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Abstract. One of the most famous path-dependent options is the Look-

back option. This option is a useful financial instrument to hedge against
the risks associated with high volatility in the market. Since empirical

studies on the statistical properties of logarithmic returns show the de-

pendence of returns and stock price volatilities on different days; we need
a suitable model for pricing the Lookback option to illustrate this phe-

nomenon. Partial differential equations with fractional order derivatives

can be useful tools to describe the long memory effect in the financial
markets. Hence, we want to price the European floating strike Look-

back option (FSLO) under fractional Black-Scholes (FBS) models using

a numerical method: implicit difference scheme (IDS). Also, the stability
and convergence analysis of the proposed method are investigated using

Fourier series expansion. Numerical results are provided to show the ef-

ficiency of the method.

Keywords: Fractional Black-Scholes equation, Lookback option, Path-
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1. Introduction

Lookback options are one of the most popular exotic options for risk man-
agement or trading in the financial market. These options are traded in the
over-the-counter (OTC) market. Lookback options are called path-dependent
options because their payoffs depend on the path followed by the underlying
asset price (S) during the option’s lifetimes. Since holders of Lookback op-
tions can buy or sell at the lowest or highest underlying asset price over the
options lifetimes, these options are never out-of-the-money, and their holders
can always exercise them [11]. So, Lookback options act as insurance against
the risks associated with high volatility of asset price during the life of the
contract. This ability of Lookback options makes these options more expensive
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than vanilla options, but due to their high premiums, the volume of transac-
tions in the OTC market is reduced [6, 11, 18, 35]. These options have a more
complex structure than standard options.

There are two types of Lookback options: FSLOs and fixed strike Lookback
options. The payoff functions of these options are according to Table 1 where
T and K are the expiration date and strike price, respectively; and

M̃ = max
0≤t≤T

S(t), m̃ = min
0≤t≤T

S(t).

Table 1. Payoff functions of Lookback options.

Option name Floating strike price Fixed strike price

Put option V (T, S(T ), M̃) = max(M̃ − S(T ), 0) V (T, S(T ), m̃) = max(K − m̃, 0)

Call option V (T, S(T ), m̃) = max(S(T )− m̃, 0) V (T, S(T ), M̃) = max(M̃ −K, 0)

Holders of floating strike Lookback put (call) options (FSLPOs) have the
right to sell (buy) at the highest (lowest) realized asset price during a cer-

tain time. Since M̃ ≥ S(T ) and S(T ) ≥ m̃, payoff functions of Lookback put

and call options are M̃ − S(T ) and S(T ) − m̃, respectively. At first, Gold-
man et al. [13] have priced Lookback options under the Black-Scholes model.
Then, Conze [7] has obtained closed-form formulas for various European Look-
back options by using probabilistic approaches under the continuous-time asset
model with Black and Scholes assumptions. Wong and Chan [30] have an-
alytically evaluated floating and fixed strike Lookback options, in-the-money
Lookback spread options, and dynamic fund protection under a multiscale sto-
chastic volatility model. They have demonstrated that this model captures the
volatility surface with high quality. Also, they have investigated the effects of
stochastic volatility on Lookback options. Kim et al. [17] have introduced a
binomial tree method for pricing European and American Lookback options
with jump-diffusion models and have demonstrated its equivalence to a certain
explicit difference scheme. They have proved the existence and convergence
of the optimal exercise boundary in the binomial tree method for American
Lookback options. Park and Taksar [21] have obtained a semi-analytic pricing
formula for Lookback options under a general stochastic volatility model using
probabilistic tools together with the homotopy analysis method.

The above studies do not show the memory effect and other properties in
the financial market. Various empirical studies on the financial time series
show that the logarithmic returns of financial assets are non-independent, non-
normal, nonlinear, heavy tails, self-similar, long-range dependence, and volatil-
ity clustering [2,5,8–10,15,26]. Long-range dependence or long memory is one
of the phenomena observed between returns and stock price volatilities on dif-
ferent days. There are several reasons for the appearance of this phenomenon in
the financial markets, such as long-range dependence appears in high frequency
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financial data [1,20]. In addition to fundamentals, other market characteristics
such as speculative behaviors (e.g., technical analysis) and speculative bub-
bles in stock markets play an important role in determining prices [32]. Since
traders are bounded rational, they either underreact or continually overreact
to the news [29]. Because the financial system is a complex system with a
lot of flexibility, investors do not make a decision immediately after receiv-
ing financial information, but wait for the information to reach its threshold
limit value [33]. This behavior may lead to the feature of ”long-range depen-
dence” in the financial market. Mandelbrot [19] has first found the existence
of long-range dependence in asset returns. To capture this phenomenon, effec-
tive instruments such as fractional Brownian motion and fractional calculus are
used. Chen et al. [4] have obtained the bullish and bearish Lookback option
pricing formula for the mixed jump-diffusion fractional Brownian motion with
a floating strike price. Yang [34] has compounded the Brownian motion, frac-
tional Brownian motion, and Poisson process to suggest the default probability
of the American Lookback option under a mixed jump-diffusion model. He
has considered two-sided predetermined strikes to activate the American Look-
back option. In addition to fractional Brownian motion, partial differential
equations with fractional derivatives also provide a powerful tool for describing
memory and hereditary characteristics of stock price variations. So far, various
FBS models have been presented. First FBS model is proposed in the following
form to price the European call options [31]:

(1)
∂αV

∂tα
(t, S) = rV (t, S)− σ2

2
S2 ∂

2V

∂S2
(t, S)− rS ∂V

∂S
(t, S),

where σ and r are the volatility of the asset returns and interest rate, respec-
tively. The second FBS model is derived by using Itô Lemma and fractional
Taylor’s series of V (S, t) as follows [16]:
(2)
∂αV

∂tα
(t, S) =

(
rV (t, S)− rS ∂V

∂S
(t, S)

)
t1−α

Γ(2− α)
− Γ(1 + α)

2
σ2S2 ∂

2V

∂S2
(t, S).

The third FBS model is presented to describe the trend memory effects in the
following form [12]:

(3)
∂αV

∂tα
(t, S) =

(
V (t, S)− σ2S2

2Γ2(1 + α)

∂2V

∂S2
(t, S)− rS ∂V

∂S
(t, S)

)
t1−α

Γ(2− α)
.

The fractional derivative in the above equations is the following modified Riemann-
Liouville derivative [16]

(4)
∂αV

∂tα
(t, S) =


1

Γ(1−α)
∂
∂t

∫ T
t

V (κ,S)−V (T,S)
(κ−t)α dκ, 0 < α < 1,

∂V (t,S)
∂t , α = 1.

Note that by taking α = 1 in the above FBS models, they will be the classical
Black-Scholes model.



116 M. Rezaei, A.R. Yazdanian

At the time of trading, traders look at past asset price information and
make decisions based on it. Therefore, information about past asset prices is
required. The classic Black-Scholes equation with non-fractional derivatives is
not able to show this feature. But the Black-Scholes equation with fractional
order derivative uses past information of underlying asset price. This point
lies in the integral of relation (4). Therefore, the Black-Scholes equation with
time-fractional derivative can be efficient for traders determining option price,
implied volatility, and Greek letters. The importance of this issue led to ex-
tensive studies on these models: Chen et al. [3] have proposed a new operator
splitting method for pricing American options under FBS models (1), (2), and
(3). In [27], American options are evaluated based on the FBS equation (1)
under the CEV model using a compact difference scheme when the dividend
yield is paid on assets during that period. Samareh et al. [14] have priced
the European option under the first FBS model by using the finite difference
formula for time discretization and the spectral method based on Chelyshkov
wavelets for space discretization. Rezaei and Izadi [23] have obtained an ana-
lytical solution for the time-space FBS model arising in the financial market.
We will use models (1), (2), and (3) to price the European FSLO. The purpose
of this study is to price the European FSLO under FBS models (1), (2), and
(3). Consider first FBS model

(5)
∂αV

∂tα
(t, S, %) = rV (t, S, %)− σ2

2
S2 ∂

2V

∂S2
(t, S, %)− rS ∂V

∂S
(t, S, %),

with the following terminal payoff and boundary conditions
∂V

∂%
(t, S, %) = 0, S = %, 0 ≤ t < T, % > 0,

V (t, 0, %) = %e−r(T−t), 0 ≤ t < T, % > 0,

V (T, S, %) = %− S(T ), 0 ≤ S < %,

where V (t, S, %) is the FSLPO price, and % := max0≤u≤t S(u). By converting
τ = T − t and V (t, S, %) = V (T − τ, S, %) = G(τ, S, %), the boundary prob-
lem with the terminal condition becomes a boundary problem with the initial
condition. For 0 < α < 1, we have

∂αV

∂tα
(t, S, %) =

1

Γ(1− α)

∂

∂t

∫ T

t

V (κ, S, %)− V (T, S, %)

(κ− t)α
dκ

κ=T−ι
====

1

Γ(1− α)

∂

∂τ

∫ 0

τ

V (T − ι, S, %)− V (T, S, %)

(τ − ι)α
dι

= − 1

Γ(1− α)

∂

∂τ

∫ τ

0

G(ι, S, %)−G(0, S, %)

(τ − ι)α
dι



European Lookback option pricing with floating strike... – JMMR Vol. 14, No. 2 (2025) 117

= − 1

Γ(1− α)

∂

∂τ

∫ τ

0

[G(ι, S, %)−G(0, S, %)] d
(τ − ι)1−α

−(1− α)

= − 1

Γ(1− α)

∂

∂τ

∫ τ

0

(τ − ι)1−α

1− α
∂G(ι, S, %)

∂ι
dι

= − 1

Γ(1− α)

∫ τ

0

1

(τ − ι)α
∂G(ι, S, %)

∂ι
dι = −C0 Dα

τG(τ, S, %),(6)

where C
0 D

α
τG(τ, S, %) is the Liouville-Caputo fractional derivative [22]. By (6),

∂2V
∂S2 (t, S, %) = ∂2G

∂S2 (τ, S, %), and ∂V
∂S (t, S, %) = ∂G

∂S (τ, S, %), equation (5) becomes

(7) C
0 D

α
τG(τ, S, %) =

σ2

2
S2 ∂

2G

∂S2
(τ, S, %) + rS

∂G

∂S
(τ, S, %)− rG(τ, S, %),

with initial and boundary conditions

(8)


∂G

∂%
(τ, S, %) = 0, S = %, 0 < τ ≤ T, % > 0,

G(τ, 0, %) = %e−rτ , 0 < τ ≤ T, % > 0,

G(0, S, %) = %− S(0), 0 ≤ S < %.

Equation (7) with initial and boundary conditions (8) is 3-dimensional and its
numerical solution will be complex. Hence, we transform the above problem
into a 2-dimensional problem by using the linear scaling property of the FSLO
price as follows [28]

G(τ, λS, λ%) = λG(τ, S, %), for all λ > 0.

Let

U(τ, z) = G(τ, z, 1), 0 ≤ τ ≤ T, 0 ≤ z ≤ 1,

then

(9) G(τ, S, %) = %G(τ,
S

%
, 1) = %U(τ,

S

%
), 0 ≤ τ ≤ T, 0 ≤ S ≤ %, % > 0.

Now, we compute the partial derivatives of equation (7) from (9)

C
0D

α
τG(τ, S, %) =

1

Γ(1− α)

∫ τ

0

1

(τ − ι)α
∂G(ι, S, %)

∂ι
dι

=
1

Γ(1− α)

∫ τ

0

1

(τ − ι)α
∂

∂ι

[
%U(ι,

S

%
)

]
dι

= % · 1

Γ(1− α)

∫ τ

0

1

(τ − ι)α
∂

∂ι

[
U(ι,

S

%
)

]
dι = % C

0D
α
τ U(τ,

S

%
),(10)
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∂G

∂S
=

∂

∂S

[
%U(τ,

S

%
)

]
= %

∂U

∂z
(τ,

S

%
) · ∂
∂S

(
S

%

)
=
∂U

∂z
(τ,

S

%
),(11)

∂2G

∂S2
=

∂

∂S

[
∂U

∂z
(τ,

S

%
)

]
=
∂2U

∂z2
(τ,

S

%
) · ∂
∂S

(
S

%

)
=

1

%

∂2U

∂z2
(τ,

S

%
),(12)

∂G

∂%
=

∂

∂%

[
%U(τ,

S

%
)

]
= U(τ,

S

%
)− %∂U

∂z
(τ,

S

%
) · ∂
∂%

(
S

%

)

= U(τ,
S

%
)− S

%

∂U

∂z
(τ,

S

%
).(13)

By substituting (9), (10), (11), and (12) into (7), we have

% C
0D

α
τ U(τ,

S

%
) =

σ2

2
S2 · 1

%

∂2U

∂z2
(τ,

S

%
) + rS · ∂U

∂z
(τ,

S

%
)− r%U(τ,

S

%
),

or

(14) %

[
C
0D

α
τ U(τ,

S

%
)− σ2

2

S2

%2

∂2U

∂z2
(τ,

S

%
)− rS

%

∂U

∂z
(τ,

S

%
) + rU(τ,

S

%
)

]
= 0.

By omitting % (% > 0 and % 6= 0) and changing the variable z = S
% , we get

(15) C
0 D

α
τ U(τ, z) =

σ2

2
z2 ∂

2U

∂z2
(τ, z) + rz

∂U

∂z
(τ, z)− rU(τ, z).

Also, by substituting (9) and (13) into (8), we obtain the following initial and
boundary conditions for (15):

(16)


∂U

∂z
(τ, 1) = U(τ, 1), 0 < τ ≤ T,

U(τ, 0) = e−rτ , 0 < τ ≤ T,

U(0, z) = 1− z(0), 0 ≤ z < 1.

Finding an analytical solution to problems (15)-(16) is difficult, so we use
a numerical method to price the FSLO. In Section 2, we present an IDS for
problems (15)-(16). In Section 3, we investigate the stability analysis of the
suggested method. In Section 4, we demonstrate the convergence analysis of the
suggested method. In Section 5, we report some numerical examples. Finally,
some remarks are presented in Section 6.

2. Numerical method for FBS models

We describe a numerical method for equation (15) to price the FSLO. At
first, we let (N,M ∈ N)

ξ =
T

M
, τς = ςξ, ς = 0, 1, . . . ,M,

ρ =
1

N
, zυ = υρ, υ = 0, 1, . . . , N.
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We use the notation U ςυ = U(τς , zυ) to show the numerical solution of equation
(15) in the uniform grid of mesh points (τς , zυ) and approximate time and
space derivatives at this point. The time-fractional derivative C

0 D
α
τ U(τ, z) is

approximated at the point (τς , zυ) as follows [22,26]

(17) C
0 D

α
τ U(τ, z)

∣∣
τ=τς , z=zυ

= ϕα,ξ

ς∑
ω=1

χ(α)
ω

(
U ς−ω+1
υ − U ς−ωυ

)
+O

(
ξ2−α) ,

with

ϕα,ξ =
1

ξαΓ(2− α)
,

χ(α)
ω = ω1−α − (ω − 1)1−α, ω = 1, . . . , ς.

We approximate derivatives ∂2U
∂z2 and ∂U

∂z as follows:

∂2U

∂z2

∣∣∣
τ=τς , z=zυ

=
U ςυ−1 − 2U ςυ + U ςυ+1

ρ2
+O

(
ρ2
)
,(18a)

∂U

∂z

∣∣∣
τ=τς , z=zυ

=
U ςυ+1 − U ςυ−1

2ρ
+O

(
ρ2
)
.(18b)

By substituting (17), (18a), and (18b) into equation (15), we get

ϕα,ξ

ς∑
ω=1

χ(α)
ω

(
U ς−ω+1
υ − U ς−ωυ

)
=

1

2
σ2z2

υ

U ςυ−1 − 2U ςυ + U ςυ+1

ρ2

+ rzυ
U ςυ+1 − U ςυ−1

2ρ
− rU ςυ +O

(
ξ2−α + ρ2

)
.(19)

We can rearrange the IDS (19) as follows

(20)



[ζυ − βυr]U1
υ−1 − [2ζυ + r + ϕα,ξ]U

1
υ + [ζυ + βυr]U

1
υ+1

= −ϕα,ξU0
υ +O

(
ξ2−α + ρ2

)
, ς = 1,

[ζυ − βυr]U ςυ−1 − [2ζυ + r + ϕα,ξ]U
ς
υ + [ζυ + βυr]U

ς
υ+1

= ϕα,ξ
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
U ς−ωυ

−ϕα,ξχ(α)
ς U0

υ +O
(
ξ2−α + ρ2

)
, ς ≥ 2,

where

ζυ :=
σ2

2ρ2
z2
υ, βυ :=

1

2ρ
zυ.

The discretization of initial and boundary conditions are:

(21)


U ςN+1 − U

ς
N−1

2ρ
+O

(
ρ2
)

= U ςN ,

U ς0 = e−rτς ,

U0
υ = 1− zυ.
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Then, the following IDS is obtained for equation (15) by omitting the truncation
errors from (20)

(22)


aυ−1Ũ

1
υ−1 + bυŨ

1
υ + cυ+1Ũ

1
υ+1 = −ϕα,ξŨ0

υ , ς = 1,

aυ−1Ũ
ς
υ−1 + bυŨ

ς
υ + cυ+1Ũ

ς
υ+1

= ϕα,ξ
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
Ũ ς−ωυ − ϕα,ξχ(α)

ς Ũ0
υ , ς ≥ 2,

where

aυ−1 := ζυ − βυr, bυ := − [2ζυ + r + ϕα,ξ] , cυ+1 := ζυ + βυr,

υ = 1, 2, . . . , N − 1,

aN−1 := 2ζN , bN := − [2ζN + r + ϕα,ξ] + 2ρ [ζN + βNr] .

U ςυ and Ũ ςυ are exact solutions of equations (20) and (22), respectively. Also,
initial and boundary conditions are:

(23)


Ũ ςN+1 = Ũ ςN−1 + 2ρŨ ςN ,

Ũ ς0 = e−rτς ,

Ũ0
υ = 1− zυ.

We can rewrite the IDS (22) in the following matrix form AŨ1 = −ϕα,ξŨ0 − F 1, ς = 1,

AŨ ς = ϕα,ξ
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
Ũ ς−ω − ϕα,ξχ(α)

ς Ũ0 − F ς , ς ≥ 2,

where

A =


b1 c2 0
a1 b2 c3

. . .
. . .

. . .

cN
0 aN−1 bN

 ,

Ũ ς =
(
Ũ ς1 , Ũ

ς
2 , . . . , Ũ

ς
N

)t
, F ς =

(
a0Ũ

ς
0 , 0, . . . , 0

)t
.

The graph of the IDS (22) is as follows:

· · · Ũ ς−2
υ

Ũ ςυ

Ũ1
υ

Ũ ςυ+1Ũ ςυ−1

Ũ ς−1
υŨ0

υ
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3. Stability analysis of IDS

We discuss the unconditional stability of the suggested IDS (22)-(23) using

Fourier analysis [24,25]. We suppose that Û ςυ is the approximate solution of the

proposed IDS. Let ε = Ũ − Û , εςυ = Ũ ςυ − Û ςυ, υ = 0, 1, . . . , N ; ς = 0, 1, . . . ,M ,
then εςυ satisfies (22)-(23)

(24)


aυ−1ε

1
υ−1 + bυε

1
υ + cυ+1ε

1
υ+1 = −ϕα,ξε0

υ, ς = 1,

aυ−1ε
ς
υ−1 + bυε

ς
υ + cυ+1ε

ς
υ+1

= ϕα,ξ
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
ες−ωυ − ϕα,ξχ(α)

ς ε0
υ, ς ≥ 2,

and ες0 = 0. We can expand ες(z) in a Fourier series for grid function

ες(z) =

{
εςυ, z ∈

(
zυ − ρ

2 , zυ + ρ
2

]⋃ (
1− ρ

2 , 1
]
,

0, z ∈
[
0, ρ2

]
,

with period L = 1 as follows

ες(z) =
+∞∑

υ=−∞
θςυe

i 2πυzL (i2 = −1), ς = 0, 1, . . . ,M,

θςυ =
1

L

∫ L

0

ες(z)ei
2πυz
L dz, υ ∈ Z.

We let ες = (ες1, ε
ς
2, . . . , ε

ς
N )t, and introduce the following norm

‖ες‖22 =

N∑
υ=1

ρ |εςυ|
2

=

∫ L

0

|ες(z)|2 dz = ‖ες(z)‖2L2 , ς = 0, 1, . . . ,M.

According to the Parseval identity

‖ες(z)‖2L2 = L

+∞∑
υ=−∞

|θςυ|
2
, ς = 0, 1, . . . ,M,

one gets

(25) ‖ες‖22 =

N∑
υ=1

ρ |εςυ|
2

= L

+∞∑
υ=−∞

|θςυ|
2
.

We suppose that εςυ in equation (24) has the form εςυ = θςeiqυρ (q = 2πl
L , l ∈ Z).

Substituting this relation into (24), we derive

(26)


[
aυ−1e

−iqρ + bυ + cυ+1e
iqρ
]
θ1 = −ϕα,ξθ0, ς = 1,[

aυ−1e
−iqρ + bυ + cυ+1e

iqρ
]
θς

= ϕα,ξ
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
θς−ω − ϕα,ξχ(α)

ς θ0, ς ≥ 2.

Lemma 3.1. The coefficients χ
(α)
ω of relation (17) satisfy
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(1) χ
(α)
ω > 0, ω = 1, 2, . . . ,

(2) 1 = χ
(α)
1 > χ

(α)
2 > . . . > χ

(α)
ω , χ

(α)
ω → 0, as ω → +∞.

(3)
∑ς−1
ω=1(χ

(α)
ω − χ(α)

ω+1) + χ
(α)
ς = 1.

Proof. See [25]. �

Lemma 3.2. Suppose θς (ς = 1, 2, . . . ,M) is the solution (26), we have

|θς | ≤
∣∣θ0
∣∣ , ς = 1, 2, . . . ,M.

Proof. We can write equation (26) by using sin2( qρ2 ) = − 1
4 (eiqρ− 2 + e−iqρ) as

follows [
−4ζυ sin2(

qρ

2
) + 2iβυr sin(qρ)− r − ϕα,ξ

]
θ1 = −ϕα,ξθ0,

where ζυ, βυ, r, ϕα,ξ > 0, (υ = 1, 2, . . . , N) imply∣∣∣−4ζυ sin2(
qρ

2
) + 2iβυr sin(qρ)− r − ϕα,ξ

∣∣∣ ≥ ϕα,ξ,
that results |θ1| ≤ |θ0|. We suppose that |θn| ≤ |θ0|, n = 2, 3, . . . , ς − 1 and
apply the mathematical induction to prove |θς | ≤ |θ0|. With equation (26) for
j ≥ 2 and Lemma 3.1, we have∣∣∣[−4ζυ sin2(

qρ

2
) + 2iβυr sin(qρ)− r − ϕα,ξ

]
θς
∣∣∣

=

∣∣∣∣∣ϕα,ξ
ς−1∑
ω=1

(
χ

(α)
ω+1 − χ(α)

ω

)
θς−ω − ϕα,ξχ(α)

ς θ0

∣∣∣∣∣
≤ ϕα,ξ

∣∣∣∣∣
ς−1∑
ω=1

(
χ

(α)
ω+1 − χ(α)

ω

)
θς−ω

∣∣∣∣∣+ ϕα,ξχ
(α)
ς

∣∣θ0
∣∣

≤ ϕα,ξ
ς−1∑
ω=1

(
χ(α)
ω − χ(α)

ω+1

) ∣∣θς−ω∣∣+ ϕα,ξχ
(α)
ς

∣∣θ0
∣∣

≤ ϕα,ξ

[
ς−1∑
ω=1

(
χ(α)
ω − χ(α)

ω+1

)
+ χ(α)

ς

] ∣∣θ0
∣∣ = ϕα,ξ

∣∣θ0
∣∣ ,

then |θς | ≤ |θ0|. �

Theorem 3.3. The IDS (22)-(23) is unconditionally stable.

Proof. By applying Lemma 3.1 and 3.2 in (25), we obtain

‖ες‖22 = L

+∞∑
υ=−∞

|θςυ|
2 ≤ L

+∞∑
υ=−∞

∣∣θ0
υ

∣∣2 =
∥∥ε0
∥∥2

2
.

That is, ‖ες‖2 ≤ ‖ε0‖2 for ς = 1, 2, . . . ,M . Hence, the proof is finished. �
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4. Convergence analysis of IDS

We discuss the convergence of the IDS (22)-(23). We assume that U ςυ and

Ũ ςυ are solutions of (20)-(21) and (22)-(23), respectively. Subtracting (20) from
(22), we get the following equation

(27)


aυ−1E

1
υ−1 + bυE

1
υ + cυ+1E

1
υ+1 = −ϕα,ξE0

υ +R1
υ, ς = 1,

aυ−1E
ς
υ−1 + bυE

ς
υ + cυ+1E

ς
υ+1

= ϕα,ξ
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
Eς−ωυ − ϕα,ξχ(α)

ς E0
υ +Rςυ, ς ≥ 2,

where Eςυ = U ςυ − Ũ ςυ and Rςυ = O(ξ2−α + ρ2), υ = 0, 1, . . . , N ; ς = 0, 1, . . . ,M .
Applying equation (21) and (23), we have{

Eς0 = 0, ς = 0, 1, . . . ,M,

E0
υ = 0, υ = 0, 1, . . . , N.

Now, we multiply $ := ϕ−1
α,ξ on both sides (27) and rewrite as follows

(28)


$aυ−1E

1
υ−1 +$bυE

1
υ +$cυ+1E

1
υ+1 = −E0

υ + ξαR1
υ, ς = 1,

$aυ−1E
ς
υ−1 +$bυE

ς
υ +$cυ+1E

ς
υ+1

=
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
Eς−ωυ − χ(α)

ς E0
υ + ξαRςυ, ς ≥ 2.

Similar to stability analysis, we first define the following two grid functions

Eς(z) =

{
Eςυ, z ∈

(
zυ − ρ

2 , zυ + ρ
2

]⋃ (
1− ρ

2 , 1
]
,

0, z ∈
[
0, ρ2

]
,

and

Rς(z) =

{
Rςυ, z ∈

(
zυ − ρ

2 , zυ + ρ
2

]⋃ (
1− ρ

2 , 1
]
,

0, z ∈
[
0, ρ2

]
,

for ς = 0, 1, . . . ,M . Then, we can write the Fourier series expansion of Eς(z)
and Rς(z):

Eς(z) =

+∞∑
υ=−∞

ϑςυe
i 2πυzL (i2 = −1), ς = 0, 1, . . . ,M,

and

Rς(z) =

+∞∑
υ=−∞

νςυe
i 2πυzL (i2 = −1), ς = 0, 1, . . . ,M,

where L = 1, ϑςυ = 1
L

∫ L
0
Eς(z)ei

2πυz
L dz, and νςυ = 1

L

∫ L
0
Rς(z)ei

2πυz
L dz, υ ∈

Z. Let Eς = (Eς1, E
ς
2, . . . , E

ς
N )t and Rς = (Rς1, R

ς
2, . . . , R

ς
N )t, then define the
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following norms

‖Eς‖22 =

N∑
υ=1

ρ |Eςυ|
2

=

∫ L

0

|Eς(z)|2 dz = ‖Eς(z)‖2L2 , ς = 0, 1, . . . ,M,

and

‖Rς‖22 =

N∑
υ=1

ρ |Rςυ|
2

=

∫ L

0

|Rς(z)|2 dz = ‖Rς(z)‖2L2 , ς = 0, 1, . . . ,M.

Applying the Parseval identity, we have

‖Eς(z)‖2L2 = L

+∞∑
υ=−∞

|ϑςυ|
2
, ς = 0, 1, . . . ,M,

‖Rς(z)‖2L2 = L

+∞∑
υ=−∞

|νςυ|
2
, ς = 0, 1, . . . ,M,

which leads to

‖Eς‖22 =

N∑
υ=1

ρ |Eςυ|
2

= L
+∞∑

υ=−∞
|ϑςυ|

2
, ς = 0, 1, . . . ,M,(29a)

‖Rς‖22 =

N∑
υ=1

ρ |Rςυ|
2

= L

+∞∑
υ=−∞

|νςυ|
2
, ς = 0, 1, . . . ,M.(29b)

Suppose Eςυ and Rςυ in equation (28) have the forms Eςυ = ϑςeiqυρ and Rςυ =
νςeiqυρ (q = 2πl

L , l ∈ Z), respectively. By inserting these relations into (28)
results

(30)


[
$aυ−1e

−iqρ +$bυ +$cυ+1e
iqρ
]
ϑ1 = ξαν1, ς = 1,[

$aυ−1e
−iqρ +$bυ +$cυ+1e

iqρ
]
ϑς

=
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
ϑς−ω + ξανς , ς ≥ 2.

Using sin2( qρ2 ) = − 1
4 (eiqρ − 2 + e−iqρ), we can rewrite the above formula as

follows
[
−4$ζυ sin2( qρ2 ) + 2i$βυr sin(qρ)−$r − 1

]
ϑ1 = ξαν1, ς = 1,[

−4$ζυ sin2( qρ2 ) + 2i$βυr sin(qρ)−$r − 1
]
ϑς

=
∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
ϑς−ω + ξανς , ς ≥ 2.

Lemma 4.1. Suppose that ϑς is a solution of (30), then there is a positive
constant C1 such that

|ϑς | ≤ C1

ξα
∣∣ν1
∣∣

χ
(α)
ς

, ς = 1, 2, . . . ,M.
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Proof. Because of Rςυ = O(ξ2−α+ρ2), there is a positive constant C2 such that

|Rςυ| ≤ C2

(
ξ2−α + ρ2

)
, υ = 0, 1, . . . , N ; ς = 0, 1, . . . ,M.

According to (29b), we obtain

(31) ‖Rς‖2 ≤ C2

√
L
(
ξ2−α + ρ2

)
, ς = 1, 2, . . . ,M.

With regards to the convergence of the series on the right-hand side of (29b),
it yields

|νς | ≡ |νςυ| ≤ C3

∣∣ν1
υ

∣∣ ≡ C3

∣∣ν1
∣∣ , C3 ∈ R+, ς = 1, 2, . . . ,M.

Due to the∣∣∣−4$ζυ sin2(
qρ

2
) + 2i$βυr sin(qρ)−$r − 1

∣∣∣ ≥ 1, (υ = 1, 2, . . . , N),

we get∣∣ϑ1
∣∣ =

ξα
∣∣ν1
∣∣∣∣−4$ζυ sin2( qρ2 ) + 2i$βυr sin(qρ)−$r − 1

∣∣ ≤ ξα ∣∣ν1
∣∣ =

ξα
∣∣ν1
∣∣

χ
(α)
1

.

Applying the mathematical induction, we can suppose that |ϑω| ≤ C1
ξα|ν1|
χ
(α)
ω

,

ω = 2, 3, . . . , ς − 1 and prove |ϑς | ≤ C1
ξα|ν1|
χ
(α)
ς

, where C1 = max {1, C3},

|ϑς | =

∣∣∣∑ς−1
ω=1

(
χ

(α)
ω+1 − χ

(α)
ω

)
ϑς−ω + ξανς

∣∣∣∣∣−4$ζυ sin2( qρ2 ) + 2i$βυr sin(qρ)−$r − 1
∣∣

≤

∣∣∣∣∣
ς−1∑
ω=1

(
χ

(α)
ω+1 − χ(α)

ω

)
ϑς−ω + ξανς

∣∣∣∣∣ ≤
∣∣∣∣∣
ς−1∑
ω=1

(
χ

(α)
ω+1 − χ(α)

ω

)
ϑς−ω

∣∣∣∣∣+ ξα |νς |

≤
ς−1∑
ω=1

(
χ(α)
ω − χ(α)

ω+1

) ∣∣ϑς−ω∣∣+ C3ξ
α
∣∣ν1
∣∣

≤
ς−1∑
ω=1

(
χ(α)
ω − χ(α)

ω+1

) C1ξ
α
∣∣ν1
∣∣

χ
(α)
ς−ω

+ C3ξ
α
∣∣ν1
∣∣

≤
C1ξ

α
∣∣ν1
∣∣

χ
(α)
ς

ς−1∑
ω=1

(
χ(α)
ω − χ(α)

ω+1

)
+ C3ξ

α
∣∣ν1
∣∣

≤
C1ξ

α
∣∣ν1
∣∣

χ
(α)
ς

(
ς−1∑
ω=1

(
χ(α)
ω − χ(α)

ω+1

)
+ χ(α)

ς

)
= C1

ξα
∣∣ν1
∣∣

χ
(α)
ς

.

The proof is finished. �

Theorem 4.2. Suppose that U(τ, z) and Ũ(τ, z) are solutions of (15) and (22),
respectively. Then the proposed IDS (22) is convergent, and the convergence
order is O(ξ2−α + ρ2).
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Proof. Since 1

χ
(α)
ς ςα

≤ 1
1−α , ς = 1, 2, . . . ,M , then Lemma 4.1 gives

|ϑς | ≤ C1

ξα
∣∣ν1
∣∣

χ
(α)
ς

=
C1

χ
(α)
ς ςα

ςαξα
∣∣ν1
∣∣ ≤ C1

1− α
(ςξ)α

∣∣ν1
∣∣ ≤ C1

1− α
Tα
∣∣ν1
∣∣ .

Also, using (29a), (29b) and (31), we derive

‖Eς‖2 ≤
C1

1− α
Tα
∥∥R1

∥∥
2
≤ C1

1− α
TαC2

√
L
(
ξ2−α + ρ2

)
= C

(
ξ2−α + ρ2

)
,

where C = C1C2

1−α T
α
√
L. The proof is complete. �

5. Numerical results

Options are derivative financial instruments that allow traders the right to
buy or sell an asset in the future at a specified price. This market can be
very volatile due to its sensitivity to various factors such as volatility of the
underlying asset price, time to maturity, interest rates, etc. In this section, we
see the effect of changes in each of these parameters on the FSLPO price. We
present different numerical results to show the performance of the proposed IDS
and compare the European and Lookback option prices governed by different
FBS models. We focus on the first FBS model to show the effect of different
parameters on the European Lookback put option with a floating strike price.
All results in this study are performed using MATLAB R2015a and no specific
packages are used for the fractional calculus.

Figure 1 shows the European option price under different FBS models at
α = 0.6, K = 105, T = 3 months, r = 0.023, σ = 0.45, and Smax = 3K. In
this figure, the first model has the highest price, and the price of the second
model is higher than the price of the third model. The put option holder earns
a profit by reducing the price of the underlying asset. Because the first model
has the highest price, at the same price, the option price under the first model
will be more profitable for the investor. Note that the three fractional models
are equal to the classical Black-Scholes model at α = 1. Figure 2 displays the
price of European FSLPOs under the first, second, and third FBS models, and
compares these prices with the European put option price under the first FBS
model at α = 0.7, T = 5 months, r = 0.016, and σ = 0.5. Here, the strike
price of the European put option is 70. This figure shows that the Lookback
option price is higher than the European option price because the holders of
the FSLPOs can exercise the contract at the highest realized price of the asset
during a certain time. The first model also has the highest Lookback option
price, and the Lookback option price of the second model is higher than the
third model. Figure 3 indicates the FSLPO price under the first FBS model
for α = {0.1, 0.3, 0.5, 0.7, 0.9} with an expiration date of six months and one
year, respectively. We see that as the expiration date increases, the value
of the FSLPO increases with increasing α. Also, when the expiration date
decreases, the value of the FSLPO decreases with increasing α. Hence, at
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longer maturities, Lookback options will be priced higher under a fractional
model with an α close to one. Figure 4 shows the FSLPOs with different α
values under the first, second, and third FBS models. We used the parameter
set σ = 0.47, r = 0.019, T = 13 months, and N = M = 110. In this figure, the
option price increases as the fractional order derivative parameter α increases.

We investigate the impact of volatility, interest rate, and expiration date
changes on the FSLPO price using Figures 5-7. Figure 5 illustrates that the
Lookback put option price increases with increasing σ because the probability of
making large gains in the future increases with increasing volatility. Volatility
is defined as a measure of risk in financial management and investment. In
other words, stocks with high volatility impose more risk than stocks with low
volatility. And more risk can mean more profit. The high volatility of the
base asset means that in a certain time, the stock can fluctuate in a larger
range and go up and down. So there is a greater possibility that the derivative
contract will change from out-the-money to in-the-money in a shorter period or
vice versa. Also, high volatility provides more opportunities to fluctuate from
contracts and move between contracts or exit positions to increase the efficiency
of strategies. On the other hand, long-term investors prefer less volatility.

Figure 6 demonstrates that the Lookback put option price decreases with
decreasing r because interest rate’s growth will reduce the current value of cash
flows in the future. Figure 7 shows that with increasing the expiration date,
the FSLPO price increases. The main reason for this is that the value of the
option increases over time.
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Figure 1. European put option prices under three FBS mod-
els.

Delta is one of the most important and widely used Greeks, which represents
a linear representation of how option prices react to changes in the price of the
underlying asset. For example, the contractual Delta is 75 percent. That is, if
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Figure 2. European put option price under the first FBS
model and European Lookback put option prices under first,
second, and third FBS models at T − t = 5 months.
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Figure 3. European Lookback put option prices under the first
FBS model for different α with a maturity time of six months (at
T − t = 6 months) and one year (at T − t = 1 year).

the share price changes by 50 dollars and, for example, from 200 dollars to 250
dollars, the option price must change by 75 percent of this change. 75 percent
of 50 dollars becomes 37 dollars. Another use of Delta is in the calculation of
leverage. Delta is also used to hedge a position. When the implied volatility
decreases, the value of the contract also decreases, and the Delta decrease also
occurs. But this Delta decrease is more in at-the-money and out-the-money
contracts. Delta is not constant over time, and it is affected by price changes in
the base and time decay. In buy positions, as the stock price moves, the Delta
changes faster and favors the option holder. This causes the profit or loss to
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Third model: T = 13 months, r = 0.019, σ  = 0.47, N = M = 110, S ∈ [53,106]

α = 0.1

α = 0.2

α = 0.3

α = 0.4

α = 0.5

α = 0.6

α = 0.7

α = 0.8

α = 0.9

α = 1

Figure 4. European Lookback put option prices under the first,
second, and third FBS models for different α with 13 months ma-
turity time (at T − t = 13 months).
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Figure 6. European Lookback put option prices under the
first FBS model for different r at T − t = 10 months.
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Figure 7. European Lookback put option prices under the
first FBS model for different maturity time.

increase more rapidly. In sell positions, rapid Delta changes are detrimental to
the option seller. This can increase the risk for the seller.

Gamma evaluates the change in the Delta of the option according to the
change in the price of the underlying asset. In simpler terms, it shows the
acceleration of the option and the slope of the Delta graph. A large value of
Gamma indicates that the Delta will change significantly even for small changes
in the price of the underlying asset. Gamma is a dynamic concept that changes
as the stock price changes and the expiration date approaches. One of the most
important uses of Gamma for option sellers is Delta hedging. So the bigger the
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Figure 8. Numerical Delta and Gamma Greek of European Look-
back call option at T − t = 18 months.
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Figure 9. Numerical Delta and Gamma Greek of European Look-
back put option at T − t = 18 months.

Gamma you will lose from the price movement in both directions. Remember
that in multiple sell positions, having less Gamma means less momentum during
price changes. Risk hedging by taking a buy position in stocks that have high
price fluctuations will be profitable regardless of the direction in which the
prices move.

Delta is sensitive to stock price changes. If the option Gamma is small (close
to zero), that means Delta does not change much due to stock price changes.
But if the Gamma is large, then small changes in the stock price will cause
minor changes in the trading option. So Delta hedged positions are at risk
due to price changes and must be rebalanced frequently in order to maintain a
neutral position in relation to Delta.

Figures 8 and 9 show Delta and Gamma for FSLO. Greek indices are tools
that are used to measure and compare prices against various changes in the
financial market. These indicators help investors to better understand and
manage factors related to their portfolio.
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We check the spatial convergence rate for the FSLPOs under the first, sec-
ond, and third FBS models. The convergence rate is computed by

Rate = log2

(
eN,M

e2N,M

)
,

where eN,M is the maximum norm. We define the following maximum norm

eN,M = max
0≤υ≤N
0≤ς≤M

∥∥∥Ū(τς , zυ)− Û ςυ
∥∥∥
∞

= max
0≤ς≤M

(
max

0≤υ≤N

∣∣∣Ū(τς , zυ)− Û ςυ
∣∣∣) ,

where Û is the numerical solution of equation (22). Since, equations (1)-(3)
have no exact solution, we consider Ū as the approximate solution when M
is fixed and sufficiently large. We list the maximum norm error and spatial
convergence rate of the proposed scheme for three models in Table 2.

Table 2. Convergence rates of the proposed IDS at α = 0.9,
r = 0.01, σ = 0.5, T = 1, and M = 100.

First FBS model Second FBS model Third FBS model
N Error Rate Error Rate Error Rate

32 0.0468 - 0.0477 - 0.0438 -
64 0.0119 1.9704 0.0122 1.9692 0.0112 1.9740
128 0.0030 1.9925 0.0031 1.9922 0.0028 1.9934
256 7.5120e-04 1.9981 7.6711e-04 1.9980 7.0094e-04 1.9984
512 1.8786e-04 1.9995 1.9184e-04 1.9995 1.7529e-04 1.9996

6. Conclusion

FSLOs are never out-of-the-money because their holders can exercise at the
lowest (for floating Lookback call options) or highest (for floating Lookback
put options) realized price during the life of the contract. Due to the long
memory property in the financial market, we evaluated European Lookback
put options by the floating strike price under different FBS models. Because of
the complexity of the Lookback option pricing, we introduced an IDS to solve
these problems. Also, we investigated the stability and convergence of the IDS
using Fourier analysis. Numerical results demonstrate the relationship between
the Lookback option price and the parameters.

We know that traders make decisions under the influence of the trend mem-
ory effect phenomenon in financial markets. Therefore, they can use the theory
presented in this article to price other options under the time-fractional Black-
Scholes model. They can also use the theory of this article to estimate implied
volatility and calculate Greek letters.
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