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Abstract
Objective

Modern problems including rising food demand, limited resources, and environmental
degradation can be effectively addressed through the revolutionary practice of smart agriculture
(SA). Meeting global demand while reducing environmental effect is a challenge for traditional
farming practices. By enhancing agricultural methods, increasing crop yields, and decreasing
resource consumption, the combination of Biotechnology (BT) with SA provides a revolutionary

solution.

Material and methods

Smart Agriculture systems' incorporation of data analytics and Deep Neural Networks (DNN) has
increased the optimization potential of agriculture even further. In order to improve crop
management, decrease waste, and increase overall farm production, farmers can use data-
informed decisions made possible by DNN algorithms to get practical insights into crop health,

growth trends, and ideal farming practices.

Results

A Real-Time Crop Monitoring and Management (R-CMM) system integrating DNN, Internet of
Things (1oT), and Biotechnology (BT) is proposed in this research as an application of Smart
Agriculture. By collecting biological signals from the environment using tiny, renewable, and

non-invasive sensors, 10BT provides real-time data on plant health, soil conditions, and climate
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parameters. With this, automated administration of crop systems and continuous monitoring from
a distance are both made possible, cutting down on personnel expenses and increasing overall

efficiency.

Conclusions

Indoor crop plantation management relies on a number of critical characteristics, including
temperature, humidity, soil moisture, and light intensity, all of which the R-CMM system uses to
keep checks on. The platform’s use of DNN algorithms allows for more effective and accurate
farming by predicting when crops may experience stress, optimizing the allocation of resources,
and detecting early indications of disease or pest infestations.
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Introduction

One of the most important issues of contemporary life is how to feed a population that is
expanding every day sustainably. To feed around 1.8 billion people by 2055, the nation's farming
and food manufacturing sector will face significant challenges due to a lack of arable land, water,
and electrical sources (Pingali et al. 2019). Several significant issues have emerged in agricultural
growth and development, including declining and fragmented land ownership, global climate
change, depletion and degradation of natural resources, stagnant farm incomes, lack of an eco-

regional approach, agricultural trade liberalization, and limited employment opportunities in the
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non-farm sector. Adopting newly developed technologies is thus acknowledged as a critical
strategy to improve agricultural productivity in the future (Karunathilake et al. 2023).

Precision agriculture facilitates various agricultural practices such as comprehending the
characteristics of the soil in a particular area, improving soil quality, choosing suitable crops,
managing irrigation, planning planting and harvesting schedules, administering disease
treatments, managing pests and weeds, applying nutrients, monitoring the crops, and predicting
yields (Veerasamy & Fredrik 2023). Precision agriculture, when paired with highly accurate tools
for decision-making and early warning systems, offers an improved understanding of the spatial
needs of a particular agricultural area (Angin et al. 2020). These technologies help to eliminate
excessive operations and give timely information for effective management (Sanjeevi et al. 2020).
SA makes the agricultural sector less vulnerable to climate change by using water, chemicals, and
energy best (Zoran et al. 2022). This is especially important during droughts, extreme weather
events, and the spread of pests and diseases caused by changing climates (Azadi et al. 2021).
When connected to the field equipment, CMM systems can be used to figure out how much
fertilizer to use, the best time to spray, and the exact amount and timing of irrigation (CamgézIii
& Kutlu 2023). Farmers can easily manage important tasks from afar with this technology, which
saves them time, energy, and resources. In addition to increasing output, this may also teach
people how to make accurate predictions, which can help them make good decisions at the right
time (Radhika & Masood 2022). Real-time predictions and environmental parts based on data
give farmers more options for preparing their crops for bad weather (Ulibarri et al. 2022; Vranié¢
& Glisovi¢ 2018).

It is becoming increasingly important for farmers to have technology to keep up with this
growing need. Some examples of how SA technology is becoming more popular are
improvements in seed breeding and the ability to use sensors and 10T features for R-CMM (Shaikh
et al. 2022; Lopes 2023). Farmers can use local information along with past and present weather
data, crop performance histories, and other things to help with CMM. One agricultural innovation
that is expected to grow at a CAGR (compound annual growth rate) of 6.69% from 2020 to 2024
is BT. In 2019, about $95 billion was spent in this area (Surendar et al. 2024). Some BT
innovations are methods and tools for improving organisms by changing their size, color, or
productivity through seed reproduction (Rose & Chilvers 2018; Bronson 2019).

SA and plant BT are complementary fields that have the potential to improve agricultural
productivity, ecological responsibility, and excellence. Plant BT is modifying a crop's genes and
traits to increase the crop's value, resistance, or effectiveness (Radhika & Masood 2022). SA uses
sensors, analytics, and automation to improve R-CMM while reducing resource use and

environmental impact (Mumtaj Begum 2022). Combining these two fields of study might result
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in more effective and efficient agriculture solutions. Moreover, data generation in agriculture and
biotechnology has greatly increased in recent years due to the very rapid development of high-
performance technologies (Mohammadabadi et al. 2024). These data are obtained from studying
products, foods, and biological molecules to understand the role of different aspects of agriculture
in determining the structure, function, and dynamics of living systems (Hamidi et al. 2017).
Artificial neural networks have been proposed to alleviate limitation of traditional methods and
can be used to handle nonlinear and complex data, even when the data is imprecise and noisy
(Hamidi et al. 2017). Agricultural data can be too large and complex to handle through visual
analysis or statistical correlations. This has encouraged the use of machine intelligence or artificial
intelligence (Ghotbaldini et al. 2019). Thus, the main goal of this study was to biosensor
application.

Materials and methods

Integrating 10T and BT for R-CMM in SA: An R-CMM framework's primary objective
is to offer an extensive structure encompassing all essential tasks for conducting independent bio-
sensor gathering, regional archiving, and isolated communication. The information is acquired
through a network of sensors and sent to a gateway, which is then exchanged with the user over
the cloud. Hence, the framework for SA with 10T bio-sensors (Figure 1) offers an internet-based
User Interface (UI) that enables users to remotely sign in, view, and evaluate past information for
either an individual sensor or an entire site. The sensor information consists of discrete
components, each with a unique ID and assigned to an individual location. Every gadget
independently gathers data from the surroundings using probes and transmits it to the base station
(BS) using a wireless network such as WiFi, ZigBee, or LoRa technology. Every node in an
internet connection may function as either a basic server or, in the case of a distributed network,
as both an end user and an additional node simultaneously, subject to its networking topology
(Radhika & Masood 2022).

An advantage of the architecture is that every sensor operates autonomously, enabling
seamless extensions and plug-out activities without requiring reconfiguration of the remaining
sensors. The information acquired from gadgets is transmitted to a BS, which serves as a gateway
and transfers the information to the cloud via an immediate internet link. Due to the ability to
track several sites within an identical region, it is possible to deploy many BS at various places.
To prevent the need for numerous robust internet connections for every gateway, a solution is to
use a handheld device, like an airborne drone, which may regularly gather information from every

BS. This data can then be sent to one controller unit, which will then be uploaded to the web-
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based system. Using an SA structure makes it feasible to organize several devices and harmonize

the duties to be executed. This includes determining the frequency at which the unmanned aircraft

should take off to gather information from every BS and establishing the paths to be followed
(Radhika & Masood 2022).

UAV drone Web
User application

gateway ()

<> Regional level
<« -» Transitional level

<> Isolated level

Figure 1. General framework for SA with 10T bio-sensors

The combination of loT and BT approaches, and the precision of loBT communication can
successfully address the challenges associated with the rapid and exact assessment of crop well-
being. Combining the 1oBT with SA offers a thorough R-CMM framework implementation
method. Integrating DNN algorithms with the 10BT enables the creation of intelligent devices
capable of delivering timely, accurate, and data-driven evaluations about the health and condition
of plants (Radhika & Masood 2022). This revolutionary union helps us learn more about crop
diseases and gives us a way to prevent them and treat specific ones. As a result, it makes possible
the start of a new era in agriculture called SA, which has the potential to boost productivity and

sustainability greatly.
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Cloud-10BT is a new service that makes it easier to install sensors in remote areas. It's a free
web-based solution. This solution makes operation and integration go smoothly. Farming has
become easier to do thanks to advances in technology. Farmers have adopted new methods that
have greatly increased agricultural productivity. The 10BTs are groups of sensors, robots, cell
phones, and drones that work together or with little help from people. These gadgets do different
things and collect data while working together, which makes things faster and more accurate. In
the field of SA, Al technologies are used to check and study the environmental conditions of
farmland efficiently and choose the best crops and R-CMM techniques to grow. Many things are
considered in these evaluations, like the soil type, weather forecasts, and water availability
(Karunathilake et al. 2023).

Figure 2 shows the integration of 10T and BT for R-CMM in SA using DNN. Integrating
vast amounts of data from many sources will provide significant benefits in agriculture via
0BT technology. The temperature and nutritive data of a farm of significant size are sent to a
centralized BS. The data from several bio-sensors does not justify the expense and complexity
involved with the I0BT. If nodes are aggregated in clusters of ideal size, the potential bandwidth
may be comparable to that of the 1oBT. Unmanned aerial vehicles (UAVS) equipped with bio-
sensors and multispectral imaging cameras are used to collect data as they fly over agricultural
areas. Afterward, devices use this data to execute DNN algorithms and assess and detect problems
that impact R-CMM (Camgozli & Kutlu Y 2023).

DNN: The DNN architecture enables the categorization of both normal and compromised data
packets (Camg6zli & Kutlu Y 2023). DNN is a kind of neural network similar to a conventional
Neural Network (NN). The key difference is that DNNs include many hidden layers between the
input and output layers. The DNN architecture has two separate phases: training and testing. This
supervised learning technique is very effective when a larger dataset is used for training. The
input values are multiplied by their corresponding weights in the hidden layer and added to the
neuron’s bias. The formal expression of this process is denoted by Equation 1:

Chiry = Emn=1 WamF1)) + by 1)

The variable b, represents the bias, which is a fixed value. The value of x is incremented by
1, 2, and subsequent numbers. Let K represent the quantity of input and hidden nodes. The link
weight between the input and hidden layer is denoted as w,,,,. The variables M and K denote the

input and hidden neurons in the first hidden layer, respectively. The symbol Fi, denotes the

selected set of optimal features generated via the use of 10BT. The set is used as the input for the

DNN algorithm, with m being a number ranging from 1 and M.
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Data Gathering

R-CMM using DNN

Figure 2. Integration of 10T and BT for R-CMM in SA using DNN (CamgozIli & Kutlu Y
2023)

The term Cy ) denotes the result produced by the hidden layer of the whole network. The

result of the hidden layer is dictated by the activation function, as specified in Equation 2:

A(Chw) = o @)

The sigmoid activation value is represented by the symbol " A(.)". Equation 3 represents the
mathematical computation performed at the output layer. It involves multiplying the output of the
hidden layer by the weights that link the hidden and output layers. Subsequently, this product is
included in the bias function b,.

Cot) = ACN=1WxnA(Chexy ) + by (3)

The variable w,,, represents the weight that connects the concealed and output layers. The
output layer's activation function is the complete network's final output.
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As DNNs and 0BT come together, they change how R-CMM is done in SA. 10BT devices
collect a lot of data, like biosensors built into plants and soil, and this method uses advanced
DL models to look at it. DNNs analyze this data to offer practical information on the health of
crops, growth circumstances, and probable factors causing stress. This empowers farmers to make
well-informed choices immediately. This technology promotes the accuracy of crop management,
optimizes resource efficiency, minimizes waste, and boosts total agricultural production. Using
the 10BT, DNNsmay dynamically adjust to fluctuating environmental circumstances,
guaranteeing the highest possible agricultural output and long-term viability in
SA methodologies.

Results and discussion

Experimental and simulation results: Once the platform was established, tomato plants
were cultivated inside the laboratory. Proper aeration and illumination are necessary for the
growth of tomato plants. The laboratory was adequately air-conditioned but lacked sufficient
openings for sufficient air circulation. The development of tomato plants may be categorized into
many phases: 1) germination and preliminary development with early leaves, 2) vegetative phase,
3) blooming period, 4) embryonic ripening period, and 5) peak ripening phase (Ge et al. 2021).
Nevertheless, as shown by the study (Shamshiri et al. 2018), it is clear that the specific timing of
every phase is contingent upon different types and several factors related to the environment,
including soil quality, ambient temperature, vital nutrients, and illumination (Mumtaj Begum
2022).

The seeds were sown in cultivation plates and incubated for the first germination period of
approximately ten days. Figure 3(a) depicts the progressive stages of germination of the plants
within the controlled laboratory setting, presented in a logical sequence. Once the germination
phase was over, the healthy seedlings were transferred to four planting containers. A structure
equipped with sensors was then set up to collect information regarding the soil and atmospheric
conditions, as seen in Figure 3(b). The primary tomato plant was located in the center pot, while
the plants in the other containers served as backups in case any issues arose with the primary
plant. Additionally, these plants were utilized to validate the results of the experiment. The middle
pot has integrated sensors for measuring water in the soil, pH, temperature, and acoustic data. The
other sensors are positioned on the roof of the planting station. Before the execution, all the

sensors underwent validation and preliminary testing.
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(@) Germination phase

" 1’,‘\

(b) Vegetative phase with bio-sensors

Figure 3. R-CMM experimental setup with bio-sensors

The simulation is run on an Intel (R) Core (TM) i5-3570S CPU processor with a clock
frequency of 3.10 GHz using the MATLAB program. The R-CMM system's usefulness is proven
by checking and measuring error rates and how well it finds things. Currently, Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and the proposed DNN are the comparison
methods used (Mumtaj Begum 2022). Figure 4 shows the error rate and accuracy (%) of different
deep learning algorithms for R-CMM in SA. With an accuracy rate of 83.56% and an error rate
0.2456, the DNN algorithm is the most accurate DL method for R-CMM in SA. An error rate of
0.4195 means that the SVM is correct 74.5% of the time. The KNN algorithm, on the other hand,
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is only 72.13% accurate and has a 0.4897 error rate. This means DNN is much more reliable and

accurate for this R-CMM use case than the other DL methods.
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Figure 4. Accuracy (%) and error rate of various DL algorithms for R-CMM in SA.

Conclusions: With DNN, IoT, and BT, this study suggests R-CMM in SA. IoBT is a new
network structure that uses small, renewable, and unnoticeable sensors to collect and study
biological signals in the nearby area. This study showed an affordable 10T platform with sensors
designed specifically for R-CMM operations in a tomato plantation in the lab. With an accuracy
rate of 83.56% and an error rate of 0.2456, the DNN algorithm is the most accurate DL method.
The study shows how important it is to be aware of your surroundings. The results of this study
are likely to have a significant effect on pushing for and supporting the integration of SA and BT
solutions. The goal of these solutions is to boost quality and efficiency while also promoting
sustainability.

Acknowledgement: The author declares that no funds, grants, or other support were
received during the preparation of this manuscript.

Conflict of Interest: There is no conflict of Interest.

References
Angin P, Anisi MH, Goksel F, et al. (2020) Agrilora: a digital twin framework for smart
agriculture. J Wirel Mob Netw Ubiquitous Comput Dependable Appl 11(4), 77-96.

316
Agricultural Biotechnology Journal;  Print ISSN: 2228-6705,  Electronic ISSN: 2228-6500

L W,



= v,

Soy and Balkrishna 2024

Azadi H, Moghaddam SM, Burkart S, et al. (2021) Rethinking resilient agriculture: From climate-
smart agriculture to vulnerable-smart agriculture. J Clean Prod 319, e128602.

Bronson K (2019) Looking through a responsible innovation lens at uneven engagements with
digital farming. NJAS Wageningen J Life Sci 90, e100294.

Camgozllu Y, Kutlu Y (2023) Leaf Image Classification Based on Pre-trained Convolutional
Neural Network Models. Nat Eng Sci 8(3), 214-232.

Ge J, Zhao L, Gong X, et al. (2021) Combined effects of ventilation and irrigation on temperature,
humidity, tomato yield, and quality in the greenhouse. Hort Sci 56(9), 1080-1088.

Ghotbaldini H, Mohammadabadi M, Nezamabadi-pour H, et al. (2019) Predicting breeding value
of body weight at 6-month age using Artificial Neural Networks in Kermani sheep
breed. Acta Sci Anim Sci 41, e45282.

Hamidi SP, Mohammadabadi MR, Foozi MA, Nezamabadi-Pour H (2017) Prediction of breeding
values for the milk production trait in Iranian Holstein cows applying artificial neural
networks. J Livestock Sci Technol 5(2), 53-61.

Karunathilake EMBM, Le AT, Heo S, et al. (2023) The path to smart farming: Innovations and
opportunities in precision agriculture. Agric 13(8), e1593.

Lopes MA (2023) Rethinking plant breeding and seed systems in the era of exponential
changes. Ciénc agrotec 47, e0001R23. https://doi.org/10.1590/1413-70542023470001R23

Mohammadabadi M, Kheyrodin H, Afanasenko V, et al. (2024) The role of artificial intelligence
in genomics. Agric Biotechnol J 16(2), 195-279.

Mumtaj Begum H (2022) Scientometric Analysis of the Research Paper Output on Artificial
Intelligence: A Study. Indian J Inf Sources Serv 12(1), 52-58.

Pingali P, Aiyar A, Abraham M, et al. (2019) Indian food systems towards 2050: challenges and
opportunities. Transform Food Syst Rising India 1-14.

Radhika A, Masood MS (2022) Crop Yield Prediction by Integrating Et-DP Dimensionality
Reduction and ABP-XGBOOST Technique. J Internet Serv Inf Secur 12(4), 177-196.

Rose DC, Chilvers J (2018) Agriculture 4.0: Broadening responsible innovation in an era of smart
farming. Front Sustain Food Syst 2, e87.

Sanjeevi P, Prasanna S, Siva Kumar B, et al. (2020) Precision agriculture and farming using
Internet of Things based on wireless sensor network. Trans Emerg Telecommun
Technol 31(12), e3978.

Shaikh FK, Karim S, Zeadally S, Nebhen J (2022) Recent trends in internet-of-things-enabled
sensor technologies for smart agriculture. IEEE Internet Things J 9(23), 23583-23598.

317
Agricultural Biotechnology Journal;  Print ISSN: 2228-6705,  Electronic ISSN: 2228-6500

L W,



= v,

Agricultural Biotechnology Journal, 2024 16(4)

Shamshiri RR, Jones JW, Thorp KR, et al. (2018) Review of optimum temperature, humidity, and
vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation
of tomato: a review. Int Agrophys 32(2), 287-302.

Surendar A, Veerappan S, Sindhu S, Arvinth N (2024) A Bibliometric Study of Publication -
Citations in a Range of Journal Articles. Indian J Inf Sources Serv 14(2), 97-103.

Ulibarri N, Ajibade I, Galappaththi EK, et al. Global Adaptation Mapping Initiative Team (2022)
A global assessment of policy tools to support climate adaptation. Clim Policy 22(1), 77-
96.

Veerasamy K, Fredrik ET (2023) Intelligent Farming based on Uncertainty Expert System with
Butterfly Optimization Algorithm for Crop Recommendation. J Internet Serv Inf Secur
13(3), 158-169.

Vrani¢ P, Glisovi¢ S (2018) Decision making support tools for adaptation to climate change-a
mini review. Facta Univ Ser: Work & Living Environ Protect 73-80.

Zoran G, Nemanja A, Srdan B (2022) Comparative Analysis of Old-Growth Stands Janj and Lom
Using Vegetation Indices. Arch Tech Sci 2(27), 57-62.

318
Agricultural Biotechnology Journal;  Print ISSN: 2228-6705,  Electronic ISSN: 2228-6500

L W,



:, : S90S (5598 i gu alxo /@@
f:‘r‘r‘cf{l dt)/ﬂf.«nlﬁh
“ YYYA=$0e 2 oSaig S bl YIYA-5Y- ile b -

.
C/”/_'v'

P Jypasw (2lg (loj )3 o pe 9 )5 (6l (599 g 9 Lol S 2] L]

Sowigh (&3 )9l

u’i"ﬁ)"g‘ S u»)bi V- 5)%]) ‘K».JK oKisly cleMb 6)5&3 9 )lef P?'L; 09; QL{.)LL»‘ J9§.u~o OM?J*

ku.aakanshasoy@kalingauniversity.ac.in
Ly S Uiilo 5 9m0

sutar.nilesh.tanaji@kalingauniversity.ac.in

VEXLANY il gl VEY AN sl o Mol LB sl gl VFYV/AF rcdl s Al

LXVCCY

Jes sk 5l ge yob 4 i o 1y ;e (50 g wgdze milie die clola ]38l dlos il a0 ML -V
Sl ol aoe can; Sl GEalS Sl e ) 5 Slea sLoli 4 (065l )8 Jo (SA) tieden yolis (!
Olal38l cg5y0liS” sla iy Cusis b (MBI o ol 4 SA L (BT) (55)isSon oSy ol it (55y5LiS slaogess

.\SL;O 45‘)‘ CJLA d)m L)“Jz’l'{9 JQM o.))'l.g

Jesly (DNN) Gras (oas (slaasSed o baosly Lo o ajo5 5l diadsn (65)0liS lapium plesl (b9, g dlgo

550 S 255 Gli8 5 Sl nlS Jpaime e Sgnesslate & ool 005 I3 iy s 1y 55918 (st

2 es i U cl oad Soe DNN (gl (0265 Lawgs a8 a8 oalitl 03ld p3 ite Slogouas 1 Ailg5 oo )9l

.Aj)j] Cwwd & Ji b.b] d))au dl.boy.w 9 J..w) ..\35) sJ}o.a?u Ceow d)y90


https://orcid.org/0009-0002-1955-6909
https://orcid.org/0009-0003-8881-3638

BN,

(Ye-y Olumo € 0 lows VT 5)9.5) S329UiS (5599550 g dloxo

s,

$595S5s 5 (10T) Ll izl DNN o5 (R-CMM) (ly (loj 50 Jgamme Copo g Ol ples S5 1glS
sl JiSws (6yglgen LIOBT .ol ond slotiy diadbgn (65,5l )18 G lsie & edow ol 13 48 0 42,50 1, (BT)
Ll ol cadl 3590 53 1) S5p3M (slnodls (o2 led g oo «SogS (sla Sl oslatul b baoms Sl (Sojslgn
93 50 393 ol jl yoitume llas 5 Jouame (clapimmw 5355 o pte S ol b S o &) Slgn g O o el )b g S

a3 oo (il (IS D g (il ) iy (sladisa 5 395 00 oy Sl
oS Cusl (S0 595 Db g SB Cugh) sy dod alo Sl (Gl o Shag il o3 @ B g)l5e e 16 5 At
oo st b pyitly ol 5> DN elagzy 651 51 aslitol 458 o odlizul ]S Lis (gl gl dan j| R-CMM tacees
Rl el ) 5383 5 5% (6508 Wbl oz b (5)lew adgl (slaailis plolid 5 plie yanass (siloding oyl

Hadgh ()i (Gres (ras GlraSed db S (SGelgSis (e sbudl iyl 165 (el

gy e £oi

Jyae (Bly loj 3 o e g )llas gl (6599S59m g bl o sl pleat (VF+F) Lo Jligus ity ;S oo LislST 2 Liiun!
XYYV (FNVE ¢ 0i)oliS alaiSinn dloro Niadioh (5yaliS )

Publisher: Faculty of Agriculture and Technology Institute of Plant

@ @@ Production, Shahid Bahonar University of Kerman-Iranian
Biotechnology Society.

© the authors

320

Agricultural Biotechnology Journal;  Print ISSN: 2228-6705,  Electronic ISSN: 2228-6500



