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Abstract
Objective

Plant breeders (PB) have significantly improved agricultural output and quality by utilizing
modern scientific and technological developments. Costs have decreased and the PB process has
quickened due to the development of genomic tools and sequencing, especially since the human
genome project. Addressing global issues pertaining to water resources and food security requires
this progress. High-throughput phenotyping, precision agriculture, and crop-scouting have all
been improved by the integration of cutting-edge technology such sensor systems, satellite
images, robots, big data analytics, and genomics. These developments contribute to the growth of
digital agriculture, which has the potential to transform PB by taking a more interdisciplinary
approach. To examine the method by which new developments in digital agriculture, genomics,
and sensor technologies are changing plant breeding, enhancing crop quality and productivity,

and tackling global issues with water resource management and food security.

Results

Plant breeding has become faster and less expensive due to the combination of genetic tools,
sequencing techniques, and contemporary agricultural technologies. Precision agriculture has
greatly increased high-throughput phenotyping and crop scouting, by using technology like
robotics, big data analytics, and satellite photography. These developments aid in the creation of

sustainable, more effective farming methods.
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Conclusions

An innovative approach for crop improvement is being developed by the ongoing integration of
multidisciplinary technologies in plant breeding. It is anticipated that enhanced genomics and
digital agriculture would improve plant breeders' capacities, allowing them to tackle the escalating
problems of food and water security in a world that is becoming more interconnected by the day.
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Introduction

According to forecasts, the world’s population will maintain its current rate of growth or
even accelerate in the coming decades. The population's demand for food is expected to increase
at the same rate. Crop productivity is affected by a number of biological and environmental
factors, which are exacerbated by human-induced climate change (Shivanna 2022). Plant
breeding (PB) is crucial for developing new cultivars with higher yields, improved quality, and
the ability to withstand various abiotic and biotic challenges (Swarup et al. 2021). Global wheat
production has increased from 200 million tons in 1961 to 775 million tons in 2023 without any
significant change in the total area under wheat cultivation. The main reason is primarily the
advancement and implementation of semi-dwarf, high-yielding wheat varieties responsive to
inputs and resistant to major pests and adverse conditions (Radhika & Masood 2022). Across
wheat production there have been improvements in agronomic practices, automation, favourable
regulations, and infrastructure. Moreover, data generation in agriculture and biotechnology has
greatly increased in recent years due to the very rapid development of high-performance

technologies (Mohammadabadi et al. 2024). These data are obtained from studying products,
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foods, and biological molecules to understand the role of different aspects of agriculture in
determining the structure, function, and dynamics of living systems (Pour Hamidi et al. 2017).
Acrtificial neural networks have been proposed to alleviate limitation of traditional methods and
can be used to handle nonlinear and complex data, even when the data is imprecise and noisy
(Pour Hamidi et al. 2017). Agricultural data can be too large and complex to handle through visual
analysis or statistical correlations. This has encouraged the use of machine intelligence or artificial
intelligence (Ghotbaldini et al. 2019). Thus, this review aimed to examine the method by which
new developments in digital agriculture, genomics, and sensor technologies are changing plant
breeding, enhancing crop quality and productivity.

History

Genetic modification of crops has traditionally been based on conventional Cross-Breeding
(CB) approaches, where breeding and selection of genotypes is primarily based on pedigree and
quantitative ability (Srinivasa Rao et al. 2023). The development of improved crop cultivars has
been greatly facilitated by careful evaluation of parents for various traits, focused CB, utilization
of summer and winter shuttle breeding strategies to accelerate the PB cycle, critical evaluation of
elite germplasms is key locations, and efficient database management (Zoran et al. 2022). The
rapid development of DNA-sequencing technology has enabled the PB to obtain extensive
genomic data on crops, which is highly beneficial for selection (Suyama et al. 2022). The
emergence of numerous DNA-marker-based genotyping methods has dramatically expanded the
pool of DNA indicators accessible to PB. This advancement enabled PB to select for plant
efficiency according to their genetic marker component rather than relying solely on their
phenotypic effectiveness, which is subject to various limits of selection effectiveness (Begna
2021).

Heterosis and the production of traditional varieties are typically intertwined in various CBs
in the PB (Liu et al. 2020). Hybridization is a crucial method for PB, and the most important
factor for effective hybridization is careful selection of parents. The effectiveness of the CB can
only be determined after several generations, as the efficiency of the mixed progeny may not fully
match that of their parents (Scott et al. 2020). The process of choosing parents is challenging.
Suppose the quality of mating can already be determined in the first generations, by focusing on
selecting the right parents. In this case, the quality of the combinations will be discovered at the
earliest opportunity, leading to an improvement in breeding outcomes.

Genomic Prediction (GP) is a cutting-edge, data-driven approach that has gained widespread
acceptance and is being extensively utilized as a beneficial tool to expedite the improvement of

genetic traits in PB projects (Tsai et al. 2020). GP utilizes sophisticated statistical Machine-
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Learning (ML) methods to identify individuals inside a breeding populace according to breeding
values inferred from markers found throughout the genome (Srinivasa Rao et al. 2023). The
selection procedure depends on information from training people, including phenotypic and
genotypic characteristics (Figure 1).

Following an intensive training process, these models produce forecasts of breeding or
phenotypic characteristics for characteristics of a target population based only on genotypic
information (Dessy et al. 2023). Before implementing selection, it is essential to assess the
effectiveness of model predictions using Cross-Validation (CV) techniques (Allgaier & Pryss
2024). Further details on CV methods are found in the next section (Surendar et al. 2024).
Evaluating the efficacy of forecasting algorithms and comparing distinct sets of statistical ML
algorithms is crucial in GP (Camg6zli & Kutlu 2023). This evaluation involves considering
different circumstances, such as incorporating characteristics, known central genetics, marker-
trait associations, Genotype Three Environments (G3E) relationship, and other omics
information, including transcriptomics, metabolomics, and proteomics (Ansarifard et al. 2020).
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Figure 1. GP characteristics
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GP considers the breeding characteristics of the parental standard and variation of Mendelian
sampling to determine an offspring's Genomic Estimated Breeding Figures. This method can be
utilized for two purposes: (1) to quickly select desirable traits in early generations by forecasting
additive impacts and (2) to choose lines in later phases of breeding by forecasting the genotypic
amounts of people, considering both additive and non-additive impacts that determine the final
economic worth of the queues. Several variables influence GP and can significantly diminish its

precision (Figure 2).
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Figure 2. Influencing variables for GP

If not adequately dealt with, these issues can impede the efficient application of GP in PB
projects. When optimizing the training populace, it is crucial to focus on essential parameters such
as population count, genetic variation, and the genetic connection with the breeding community.
Additional variables that make a more brutal genetic prediction in PB include the degree of

linkage disequilibrium among indicators in both the development and evaluation of populations,
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the genetic complexities and inheritance of target characteristics, the accuracy and reliability of
phenotyping, the use of mathematical ML designs, the relationship between genotype and

environment, and other non-additive variables (Guo & Li 2023).

Proposed big data-based cross-breeding method

The combination of phenomic and genomic information can revolutionize PB. Incorporating
field-based single-plant phenotyping in the early generations has received limited attention in
research. PB can expedite selecting and improving populations early by utilizing high-throughput
analysis of individual seedlings. This approach can accelerate genetic advancements and enhance
the efficiency of breeding resources. The volume of data in PB is increasing due to several factors.
Hundreds of potential varieties are evaluated and thoroughly described each season, combining a
wealth of phenotyping data gathered from many sources. Big data is generated using molecular
indicators. Professional breeders are faced with extensive datasets.

Cross-breeding method: Figure 3 shows the architecture of the big data-based CB model.
To enhance the accuracy of predicting the relationship between an organism's genetic makeup
and its observable traits, it is necessary to establish comprehensive systems that can handle large
amounts of data designed explicitly for PB purposes. One effectively tackles the task of modeling
and condensing data for decision-making purposes under time pressure. To tackle these problems,
biometrics specialists have developed a software pipeline that integrates data and algorithms to
extract relevant details for the breeders. The biometrics pipeline encompasses characteristics of
the design and evaluation of phenotyping studies, the transfer of polymorphisms from mothers to
offspring, the integration of genotypes and traits in tracing and designs, and utilizing genomic
forecasting systems. The biometrics pipeline assisted in addressing this issue by providing tools
to gain deeper insights into the crossing parents, enabling an understanding of how discrimination
occurs within a community. This knowledge is crucial for identifying and developing the most
effective crossing parents and ultimately selecting the best varieties by combining the desired
traits and genes into a single variety. By utilizing diverse germplasm, extensive genomic,
phenomic, and environmental data, and integrative evaluation, the research can pinpoint causal
loci and predict traits for breeding accurately.

Crop breeding management: Combining ability evaluation is a valuable tool for breeders
to assess the strengths and weaknesses of various mixtures and parent plants in the early breeding
stages. This allows breeders to narrow down the selection of materials, conserve period in the
breeding process, and enhance overall breeding effectiveness. Thus, the research developed a PB

data management structure called the gold seed breeding big data analytics-based system
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combining ability assessment and implementation. The system operates on a cloud computing
infrastructure. It has the potential to enhance flexibility, minimize infrastructure needs, enhance
accessibility, and effectively manage extensive data collection. Figure 4 illustrates the operational

sequence of the system.
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Figure 3. Big data-based cross-breeding model

Each year, breeders carefully choose parents based on their breeding goals. The technique
has an efficient retrieval feature for quickly looking for parent breeding resources. The approach
incorporates incomplete, complete, and limited diallel crossing procedures, which aid in
developing a crossbreeding strategy for combining ability testing. The system automatically
detects prior combinations of CB organisms, orthogonal pairings, and reciprocal hybrids.
Breeders are offered several trial layout strategies, such as randomized sections and entirely
random ones based on the crossbreeding plan. A subordinate plans the planting schedule in the
field according to the trial plan devised by the breeder. The employees plant the seeds according
to the predetermined planting strategy. Throughout the process of crop development, a

subordinate gathers information on the characteristics of the plants. The breeder assesses the
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elements and examines the capacity of CB elements to combine in the system with a single action.
This characteristic helps breeders discern better parents and offspring based on their achievements
in General Combining Abilities (GCA) and Specialized Combined Abilities (SCA). These

assessments are utilized in future breeding programs.
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Figure 4. Big data management model

Results and discussion
The accuracy of single-cross forecasting was assessed using Leave-One-Out CV (LOOCV).
LOOCYV is a specific instance of k-fold CV, where k equals the number of observations (n). The
research chose LOOCV because it reduces bias in the predictor by using a more significant
number of folds. Five distinct LOOCYV situations were examined, each having differing levels of
correlation between the training and verification sets for single crossings (Figure 5).
Male
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Untested|  rma | v
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Female .
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Figure 5. Leave-one-out cross-validation (LOOCYV) results
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The CV cases were as stated: (1) In T2, both parents of a single cross in the verification set
were examined. (2) In T1F, only the female parenting of a single cross in the verification set was
examined. (3) In T1M, only the male parent of a single cross in the verification set was examined.
(4) In TO, neither of the adults of a single cross in the verification established was tested. (5) In a
novel single-cross relatives, all single crosses relating to that family were eliminated from the
training set and established the verification set. The traditional LOOCV method was adjusted
significantly to provide a consistent training set length for every examined CV situation. The
learning set size was limited to 261 in all five situations. The research established the training set
dimension at 250 for each of the five CV situations to exclude the influence on sample density.CV
is performed in the first four cases by placing every 312 individual crossings into the validation
set precisely once, known as LOOCV. During every 312 cycles, a sampling of 250 single crosses
was randomly selected from the remainder of single crosses without replacement to create the
learning set. The process was iterated 30 times to ensure enough resampling of the learning set,
resulting in 9360 reproduced training sets. During every 30 cycles, the forecasts were combined
into a unified vector and compared with the phenotypic findings using the method. In situation 5,
the CV process was carried out to include every one of the nine single-cross parents in the
verification set once, using the LOOCYV approach. The process was iterated 30 times by randomly
selecting 250 individual crosses without substitution from the experimental set. The precision of
the forecasting was assessed exclusively for the six most significant families due to the limited
size of the three groups (f7, 8, and f9), which hindered the appropriate estimation of correlation
scores.

The single-cross best linear unbiased predictors obtained from modeling (1) were considered
the measured single-cross efficiency and used for verification. The forecasting precision was
quantified using Pearson’s correlation factor, which measures the relationship between measured
and anticipated single-cross efficiency. This value was split by the square root of the broad-sense
heredity on an entry-mean foundation. The average forecasting efficiency over the 30 trials was
provided. The Standard Errors (Ses) of the forecasting efficiency were computed using the
bootstrap approach, included in the R package called “boot.” During each of the 30 cycles, the
forecasted and discovered variables were recreated 200 times with substitution. The resultant
range of 200 correlation coefficient predictions was utilized to determine the bootstrap SE. The
average SE was recorded over the 30 iterations.

The research initially assessed the predictive accuracy of T2, T1F, T1M, and TO situations
in the entire population using LOOCV. Saty Green (SG) and Plant Height (PH) had higher
prediction accuracies for all cases than Grain Yield (GY) (Figure 6). The highest forecasting

precision was seen for T2, with T1F, T1M, and TO following in descending order. The four
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techniques showed comparable levels of accuracy when applied to both the T2 and T1F situations.
Techniques 1a and 1b exhibited better results than methods 2a and 2b in forecasting single-cross
results for the TIM and TO situations. Applying the proposed modeling resulted in slight
improvements in the precision of predicting GY and Plant Height (PH), with the highest

improvement observed in the TO situation.
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Figure 6. Prediction result analysis

Conclusions: Thanks to significant developments in breeding methods, the research can now
efficiently and inexpensively analyze vast quantities of big genetic data obtained from individual
plant samples. PB has successfully implemented these enhancements and developed a range of
cultivars with increased productivity and improved characteristics to ensure the safety of the food
the research consumes daily. The current rate of genetic improvement needs to be enhanced to
fulfill the projected food requirements, even with the utilization of sophisticated breeding
techniques and platforms. Hence, PB must ascertain a more streamlined approach to enhance
genetic advancement and develop resilient varieties to climate change. The article suggests that
genomic forecasting, forecasting breeding, and utilizing big data from genomics and phenomes
are all possible methods to accelerate the rate of genetic improvement. To fully use the benefits

of new genetic advancements, it is imperative to consistently generate large amounts of genomic
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information, including several types of biological information, and analyze this multidimensional

information.
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