be as defined in Example 2.18 (ii) and consider the
Cayley tables below.

⊕ H 1 +H 2 +H 3 +H
H H 3 +H 2 +H 1 +H

1 +H 3 +H 2 +H 1 +H H
2 +H 2 +H 1 +H H 3 +H
3 +H 1 +H H 3 +H 2 +H

,

⊕ K 1 +K
K K 1 +K

1 +K 1 +K K
.

It can easily be checked that (G/H,⊕, β) and (G/K,⊕, β) are Hom-
groups.

Proposition 2.19. Let A and B be Hom-normal subgroups of the Hom-groups
(G, ∗, α) and (H, ?, β), respectively. Let (G/A,�, λ) and (H/B,⊗, µ) be Hom-
quotient groups respectively factored by A and B. Let (G/A) × (H/B) =
{(gA, hB) : g ∈ G, h ∈ H}. Then, (G/A)× (H/B),�, γ) is a Hom-group.

Proof. To prove Hom-associativity, let (gA, hB), (pA, qB), (xA, yB) ∈ (G/A)×
(H/B) be arbitrary. Then,

γ((gA, hB))� ((pA, qB)� (xA, yB)) = (α(g)A, β(h)B)� (pxA, qyB)

= (α(g)(px)A, β(h)(qy)B)

= ((gp)α(x)A, (hq)β(y)B)

= ((gA, hB)� (pA, qB))� (α(x)A, β(y)B)

= ((gA, hB)� (pA, qB))� γ(xA, yB).

To establish Hom-multiplication, let (gA, hB), (pA, qB) ∈ (G/A) × (H/B) be
arbitrary. Then,

γ(((gA, hB)� (pA, qB)) = γ((gpA, hqB)) = (α(gp)A, β(hq)B)

= (α(g)A, β(h)B)� (α(p)A, β(q)B)

= γ((gA, hB))γ((pA, qB)).

For Hom-neutrality, let (gA, hB) ∈ (G/A)× (H/B) be arbitrary. Then,

(1, 1)� (gA, hB) = (1gA, 1hB) = (g1A, h1B) = (α(g)A, β(h)B)

= γ((gA, hB)).

Lastly for Hom-invertibility, we have for all (gA, hB) ∈ (G/A)× (H/B),

(gA, hB)� (g−1A, h−1B) = (gg−1A, hh−1B) = (1A, 1B) = (A,B),

(g−1A, h−1B)� (gA, hB) = (g−1gA, h−1hB) = (1A, 1B) = (A,B).

These show that for all (gA, hB) ∈ (G/A)×(H/B), (g−1A, h−1B) is its inverse.
Accordingly, (G/A×H/B,�, γ) is a Hom-group. �
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Lemma 2.20. Let φ : (G,α) → (H,β) be a Hom-group homomorphism and
let ACG and B CH. Then,

(i) φ(A)CH;
(ii) φ−1(B)CG.

Proof. Suppose that φ : (G,α)→ (H,β) is a Hom-group homomorphism.
(i) Given that ACG, it follows from Proposition 1.16 (a) (i) that A ≤ G. For
Hom-normality, let φ(a) ∈ φ(A) and h ∈ H. Then, there exists g ∈ G such
that h = φ(g). Since ACG, then,

(ga)α(g−1) ∈ A

⇒ (φ(g)φ(a))φ(α(g−1)) ∈ φ(A).

Now,

(hφ(a))β(h−1) = (φ(g)φ(a))β((φ(g))−1) = (φ(g)φ(a))β(φ(g−1))

= (φ(g)φ(a))φ(α(g−1)) ∈ φ(A).

Hence, φ(A)CH.
(ii) Given that B C H, it follows from Proposition 1.16 (a) (ii) that B ≤ H.
For Hom-normality, let b ∈ B and h ∈ H. Then,

(hb)β(h−1) ∈ B

⇒ (φ−1(h)φ−1(b))φ−1(β(h−1)) ∈ φ−1(B).

Now, for some x = φ−1(h) and y = φ−1(b) ∈ G, we have

(xy)φ−1(β(φ(x−1)) ∈ φ−1(B)

⇒ (xy)α(x−1) ∈ φ−1(B).

Hence, φ−1(B)CG. �

Proposition 2.21. Let φ : (G,α) → (H,β) be a Hom-group isomorphism
and let N be a Hom-normal subgroup of G. Then, φ induces a Hom-group
isomorphism between G/N and H/φ(N).

Proof. Suppose that φ : (G,α) → (H,β) is a Hom-group isomorphism and
N CG. Then by Lemma 2.20 (i), φ(N)CH. Let ψ : (G/N, µ)→ (H/φ(N), ν)
be a mapping defined by ψ(xN) = φ(x)φ(N) for every x ∈ G. ψ is clearly well-
defined since N C G and φ(N) C H. For Hom-homomorphism, let xN, yN ∈
G/N be arbitrary. Then,

ψ(xNyN) = ψ(xyN) = φ(xy)φ(N) = φ(x)φ(y)φ(N)

= (φ(x)φ(N))(φ(y)φ(N)) = ψ(xN)ψ(yN).

Also,

ν(ψ(xN)) = ν(φ(x)φ(N)) = β(φ(x))φ(N) = φ(α(x))φ(N) = µ(xN)φ(N)

= ψ(µ(xN)).
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Accordingly, ψ is a Hom-group homomorphism. ψ is obviously onto. For 1-1,

Kerψ = {xN ∈ G/N : ψ(xN) = 1H/φ(N)} = {xN ∈ G/N : ψ(xN) = φ(N)}
= {xN ∈ G/N : φ(x) ∈ φ(N)} = {xN ∈ G/N : x ∈ N}
= {N}.

Now, ψ is 1-1 and therefore, G/N ∼= H/φ(N). �

Proposition 2.22. Let (G,α) and (H,β) be two Hom-groups. Then, G×H ∼=
H ×G.

Proof. Let φ : (G ×H,µ) → (H × G, ν) be a mapping defined by φ((g, h)) =
(h, g) for any (g, h) ∈ G×H. For Hom-homomorphism, let (g, h), (u, v) ∈ G×H
be arbitrary. Then,

φ((g, h)(u, v)) = φ((gu, hv)) = (hv, gu) = (h, g)(v, u)

= φ((g, h))φ((u, v)).

Also,

ν(φ((g, h))) = ν((h, g) = (h, g) = φ((g, h))

= φ(µ((g, h))).

The mapping φ is obviously onto. For 1-1,

Kerφ = {(g, h) ∈ G×H : φ((g, h)) = 1H×G}
= {(g, h) ∈ G×H : φ((g, h)) = (1H , 1G)}
= {(g, h) ∈ G×H : (h, g)) = (1H , 1G)}
= {(1G, 1H)}.

Therefore, φ is 1-1 and, G×H ∼= H ×G. �

Proposition 2.23. Let (G,α) and (H,β) be two Hom-groups and let A C G
and B CH. Then, (G×H)/(A×B) ∼= (G/A)× (H/B).

Proof. By Proposition 2.12, A×BCG×H and therefore, (G×H)/(A×B) is
a Hom-quotient group. Let φ : (G×H,µ)→ ((G/A)× (H/B), ν) be a mapping
defined by φ((g, h)) = (gA, hB) ∀(g, h) ∈ G × H. Clearly, φ is well-defined.
For Hom-homomorphism, let (g, h), (x, y) ∈ G×H be arbitrary. Hence,

φ((g, h)(x, y)) = φ((gx, hy)) = (gxA, hyB) = (gA, hB)(xA, yB)

= φ((g, h))φ((x, y)).

Also,

ν(φ((g, h))) = ν((gA, hB)) = ((α(g)A, β(h)B)) = φ((α(g), β(h))

= φ((µ(g, h)).
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Accordingly, φ is a Hom-group homomorphism. Clearly, φ is onto and therefore,
φ is an epimorphism. Now,

Kerφ = {(g, h) ∈ G×H : φ((g, h)) = 1G/A)×(H/B)}
= {(g, h) ∈ G×H : (gA, hB) = (A,B)}
= {(g, h) ∈ G×H : g ∈ A and h ∈ B} = A×B.

By invoking the First Isomorphism Theorem, we have (G × H)/(A × B) ∼=
(G/A)× (H/B). �

Proposition 2.24. [20](Zassenhaus Butterfly Lemma) Let (G,α) be a Hom-
group and let H,K ≤ G. If ACH and B CK, then,

(i) A ∩K CH ∩K;
(ii) H ∩B CH ∩K;

(iii) (A ∩K)B C (H ∩K)B;
(iv) A(H ∩B)CA(H ∩K);
(v) A(H∩K)/A(H∩B) ∼= (H∩K)/(A∩K)(H∩B) ∼= (H∩K)B/(A∩K)B.

Proof. Suppose that H,K ≤ G and suppose that ACH, B CK.
(i) From Proposition 1.7 (b) (i), we have H ∩K ≤ G which is indeed a Hom-
group. Since A∩K ⊆ H∩K, it is clear that A∩K ≤ H∩K. For Hom-normality,
let x ∈ A ∩K and y ∈ H ∩K. Then, x ∈ A, x ∈ K, y ∈ H and y ∈ K from
which we obtain x ∈ A, y ∈ H, x ∈ B and y ∈ K. Since A CH and B CK,
it follows that (yx)α(y−1) ∈ A and (yx)α(y−1) ∈ K from which we obtain
(yx)α(y−1) ∈ A ∩K and therefore, A ∩K CH ∩K.
(ii) Follows the same arguments as in (i).
(iii) Since B CK, it follows from Lemma 1.11 that (H ∩K)B is a Hom-group.
To show that (A ∩K)B is also a Hom-group, it suffices to show that A ∩K is
a Hom-subgroup of the normalizer of A which is H. To see this,

N(A) = {x ∈ H ∩K : xA = Ax} = {x ∈ H ∩K : A = xAx−1}
= {x ∈ H ∩K : x ∈ A since ACH} = H.

From the same Lemma 1.11, (A ∩K)B is a Hom-group which is contained in
(H ∩K)B as a Hom-subgroup. For Hom-normality, this follows from Lemma
2.17 since from (i), A ∩K CH ∩K and we know that B CK.
(iv) Follows the same arguments as in (iii).
(v) Let φ : A(H ∩K)→ (H ∩K)/(A ∩K)(H ∩B) be a mapping defined by

φ(ah) = h(A ∩K)(H ∩B), for all a ∈ A, h ∈ H ∩K.

We first show that φ is well-defined. Suppose that a = b and h = k that is
ah = bk where a, b ∈ A and h, k ∈ H∩K. We need to show that φ(ah) = φ(bk).
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To this end,

(a−1b)−1(hk−1) = (b−1a)(hk−1) = αα−1((b−1a))(hk−1)

= (α−1((b−1a))h)α(k−1) = [(α−1(b−1)α−1(a))αα−1(h)]α(k−1)

= ((b−1(α−1(a)α−1(h)))α(k−1) = ((b−1(α−1(ah)))α(k−1)

= ((b−1(α−1(bk)))α(k−1) = ((b−1(α−1(b)α−1(k)))α(k−1)

∈ A ∩K = A ∩ (H ∩K) ⊆ (A ∩K)(H ∩B).

Hence, φ(ah) = φ(bk), and φ is well-defined.
For Hom-homomorphism, we first note that (G, ∗, α), (H ∩K, ∗, α), (A(H ∩

K), ∗, α) and ((H∩K)/(A∩K)(H∩B),~, β) are Hom-groups. Let a, b ∈ A and
h, k ∈ H∩K. We need to show that φ((ah)(bk)) = φ(ah)φ(bk) and β(φ(ah)) =
φ(α(ah)). Since A C H, (hb)α(h−1) ∈ A and we can take (hb)α(h−1) = c =
α(h)(bh−1) for some c ∈ A from which we obtain b = (h−1c)α(h). Now,

(ah)(bk) = (ah)αα−1(bk) = α(a)(hα−1(bk))

= α(a)(h(α−1(b)α−1(k))) = α(a)(αα−1(h)(α−1(b)α−1(k)))

= α(a)((α−1(h)α−1(b))k) = α(a)((α−1(h)α−1((h−1c)α(h)))k)

= α(a)((α−1(hh−1)α−1(c))(hk)) = α(a)(1α−1(c))(hk))

= (α(a)c)(hk).

Therefore,

φ((ah)(bk)) = φ((α(a)c)(hk)) = hk(A ∩K)(H ∩B)

= (h(A ∩K)(H ∩B))(k(A ∩K)(H ∩B)) = φ(ah)φ(bk).

Next,

β(φ(ah)) = β(h(A ∩K)(H ∩B)) = α(h)(A ∩K)(H ∩B))

= φ(α(a)α(h)) = φ(α(ah)).

We have just shown that φ is a Hom-group homomorphism. We next show
that φ is a Hom-group epimorphism. To this end, for all h ∈ H, φ(1h) =
h(A∩K)(H ∩B). This shows that every element of (H ∩K)/(A∩K)(H ∩B)
under φ has a preimage in H ∩ K. Hence, φ is a Hom-group epimorphism.
Lastly,

Kerφ = {ah ∈ A(H ∩K) : φ(ah) = 1(H∩K)/(A∩K)(H∩B) = (A ∩K)(H ∩B)}
= {ah ∈ A(H ∩K) : h(A ∩K)(H ∩B) = (A ∩K)(H ∩B)}
= A(H ∩B).

By invoking the First Isomorphism Theorem, A(H ∩ K)/A(H ∩ B) ∼= (H ∩
K)/(A ∩K)(H ∩ B). Using the same argument, it can be shown that A(H ∩
K)/A(H ∩ B) ∼= (H ∩K)B/(A ∩K)B. Hence, A(H ∩K)/A(H ∩ B) ∼= (H ∩
K)/(A ∩K)(H ∩B) ∼= (H ∩K)B/(A ∩K)B. �
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3. Conclusion

In this paper, we have studied and obtained more properties of Hom-groups.
Specifically, we presented more properties of Hom-groups, Hom-subgroups,
Hom-normal subgroups, Hom-quotient groups and Hom-group homomorphisms
with examples. As a major result of this paper, we have proved the Zassenhaus
Butterfly Lemma of Hom-groups.
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