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Abstract. The Laplacian spectrum of a graph is obtained by taking

the difference of the adjacency spectrum from the diagonal matrix of de-

grees. If a graph has a unique Laplacian spectrum, it means that it can
be identified by this spectrum, it is called DLS. In this article, we first

introduce the graph resulting from the integration of a starlike tree and a
multi-wheel graph at the vertices with the maximum degree of these two

graphs. Then, we check whether it is DLS.
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1. Introduction

Suppose that G is a simple graph with n vertex, m edge, and the set of vertex
{v1, v2, . . . , vn}. The square matrix A = [aij ] whose aij equals the number of
edges between two vertices vi and vj is called the adjacency matrix of graph
G. The polynomial χ(G,λ) = |λI −A|, where I is the identity matrix of order
n, is known as the characteristic polynomial of the graph. The roots of this
polynomial, denoted as λ1 ≥ λ2 ≥ · · · ≥ λn, are referred to as the adjacency
spectrum of the graph.

Consider a graph G with a degree sequence given by d1, d2, . . . , dn. The
diagonal matrix of the degrees of the graph G is D = Diag[d1, d2, . . . , dn].
The Laplacian matrix L of graph G is obtained by subtracting the adjacency
matrix from the degree matrix. The roots of the polynomial ψ(L, µ) = |µI−L|
represent the spectrum of the Laplacian of a graph, which is denoted as µ1 ≥
µ2 ≥ · · · ≥ µn = 0. If two graphs, G1 and G2, have the same Laplacian
spectrum, they are called L-cospectral. A graph is called DLS if its unique
Laplacian spectrum can recognize it.
This article defines the disjoint union of graphs and their join as G1 ∪G2 and
G1OG2, respectively. Complete graphs, cycles, and paths with n vertices are
denoted by Kn, Cn, and Pn, respectively.
If the set of vertices and edges of the graph H is a subset of the vertices and
edges of graph G, then H is called a subgraph of G. Suppose G and H are two
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graphs, the notation NG(H) represents the number of subgraphs of G that are
isomorphic to H. NG(C3) denoted the number of triangles in graph G, where
C3 is a cycle of length three.

Suppose that G1 and G2 are disjoint graphs, with sets of vertices V1 and V2,
and sets of edges E1 and E2, respectively. If v1 ∈ V1 and v2 ∈ V2, by identifying
v1 and v2 with the vertex v∗, in G1 ∪ G2, then the vertex v∗ is adjacent to
all the neighbors of v1 and v2, coalescence graph is obtained and denoted by
G1 ◦G2.

A tree with a single vertex of a degree greater than two is called a starlike
tree. A wheel graph is created by joining a cycle and K1. If more than one
cycle is joined to K1, the resulting graph is called a multi-wheel, as shown in
Figure 1.

(a) starlike tree (b) multi-wheel graph

Figure 1. starlike tree and multi-wheel graph

The study of graphs determined by the Laplacian spectrum is motivated by
the desire to understand the structural and dynamic properties of networks
across various disciplines, including mathematics, physics, and computer sci-
ence. The Laplacian spectrum provides deep insights into the connectivity
and robustness of a graph, revealing critical information about its topology.
This spectral analysis finds applications in numerous fields, such as assessing
the stability of chemical compounds, optimizing communication networks, and
enhancing machine learning algorithms through improved data clustering.

Additionally, Laplacian spectra are instrumental in detecting community
structures within social networks and facilitating effective routing in trans-
portation and logistics. By knowing these spectral properties, researchers can
develop algorithms that efficiently analyze and manipulate complex systems,
thereby paving the way for innovations in technology and science.

Analyzing graphs with specific characteristics has always been of interest
to researchers. Van Dam and Haemers [9] conjectured that most graphs are
uniquely determined by their spectrum, meaning they are the only graphs with
that particular spectrum up to isomorphism. The paper [1] has established that
no two non-isomorphic starlike trees have identical Laplacian spectra. Further-
more, the work [11] by Yuanping Zhang et al, utilizing the results from [8],
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shows that multi-wheel graphs can be identified using their Laplacian spec-
trum.
If G1 = (Cn1

∪ Cn2
∪ · · · ∪ Cna

)5 K1, where for 1 ≤ i ≤ a, Cni
is the cycle

of length ni. The graph G2 is a starlike graph obtained by coalescing paths
Pn′

1
, Pn′

2
, . . . , Pn′

b
. When these two graphs are merged, the resulting graph is

denoted as G = G1 ◦G2 = C(n, s, r, a, b). Here, s =
∑a

i=1 ni, r =
∑b

i=1 n
′
i, see

Figure 2. We prove that this graph is DLS.

Figure 2. G = C(n, s, r, a, b)

2. Preliminaries

In this section, we would like to present the initial definitions and theorems
used to establish the main results of the article.

Theorem 2.1. [7] [9] [10] The Laplacian spectrum of a graph can reveal its
number of vertices, edges, components, spanning trees, and the sum of squares
of degrees of vertices.

Theorem 2.2. [2] If G is a graph with at least one vertex, then d1(G) ≤
µ1(G)− 1. Furthermore, if d1(G) = n− 1, then equality is achieved.

Theorem 2.3. [5] Let G be a graph with more than one edge, then µ1(G) ≤
d1(G) + d2(G). If G is connected, then µ2(G) ≥ d2(G).

Theorem 2.4. [6] Let v is a vertex of graph G and graph Gv is the result of
removing vertex v, then

(1) µi(G) ≥ µi(Gv) ≥ µi+1(G)− 1 1 ≤ i ≤ n− 1.

Lemma 2.5. [5] If G is a connected graph with d2(G) = 2, then µ2(G) < 4.
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Lemma 2.6. [5] If graph G has m edges,n vertices, and τ number of triangles,
then
(2)

n∑
i=1

µi =

n∑
i=1

di = 2m,

n∑
i=1

µ2
i = 2m+

n∑
i=1

d2i ,

n∑
i=1

µ3
i =

n∑
i=1

d3i + 3

n∑
i=1

d2i − 6τ.

Lemma 2.7. [4] Let G and H be two L-cospecteal graphs and deg(G) =
(d1, d2, . . . , dn), deg(H) = (d′1, d

′
2, . . . , d

′
n), then

NG(C3)− 1

6

n∑
i=1

(di − 2)3 = NH(C3)− 1

6

n∑
i=1

(d′i − 2)3.

Suppose the average degree of vertices adjacent to v is mv, then the following
inequality holds.

Lemma 2.8. [5] [7] Let G be a connected graph, then µ1(G) ≤ maxv[deg(v)+
mv].

Lemma 2.9. [1] No two non-isomorphic starlike trees have the same L-
spectrum, meaning they are not L-cospectral.

Lemma 2.10. [3] Suppose that G is a connected graph, v ∈ VG and v1, v2, . . . , vr
are pendant vertices that adjacent v. If G∗ is the graph resulting from the ad-
dition of t (1 ≤ t ≤

(
r
2

)
) edges between v1, v2, . . . , vr vertices, then µ1(G) =

µ1(G∗).

3. Checking whether a graph is DLS

In this section, we first prove that the degree sequence of the L-cospectral
graph is the same as the graph resulting from integrating the starlike tree and
the multi-wheel graph. By definition, if G = C(n, s, r, a, b), then the degree
sequence of this graph is as follows

deg(G) = (s+ b,

s︷ ︸︸ ︷
3, . . . , 3, 2, . . . , 2︸ ︷︷ ︸

r−2b

,

b︷ ︸︸ ︷
1, . . . , 1).

Thus, the graph’s total number of vertices and edges are s + r − b + 1 and
2s + r − b, respectively. A connected graph G with n vertices and m edges is
called k-cyclic if m = n+ k− 1. In this context, G = C(n, s, r, a, b) is a s-cyclic
graph.

Lemma 3.1. If H and G = C(n, s, r, a, b) are L-cospectral, then

• s+ b+ 1 ≤ µ1(H) < s+ b+ 3,
• 3 ≤ µ2(H) ≤ 5.

Proof. • By using (2.2), (2.8), and b ≥ 1,

s+ b+ 1 ≤ µ1(G) ≤ s+ b+
3s+ 2b

s+ b
= s+ b+

2s+ 2b

s+ b
+

s

s+ b
< s+ b+ 3.

.
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• Let v be the vertex with the maximum degree in G, then the graph Gv

contains paths and cycles. By Theorems (2.4), (2.3), and Lemma (2.5)

2 ≤ µ2(G)− 1 = µ2(H)− 1 ≤ µ1(Gv) ≤ 4

3 ≤ µ2(H) ≤ 5.

�

Example 3.2. Let G = C(18, 10, 8, 3, 3), then µ2(G) = 5 and µ1(G) ≈ 14.019,
Figure (3).

Figure 3. G = C(18, 10, 8, 3, 3)

Lemma 3.3. Let G = C(n, s, r, a, b) and H are two L-cospectral graphs and
b ≥ 3, then the highest degree of the vertices of the graph H is not s+ b− 1.

Proof. Suppose that the degree sequence of the vertices in graph H is d1 ≥
d2 ≥ · · · ≥ dn. Let ni represent the number of vertices with degree i in graph
H and NH(C3) = κ, according to (2) and Lemma (2.7), then

d1(H)∑
i=1

ni = s+ r − b+ 1,(3)

d1(H)∑
i=1

ini = 2m = 4s+ 2r − 2b,(4)

d1(H)∑
i=1

i2ni = (s+ b)2 − 7b+ 4r + 9s,(5)

d1(H)∑
i=1

i3ni = (s+ b)3 − 15b+ 8r + 21s+ 6κ,(6)

κ =
1

6
[5s+ b− (s+ b− 2)3 +

n∑
i=1

(di − 2)3].(7)
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Proof by contradiction: let d1 = s+ b− 1 and ns+b−1 ≥ 2, then s = b = 3. By
(3),(4), (5) and (6), 

n1 = n5 − κ+ 2,

n2 = −4n5 + r + 3κ,

n3 = 6n5 − 3κ− 8,

n4 = −4n5 + κ+ 7.

The degree sequence of the graph’s vertices is non-negative, therefore κ = 0.

According to the sequence of degrees above
4

3
≤ n5 ≤

7

4
, which is impossible.

Let d1 = s+ b− 1 and ns+b−1 = 1, then s+ b ≥ 7. By (3),(4), (5) and (6),

(8)


2n1 = 2n5 − (s+ b)2 + 9(s+ b)− 2κ− 6,

2n2 = −8n5 + 3(s+ b)2 − 25s− 23b+ r + 6κ+ 28,

2n3 = 12n5 − 3(s+ b)2 + 25s+ 17b− 6κ− 11,

2n4 = −8n5 + (s+ b)2 − 7s− 5b+ 2κ+ 6.

According to (8), the expression −(s + b)2 + 29s + 19b − 26 ≥ 6κ indicates
that the left side is negative for all values of s + b ≥ 7, except at the point
(s, b) = (4, 3). The sequence of degrees for the point (s, b) = (4, 3) is as follows.

n1 = n5 + 1,

n2 = −4n5 + r + 3,

n3 = 6n5 − 9,

n4 = −4n5 + 6.

Therefore n5 = 1.5, so for all values of s+ b ≥ 7, It comes to a contradiction.
�

Lemma 3.4. If graph H is L-cospectral with graph G = C(n, s, r, a, b), and
b ≥ 3, then the maximum vertex degree of H cannot be s+ b− 2.

Proof. Suppose it is not so, then d1(H) = s + b − 2 and ns+b−2 ≥ 2. In this
case, (s, b) is equal to one of the ordered pairs of (3, 3), (3, 4), and (4, 3).

• If s = b = 3, the following relations will be obtained, which are impos-
sible. 

n1 = −n4 + 9,

n2 = 3n4 + r − 21,

n3 = −3n4 + 13,

κ = n4 − 7⇒ n3 < 0.

• Let (s, b) = (3, 4), then the graph vertices’ maximum degree equals 5.

Therefore n3 = 6n5 − 3κ− 33, n4 = −4n5 + κ+ 17 and κ ≤ −17

3
, this

is a contradiction.
• If (s, b) = (4, 3), then similar to the previous case, the number of tri-

angles of the graph H will be negative, which results in contradiction.
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Let d1(H) = s+ b− 2 and ns+b−2 = 1, then s+ b > 7. By (3),(4), (5) and (6),

(9)


n1 = n5 − (s+ b)2 + 9(s+ b)− κ− 16,

n2 = −4n5 + 3(s+ b)2 − 25s− 24b+ r + 3κ+ 39,

n3 = 6n5 − 3(s+ b)2 + 24s+ 20b− 3κ− 32,

n4 = −4n5 + (s+ b)2 − 7s− 6b+ κ+ 9.

By (9), −3(s + b)2 + 30(s + b) − s − 55 ≥ 3κ. For s + b > 7, the left side
of this inequality is always negative,, this is a contradiction. The assumption
d1(H) = s+ b− 2 is contradicted in every possible state, thus completing the
proof. �

Lemma 3.5. Suppose H and G = C(n, s, r, a, b) be two L-cospectral graphs,
where b ≥ 3, then d1(H) 6= s+ b− 3.

Proof. Let d1(H) = s + b − 3, where ns+b−3 ≥ 2, then s + b ≤ 8 and (s, b) ∈
{(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (5, 3)}.

• If s = b = 3, then d1(H) = d2(H) = 3, by (3),(4) and (5), deg(H) =

(3, 3, . . . , 3︸ ︷︷ ︸
9

,

r−21︷ ︸︸ ︷
2, 2, . . . , 2, 1, 1, . . . , 1︸ ︷︷ ︸

13

), so κ < 0, this is a contradiction.

• Let (s, b) = (3, 4), then, 4 is the maximum degree of the vertices in
the graph H. The sequence of degrees of the graph and the number of
triangles H is as follows:

n1 = −n4 + 14,

n2 = 3n4 + r − 32,

n3 = −3n4 + 18,

κ = n4 − 17.

The vertices with a degree of one will be negative, which is a contra-
diction.
• If s = 3 and b = 5, then d1(H) = d2(H) = 5, so n1 = n5 − κ − 12,
n4 = −4n5 + κ+ 32, therefore,

n5 ≥ κ+ 12,

4n5 ≤ κ+ 32,

κ ≤ −16

3
.

This is a contradiction.
• Let (s, b) = (4, 3), then d1(H) = d2(H) = 4, by using (3),(4) and (5),

n1 = −n4 + 13,

n2 = 3n4 + r − 30,

n3 = −3n4 + 19,

κ = n4 − 17.
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So n1 < 0 and it is impossible.
• If s = b = 4, then d1(H) = d2(H) = 5. By (3),(4), (5) and (6), have a

contradiction.

n1 = n5 − κ− 12⇒ 4n5 ≥ 4κ+ 48,

n4 = −4n5 + κ+ 31⇒ 4n5 ≤ κ+ 31,

κ ≤ −17

3
.

• Let (s, b) = (5, 3), then seam the last case κ ≤ −18

3
, which is impossi-

ble.

Let d1(H) = s+ b− 3 and ns+b−3 = 1, then s+ b ≥ 9. By (3),(4), (5) and (6),

(10)


2n1 = 2n5 − 3(s+ b)2 + 29(s+ b)− 2κ− 62,

2n2 = −8n5 + 9(s+ b)2 − 81s− 79b+ 2r + 2κ+ 156,

2n3 = 12n5 − 9(s+ b)2 + 77s+ 69b− 6κ− 132,

n4 = −8n5 + 3(s+ b)2 − 23s− 21b+ 2κ+ 38.

By using (10),

24n5 + 154s+ 138b ≥ 264 + 18(s+ b)2 + 12κ,

24n5 + 69s+ 63b ≤ 114 + 9(s+ b)2 + 6κ.

So κ ≤ 1

6
[−9(s+ b)2 + 85s+ 75b− 150] < 0. This case also leads to a contra-

diction, so the proof is complete. �

Lemma 3.6. There is no L-cospectral graph with G = C(n, s, r, a, b), where
b ≥ 3, that has a vertex with a maximum degree of s+ b− 4.

Proof. Suppose that H is an L-cospectral graph with G = C(n, s, r, a, b) and
deg(H) = (d1, d2, . . . , dn), where d1 = s+ b− 4. If ns+b−4 ≥ 2, then s+ b ≤ 9,
so

(11) (s, b) ∈ {(3, 3), (3, 4), (3, 5), (3, 6), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (6, 3)}.

• If (s, b) = (3, 3), then d1(H) = d2(H) = 2. Therefore, G and H are
paths or cycles, which is impossible.

• According to equation (11), suppose that (s, b) = (3, 4) and d1(H) =
d2(H) = 3. By (3),(4), and (5) the degree sequence of H is

(3, 3, . . . , 3︸ ︷︷ ︸
18

,

r−32︷ ︸︸ ︷
2, 2, . . . , 2, 1, 1, . . . , 1︸ ︷︷ ︸

14

).

Now using (7), κ = −17, it is impossible.
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• If (s, b) equals (3, 5), then d1(H) = d2(H) = 4. Therefore, by (3),(4)
and (5) we have 

n1 = 20− n4,
n2 = r − 45 + 3n4,

n3 = 24− 3n4.

by (7), κ = −32 + n4, so n1 < 0, this is impossible.
• Let (s, b) = (3, 6), then, the maximum degree of the vertices of the

graph H is 5. The degree sequence of the graph H is given by the
equations (3),(4),(5), and (6)

(12)


n1 = n5 − κ− 26,

n2 = −4n5 + 3κ+ r + 99,

n3 = 6n5 − 3κ− 128,

n4 = −4n5 + κ+ 53.

By (12) and the fact that the degree sequence of a graph is non-
negative,

n5 ≥κ+ 26,

4n5 ≤κ+ 53.

So κ ≤ −17, it is impossible.
• According to equation (11), let (s, b) = (4, 3), then the maximum de-

gree of the vertices of the graph H is equal to 3. From equations(3),(4)

and (5), the degree sequence is given by (3, 3, . . . , 3︸ ︷︷ ︸
19

,

r−30︷ ︸︸ ︷
2, 2, . . . , 2, 1, 1, . . . , 1︸ ︷︷ ︸

13

).

So κ = −16, this is impossible.
• If (s, b) = (4, 4), then d1(H) = d2(H) = 4, by (3),(4), (5), and (7),

n1 = −n4 + 19,

n2 = 3n4 + r − 43,

n3 = −3n4 + 25,

κ = n4 − 17.

So n1 < 0, this is a contradiction.
• Let s = 4 and b = 5, then d1(H) = d2(H) = 5, therefore

n1 = n5 − κ− 26⇒ n5 ≥ κ+ 26,

n4 = −4n5 + κ+ 52⇒ 4n5 ≤ κ+ 52,

−52

3
≥ κ.

This is impossible.
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• By (11), if (s, b) = (5, 3), then d1(H) = d2(H) = 4, by (3),(4),(5), and
(7), 

n1 = −n4 + 18,

n2 = 3n4 + r − 41,

n3 = −3n4 + 26,

κ = n4 − 30.

Therefore n1 < 0, it is impossible.
• If (s, b) = (5, 4), then the maximum degree of vertices is 5. Using Eqs

(3),(4), (5) and (6), we have n1 = n5 − κ − 26, and n5 ≥ κ + 26.
Additionally, n4 = −4n5 + κ + 51, and 4n5 ≤ κ + 51. Therefore

κ ≤ −53

3
, this is a contradiction.

• Let (s, b) = (6, 3), then d1(H) = d2(H) = 5. By equations (3),(4), (5),

and (6), n1 = n5−κ−26, also n4 = −4n5+κ+50. Therefore κ ≤ −54

3
,

which is impossible.

If d1(G) = s+ b− 4 and ns+b−4 = 1, then s+ b ≥ 10. By (3),(4), (5) and (6),
n1 = n5 − 2(s+ b)2 + 21(s+ b)− κ− 52,

n2 = −4n5 + 6(s+ b)2 − 59s− 58b+ r + κ+ 134,

n3 = 6n5 − 6(s+ b)2 + 56s+ 52b− 3κ− 116,

n4 = −4n5 + 2(s+ b)2 − 17s− 16b+ κ+ 34.

Due to the n3, n4 ≥ 0,

12n5 + 112s+ 104b ≥ 232 + 12(s+ b)2 + 6κ,(13)

12n5 + 51s+ 48b ≤ 102 + 6(s+ b)2 + 3κ.(14)

By (13) and (14), κ ≤ 1

3
[−2(s + b)2 + 61s + 56b − 130] < 0, it is impossible.

Therefore, all possible scenarios result in a contradiction, thus negating the
existence of the H graph. �

Theorem 3.7. If G = C(n, s, r, a, b) and H are two L-cospectral graphs and
b ≥ 3, they have the same degree sequence.

Proof. According to Lemma (3.1), we have d1 ≤ s + b + 2. Using equations
(2.3), (3.3), (3.4), (3.5), (3.6), and the fact that d2(H) ≤ 5, we can conclude
that s+ b ≤ d1(H) ≤ s+ b+ 1.

Let d1(H) = s + b + 1, then ns+b+1 = 1. Using equations (3),(4), (5) and
(6), the degree sequence of the graph is as follows.

2n4 = −8n5 − (s+ b)2 + s+ 3b+ 2κ− 2 ≥ 0,

⇒ −8n5 − (s+ b)2 + 3(s+ b)− 2 ≥ 0.

The left side of the above inequality is always negative for s, b ≥ 3, this is a
contradiction.



The coalescence of multi-wheel and starlike graphs is DLS – JMMR Vol. 14, No. 2 (2025) 109

Let d1 = s+ b, then, ns+b = 1. By (3),(4), (5) and (6),
n1 = n5 + s+ b− κ,
n2 = −4n5 − 3s− 2b+ r + 3κ,

n3 = 6n5 + 4s+ 20b− 3κ,

n4 = −4n5 − s− 6b+ κ.

The number of vertices of a graph is non-negative, therefore κ ≥ s+4n5. Since
that the graph H is s-cyclic, κ = s and 4n5 = 0. The degree sequence of the
graph H is as follows.

(15)


n1 = b,

n2 = −2b+ r,

n3 = s,

ns+b = 1.

�

Lemma 3.8. Let G = C(n, s, r, a, b) and H are L-cospectral, b ≥ 3, then
H = C(n, s, r, a′, b).

Proof. Using Theorem (3.7), we have deg(H) = (s+b,

s︷ ︸︸ ︷
3, . . . , 3, 2, . . . , 2︸ ︷︷ ︸

r−2b

,

b︷ ︸︸ ︷
1, . . . , 1),

and NH(C3) = s. Let degv = s+ b. Then, the components of graph H − v are
paths or cycles. Since cycle components must contain vertices of degree two,
H − v comprises b paths and a′ cycles. Hence, all the vertices of degree 3 of
the graph in s are triangles, and this means H = C(n, s, r, a′, b). �

The converse of Theorem (3.7) and Lemma (3.8) is not always valid, as
illustrated by the following example.

Example 3.9. Graphs G1 = (21, 13, 10, 3, 3) and G2 = (21, 13, 10, 4, 3), Figure
(4), with the same degree sequence, have different Laplacian spectra.

(a) G1 (b) G2

Figure 4. G1 and G2



110 M.H. Ahangarani Farahani, G.H. Fath-Tabar

If G = C(n, s, r, a, b), the graph resulting from removing edges in a triangle
not adjacent to the vertex of maximum degree is called St(G). By Lemma
(2.10), µ1(G) = µ1(St(G)).

Lemma 3.10. If G = C(n, s, r, a, b) and H = C(n, s, r, a′, b) are L-cospectral,
then St(G) = St(H).

Proof. Let St(G) 6= St(H), by (2.9) µ1(St(G)) 6= µ1(St(H)), then µ1(G) 6=
µ1(H), which is a contradiction. �

Theorem 3.11. Let G = C(n, s, r, a, b) and H = C(n, s, r, a′, b) are L-cospectral,
and b ≥ 3, then G = H.

Proof. In Lemma (3.10), it was proven that the starlike parts of the graphs
must be the same. Let’s prove this by induction on s. If s = 3 according to
NG(C3) = NH(C3), G = H. Suppose the rule holds for s = k − 1, and we
prove that it also holds for s = k. If s = k, and we reduce the length of one of
the arbitrary cycles by one, it becomes s = k − 1. According to the induction
assumption, the length of the resulting cycles and the rest of the cycles should
be equal to each other. So, by adding the deleted vertex, the graphs will be
equal. This confirms the rule. �

4. Conclusions and open problems

This article showed that its Laplacian spectrum can uniquely identify the
graph resulting from integrating a multi-wheel graph and a Starlike tree. It
can also be checked whether this graph can be identified by other spectra such
as Adjacency, signless Laplacian, etc.
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