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Abstract. The aim of this article is to find an effective method for solv-

ing variable-order fractional integro-differential equations. This method

transforms the problem into a system of algebraic equations. For this
purpose, we first express Vieta-Lucas orthogonal polynomials, then, we

express the operational matrices of these polynomials. At this stage, all
components of the equation will be expressed in terms of the new shifted

Vieta-Lucas operational matrices. After that, by placing these opera-

tional matrices in the main equation and using the spectral collocation
method, the variable-order fractional integro-differential equation will be-

come an algebraic system. By solving this algebraic system, we will find

an approximate solution to the original equation. In the following, an
analysis of the error is also presented by preparing some theorems. In the

end, in order to express the efficiency and capability of the method, some

numerical examples are given. Additionally, for the numerical examples,
the condition number, numerical convergence order, and the computed

CPU time are evaluated. Based on the obtained results, it was concluded

that the proposed method is relatively stable, highly accurate and effi-
cient, and has an appropriate convergence rate.

Keywords: Vieta-Lucas operational matrix, Fractional variable-order integro-

differential equations, spectral collocation method, error analysis.
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1. Introduction

In recent decades, fractional calculus has gained significant attention across
various disciplines, including mathematics, physics, engineering, and chemistry.
This is due to its ability to describe systems with memory effects and hereditary
properties, which cannot be adequately modeled by traditional integer-order
differential equations. Several definitions of fractional derivatives and integrals
exist in the literature, with the Caputo derivative and the Riemann-Liouville
fractional integral operators are among the most widely used [27].

A significant extension of fractional calculus is the concept of variable-order
derivatives, where the fractional order of differentiation is allowed to depend
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on the independent variable, such as time. This approach, known as fractional
variable-order calculus, was introduced by Samko in [32] and has since been
further developed. It has found numerous applications, particularly in fields
such as nonlinear viscoelasticity, mechanics, and systems where the order of
differentiation changes over time [5, 23,28].

Given the complexity of solving equations that involve fractional derivatives
with a variable-order, there has been substantial interest in developing effi-
cient numerical methods to approximate solutions [2,9,26]. Various numerical
methods have been proposed for solving these challenging equations, such as
the use of Legendre polynomials [15], wavelet-based methods [7], and Cheby-
shev polynomials [22]. Additionally, significant work has been done in applying
the Vieta-Lucas polynomials to solve a wide range of fractional and fractional-
order differential equations, such as those related to heat conduction [21] and
delay differential equations [20]. Other approaches, such as the fractional inte-
gration operators introduced by Zaeri et al. [37], have also contributed to the
solution of integro-differential equations with fractional derivatives.

The focus of this paper is on the numerical solution of fractional variable-
order integro-differential equations (FVOIDEs) of the form

(1) LC
0 Dη(z)

z φ(z)+

m∑
k=0

Gk(z)φ(k)(z)+λ1Kfφ+λ2Kvφ = h(z), 0 < η(z) < 1,

subject to initial conditions

(2) φ(k)(δ) = θk, δ ∈ [0, 1], k = 0, 1, . . . ,m− 1,

where

(3) Kfφ =

∫ 1

0

Kf (z, ξ)φ(ξ)dξ, Kvφ =

∫ z

0

Kv(z, ξ)φ(ξ)dξ.

Here, Dη(z)
z denotes the left Riemann-Liouville fractional derivative of variable-

order, and Kf and Kv represent the Fredholm and Volterra kernels, respectively.
The function Gk(z) is a smooth function, and λ1 and λ2 are constants. The
solution to this equation, φ(z), is the unknown function we aim to determine.

FVOIDEs like the one described in equation (1) have significant applications
in various domains, including noise reduction, signal processing [13], geographic
data processing [8], and more [25,31,34]. To solve such equations, various meth-
ods have been proposed. For example, the shifted Jacobi-Gauss collocation
method and the shifted Legendre Gauss-Lobatto collocation method have been
used to solve these types of equations [11, 12]. Additionally, Haar collocation
methods have been employed [4], as well as effective numerical schemes [14].

In this work, we propose a new method for solving FVOIDEs based on
shifted Vieta-Lucas polynomials (SVLOMT). This method utilizes the orthog-
onal Vieta-Lucas basis and transforms the fractional variable-order integro-
differential equation into a system of algebraic equations. By constructing
operational matrices from the fractional derivatives and the Vieta-Lucas basis
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vectors, the problem is efficiently solved. The SVLOMT method is advanta-
geous because of its simplicity, accuracy, and ability to handle polynomial exact
solutions.

The key advantages of the SVLOMT method include

• Simple implementation and ease of use, making it accessible for both
practitioners and researchers.
• High accuracy in computing solutions, particularly when the exact so-

lution is polynomial in nature.
• Efficient computational performance, as the matrices involved contain

many zeros, reducing the computational load.
• Exact solutions for problems whose exact solutions are polynomial

functions.

This paper proceeds as follows: we first define the variable-order fractional
derivatives and discuss their essential properties. Then, we introduce the
shifted Vieta-Lucas polynomials and explore their properties. Next, we detail
the construction of operational matrices for fractional derivatives and present
the SVLOMT method. The paper also includes a theoretical analysis of con-
vergence, existence, uniqueness, and error bounds. To verify the method’s
efficacy, we present several numerical examples, compare the results with those
obtained using other numerical methods, and assess the accuracy and stability
of the proposed technique. The paper concludes by summarizing the findings
and discussing future directions.

2. Some materials and mathematical tools

2.1. Definitions of variable-order fractional derivatives. In this Subsec-
tion, we describe the definitions of variable-order fractional derivatives and
some of their important properties discussed in various literature.

Definition 2.1. [3,32] The left Riemann-Liouville fractional integral of order
η(z) for the function φ(z) is defined as

(4) RL
0 Iη(z)

z φ(z) =
1

Γ(η(z))

∫ z

0

(z − ξ)η(z)−1
φ(ξ)dξ, z > 0,

where Γ(.) is the Euler gamma function.

Remark 2.2. [3] Let φ be the power function φ(z) = zβ. Then, for β > −1, we
have

(5) RL
0 Iη(z)

z zβ =
Γ(β + 1)

Γ(β + 1 + η(z))
zβ+η(z).

Definition 2.3. [3,32] The left Liouville-Caputo fractional derivative of order
η(z) for the function φ(z) is defined as

(6) LC
0 Dη(z)

z φ(z) =
1

Γ(1− η(z))

∫ z

0

(z − ξ)−η(z)
φ′(ξ)dξ, 0 < η(z) < 1.
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Remark 2.4. [1] Let φ be the power function φ(z) = zm. Then, for m = 0,
LC
0 D

η(z)
z z0 = 0 and for m ∈ Z+ we have

(7) LC
0 Dη(z)

z zm =
Γ(m+ 1)

Γ(m+ 1− η(z))
zm−η(z).

Lemma 2.5. [32,33] Consider the variable-order fractional integro-differential
equation

(8) LC
0 Dzη(z)φ(z) = H(z, φ).

Then the solution of this equation is

(9) φ(z) = φ(0) +
1

Γ(η(z))

∫ z

0

(z − ξ)η(z)−1H(ξ, φ(ξ))dξ.

Theorem 2.6. [33] Assume that

(1) H : [0,∞]×R→ R is a Lipschitz continuous function, i.e., |H(z, ξ1)−
H(z, ξ2)| ≤ L|ξ1 − ξ2|.

(2) H has a weak singularity with respect to z, then there exists a constant
α ∈ (0, 1] such that (Ωφ)(z) = zαH(z, φ) is a continuous bounded map
defined on [0, 1]× [0, 1].

Then the equation (1) (or equivalently (8)) has a unique solution φ ∈ C[0, ~∗],
where ~∗ ∈ [0, 1].

Definition 2.7. The incomplete gamma function is defined as

Γ(s, z) =

∫ ∞
z

ξs−1e−ξ dξ, for s > 0 and z > 0.

Here, Γ(s, z) is referred to as the upper incomplete gamma function, and it
generalizes the gamma function Γ(s) as

Γ(s) =

∫ ∞
0

ξs−1e−ξ dξ.

Definition 2.8. The space L2([a, b], ω(z)) consists of all measurable functions
f(z) defined on the interval [a, b] such that the following condition holds

‖f‖L2([a,b],ω(z)) =

(∫ b

a

|f(z)|2ω(z) dz

)1/2

<∞,

where ω(z) is a weight function, which is a positive function defined on the
interval [a, b]. In other words, f(z) ∈ L2([a, b], ω(z)) if and only if the weighted
L2-norm of f is finite ∫ b

a

|f(z)|2ω(z) dz <∞.

Definition 2.9. The Gram matrix associated with a set of functions

{f1, f2, . . . , fn},
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defined on a domain D with respect to an inner product 〈·, ·〉 is the square
matrix G ∈ Rn×n where the (i, j)-th entry is given by the inner product of the
functions fi and fj

Gij = 〈fi, fj〉 =

∫
D

fi(x)fj(x) dx

for all 1 ≤ i, j ≤ n, assuming the inner product is defined as an integral over the
domain D. The Gram matrix represents the pairwise inner products between
the functions, reflecting their similarities and orthogonality properties.

Corollary 2.10. The Gram matrix G corresponding to the functions

{V L∗0, V L∗1, . . . , V L∗N},
is invertible.

2.2. Vieta-Lucas polynomials. In this Subsection, we introduce Vieta-Lucas
orthogonal polynomials [19,24]. We also present some important relationships
involving these polynomials.

Definition 2.11. The Vieta-Lucas polynomials are orthogonal and are defined
for ξ ∈ [−2, 2] as follows

(10) V Ln(ξ) = 2 cos(nγ), γ = arccos

(
ξ

2

)
, γ ∈ [0, π].

The recurrence relationship of Vieta-Lucas polynomials V Ln(ξ) is

V Ln(ξ) = ξV Ln−1(ξ)− V Ln−2(ξ),

and the first two Vieta-Lucas polynomials are V L0(ξ) = 2 and V L1(ξ) = ξ.
Also, V Ln(ξ) can be obtained through the following power formula

V Ln(ξ) =

dn2 e∑
k=0

(−1)
k nΓ(n− k)

Γ(k + 1)Γ(n+ 1− 2k)
ξn−2k, n = 2, 3, . . . .

These polynomials are orthogonal on the interval [−2, 2] with respect to the
weight function ω(ξ) = 1√

4−ξ2
, therefore, the following relationship holds

〈V Lm(ξ), V Ln(ξ)〉 =

∫ 2

−2

V Lm(ξ)V Ln(ξ)√
4− ξ2

dξ =


0 m 6= n, m 6= 0, n 6= 0,

4π m = n = 0,

2π m = n 6= 0.

2.3. Shifted Vieta-Lucas polynomials. A new class of orthogonal polyno-
mials on the interval [0, 1] is created from V Ln(z) using ξ = 4z − 2. This new
class of polynomials is referred to by the symbol V L∗n(z).

Definition 2.12. The shifted Vieta-Lucas polynomials of degree n on [0, 1] can
be obtained as

V L∗n(z) = V Ln (4z − 2) .
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The well-known shifted Vieta-Lucas polynomials V L∗n(z) satisfy the follow-
ing recurrence formulae

(11) V L∗n(z) = (4z − 2)V L∗n−1(z)− V L∗n−2(z), n = 2, 3, . . . ,

where V L∗0(z) = 2, V L∗1(z) = 4z − 2. The shifted Vieta-Lucas polynomials
are the orthogonal polynomials on the interval [0, 1] with respect to the weight
function ω(z) = 1√

z(1−z)
, and so we have the following orthogonality property

(12)

〈V L∗m(z), V L∗n(z)〉 =

∫ 1

0

V L∗m(z)V L∗n(z)√
z(1− z)

dz =


0 m 6= n, m 6= 0, n 6= 0,

4π m = n = 0,

2π m = n 6= 0.

The explicit formula for the shifted Vieta-Lucas polynomials V L∗n(z) is given
by

(13) V L∗n(z) =

n∑
j=0

(−1)
j n(2)

2j+1
Γ(n+ j)

Γ(n− j + 1)Γ(2j + 1)
zj , n ≥ 1.

2.4. Fundamental matrix relations. In this Subsection, we will make a
matrix representation of all components of the equation (1). This represen-
tation consists of the shifted Vieta-Lucas polynomials, the function φ(z) and
its derivatives, the fractional variable-order derivative of φ(z), the function
Gk(z), the terms Kfφ and Kvφ, and the conditions given in (2), which are also
necessary for the method.

2.4.1. Matrix representation of V L∗n(z). Using Eq. (13), the vector of shifted
Vieta-Lucas polynomials

(14) Ψ(z) =
[
V L∗0(z) V L∗1(z) · · · V L∗N (z)

]T
,

can be written in the form

(15) Ψ(z) = AΛ(z), Λ(z) =
[
1 z · · · zN

]T
,

where A is an (N + 1)× (N + 1) lower triangular matrix with elements defined
as

A =


a00 0 0 0
a10 a11 0 0
...

...
. . .

...
aN0 aN1 · · · aNN ,

 ,
where the elements of the matrix A are given by

(16) aij =


2, i = j = 0,

i(−1)
i−j

(2)
2j+1

Γ(i+ j)

Γ(i− j + 1)Γ(2j + 1)
, i ≥ j,

0, Otherwise.



Vieta-Lucas operational matrix technique for fractional... – JMMR Vol. 14, No. 2 (2025) 153

If n = 1, 2, and 3, then the matrix A is given by

A =

[
2 0
−2 4

]
, A =

 2 0 0
−2 4 0
2 −16 16

 , A =


2 0 0 0
−2 4 0 0
2 −16 16 0
−2 36 −96 64

 .
The matrix A has N(N + 1)/2 elements equal to zero and (N + 1)(N + 2)/2
non-zero elements. Note that A is a lower triangular matrix with non-zero ele-

ments on the main diagonal, so its determinant is non-zero (|A| = 2(N+1)2−N )
therefore, it is invertible. Thus, from equation (15), we obtain

(17) Λ(z) = A−1Ψ(z).

2.4.2. Matrix representation of d
dzV L

∗
n(z). The derivative of the vector Ψ(z)

in Eq. (14) is given by

(18)
d

dz
Ψ(z) = DΨ(z),

where D is the (N + 1)× (N + 1) operational lower triangular matrix with all
elements on the main diagonal is zero. Also, if N is odd, we have

(19) D =



0 0 0 · · · 0 0 0
2 0 0 · · · 0 0 0
0 8 0 · · · 0 0 0
...

...
...

. . .
...

...
...

2(N − 2) 0 4(N − 2) · · · 0 0 0
0 4(N − 1) 0 · · · 4(N − 1) 0 0

2N 0 4N · · · 0 4N 0


,

and for the even N ,

(20) D =



0 0 0 · · · 0 0 0
2 0 0 · · · 0 0 0
0 8 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 4(N − 2) 0 · · · 0 0 0
2(N − 1) 0 4(N − 1) · · · 4(N − 1) 0 0

0 4N 0 · · · 0 4N 0


.

The number of zero and non-zero elements in the matrix D is shown in Table
1. Substituting (15) into (18), results in

(21)
d

dz
Ψ(z) = DAΛ(z) = DΨ(z).

For the k-th order derivative of Ψ(z), we have

(22)
dk

dzk
Ψ(z) = DkAΛ(z) = DkΨ(z).
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Table 1. The number of zero and non-zero elements of matrix
D

N Number of zero elements Number of non-zero elements

even 1
4N(N + 2) 1

4

(
3(N + 1)2 + 1

)
odd 1

4 (N + 1)2 3
4 (N + 1)2

2.4.3. Matrix representation of LC0 D
η(z)
z Ψ(z). By applying the operator LC0 D

η(z)
z

on both sides of equation (15), the following relationship will be obtained

(23) LC
0 Dη(z)

z Ψ(z) = LC
0 Dη(z)

z AΛ(z) = ALC
0 Dη(z)

z Λ(z) = ASη(z)Λ(z),

where Sη(z) is a (N + 1)(N + 1) diagonal matrix as follows

(24) Sη(z) =


0 0 0 · · · 0
0 s1(z) 0 · · · 0
0 0 s2(z) · · · 0
...

...
...

. . .
...

0 0 0 · · · sN (z)

 .
The elements of the matrix Sη(z) can be easily calculated from the following
relation

sk(z) =
Γ(k + 1)

Γ(k + 1− η(z))
z−η(z), k = 1, 2, . . . , N.

Here, via Eqs. (17) and (23) we claim

(25) LC
0 Dη(z)

z Ψ(z) = ASη(z)A
−1Ψ(z),

and it will result that for the operator LC0 D
η(z)
z

(26) LC
0 Dη(z)

z = ASη(z)A
−1.

The matrix ASη(z)A−1 is the operational matrix for the fractional variable-

order operator LC0 D
η(z)
z .

2.4.4. Matrix representation of φ(z), φ(k)(z) and LC
0 D

η(z)
z φ(z). Suppose that

φ(z) ∈ L2[0, 1], then it can be approximated as

(27) φ(z) ' φN (z) =

N∑
j=0

cjV L
∗
j (z) = CTΨ(z),

where C is the Vieta-Lucas coefficients vector as follows

C =
[
c0 c1 · · · cN

]T
.

This coefficients, can be calculated by the following relation

(28) cj =
1

πδj

∫ 1

0

φ(z)V L∗j (z)√
z(1− z)

dz, δj =

{
4 j = 0,

2 j = 1, 2, ..., N.
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According to Eq. (15), Ψ(z) = AΛ(z), so equation (27) is equivalent to

(29) φ(z) ' φN (z) = CTAΛ(z),

For the k-th order derivative of φ(z), from Eqs. (15), (22), (27) and (29) results
in

(30)
dk

dzk
φ(z) ' dk

dzk
φN (z) = CTDkAΛ(z) = CTDkΨ(z).

Using equations (27) and (15), one obtains

LC
0 Dη(z)

z φ(z) = LC
0 Dη(z)

z CTΨ(z) = CT LC
0 Dη(z)

z Ψ(z)

= CT LC
0 Dη(z)

z AΛ(z) = CTALC
0 Dη(z)

z Λ(z).

Now, using equation (23) results in

(31) LC
0 Dη(z)

z φ(z) = CTASη(z)Λ(z).

2.4.5. Function approximation Gk(z), Kf (z, ξ) and Kv(z, ξ). Any function of
one dimensional Gk(z) ∈ L2[0, 1] can be approximated in terms of the shifted
Vieta-Lucas polynomials as

(32) Gk(z) ' Gk,N (z) =

N∑
j=0

gk,jV L
∗
j (z) = GT

kΨ(z),

where GT
k =

[
gk,0 gk,1 · · · gk,N

]
and gk,j ’s (j = 0, 1 . . . , N) can be calcu-

lated by the following relation

(33) gk,j =
1

πδj

∫ 1

0

Gk(z)V L∗j (z)√
z(1− z)

dz, δj =

{
4 j = 0,

2 j = 1, 2, ..., N.

The function Kf (z, ξ) ∈ L2([0, 1]× [0, 1]) can be approximated by the following
series form

(34) Kf (z, ξ) '
N∑
n=0

M∑
m=0

kfmnV L
∗
m(ξ)V L∗n(z) = ΨT (z)KfΨ(ξ),

where Kf is a (N + 1)× (N + 1) matrix, whose elements are

(35) kfmn =
1

π2δnδm

∫ 1

0

∫ 1

0

Kf (z, ξ)V L∗n(z)V L∗m(ξ)√
z(1− z)

√
ξ(1− ξ)

dzdξ.

Similarly,

(36) Kv(z, ξ) '
N∑
n=0

M∑
m=0

kvmnV L
∗
m(ξ)V L∗n(z) = ΨT (z)KvΨ(ξ),

and components kvmn is similar to kfmn in relation (35).
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2.4.6. Matrix representation of Kfφ and Kvφ. By putting relations (34) and
(27) in (3) and using Eq. (15) and some simplifications, the following relation
is gained

Kfφ = ΨT (z)Kf

(
A

∫ 1

0

Λ(ξ)ΛT (ξ)dξ

)
ATC = ΨT (z)KfAQfATC,

in which the matrix Qf =
∫ 1

0
Λ(ξ)ΛT (ξ)dξ = [qfij ] is named the dual matrix of

Ψ(ξ). The components of this matrix can be computed as follows

(37) qfij =
1

i+ j + 1
, i, j = 0, 1, . . . , N.

If we define Ef = KfAQfAT , then we have

(38) Kfφ = ΨT (z)EfC = ΛT (z)ATEfC.

Similarly, for part Kvφ

(39) Kvφ = ΨT (z)Ev(z)C = ΛT (z)ATEv(z)C,

where Ev(z) = KvAQv(z)AT , Qv(z) =
∫ z

0
Λ(ξ)ΛT (ξ)dξ = [qvij(z)] and the

elements of matrix Qv are calculated as follows

(40) qvij(z) =
1

i+ j + 1
zi+j+1, i, j = 0, 1, . . . , N.

2.4.7. Matrix representation of initial conditions. According to relation (30),
the matrix form of initial conditions (2) are as follows

(41) CTDkΨ(δ) = θk.

3. Description of SVLOMT

In this section, we propose SVLOMT for solving problem (1)-(3). To do
this, we first substitute Eqs. (30)-(32), (38) and (39) in (1), yielding

CTASη(z)A
−1Ψ(z) +

m∑
k=0

(
GT
kΨ(z)CTDkΨ(z)

)
+ λ1Ψ

T (z)EfC + λ2Ψ
T (z)Ev(z)C = h(z).

Let us define

RN (z) =

(
CTASη(z)A

−1 +

m∑
k=0

GT
kΨ(z)CTDk

)
Ψ(z)

+ ΨT (z)
(
λ1E

f + λ2E
v(z)

)
C− h(z) = 0.



Vieta-Lucas operational matrix technique for fractional... – JMMR Vol. 14, No. 2 (2025) 157

To find the solution φ(z) according to collocation method, we utilize the fol-
lowing equations

RN (zj) =

(
CTASη(zj)A

−1 +

m∑
k=0

GT
kΨ(zj)C

TDk
)

Ψ(zj)

+ ΨT (zj)
(
λ1E

f + λ2E
v(zj)

)
C− h(zj) = 0,(42)

to build (N + 1) algebraic system equations, where

zj =
2j + 1

2N + 2
, j = 0, 1, . . . , N.

Eq. (42) can be written as WC = G. To impose the initial conditions (2), we

replace m rows of the matrix W to obtain ŴC = Ĝ. For simplicity, if the
last m rows of matrix W are replaced, the matrix system ŴC = Ĝ will be
obtained. However, it is not necessary to replace only the last m rows. For
example, if the matrix Ŵ is singular, the rows that are linearly dependent or
zero will be replaced. If rank(Ŵ) = N + 1, the matrix C will be determined

as C = Ŵ−1Ĝ. Therefore, system (1) with the initial conditions (2) has

a unique solution. It should be noted that if the matrix Ŵ is singular and
rank(Ŵ) < N +1, then a specific solution may exist. Consequently, by solving
for the unknown parameters of the vector C, one can obtain the solution as
φ(z) = CTΨ(z).

4. Error analysis

The aim of this section is to provide error bounds for the numerical solution
obtained using the method proposed in Section Sec. 3.

Theorem 4.1. Assume that φ(z) ∈ L2([0, 1];ω), where ω(z) = 1√
z(1−z)

, and

that |φ′′(z)| ≤ M. Then, φ(z) can be expressed as an infinite linear combination
of the shifted Vieta-Lucas polynomials, specifically in terms of V L∗j (z), and
φN (z) contains only N + 1 terms from this series. Furthermore, this series
converges uniformly to the function φ(z) as N →∞. Moreover, the coefficients
given in (28) are bounded, i.e.,

(43) |cj | ≤
M

4j(j2 − 1)
.

Proof. Any function φ(z) ∈ L2([0, 1];ω) can be expressed by Vieta-Lucas poly-
nomials as Eq. (27) via coefficients cj in (28). To compute the integrals, apply
the substitution 4z − 2 = cos(2γ) in Eq. (28), and then the following is gained

cj =
2

πδj

∫ π

0

φ

(
1

2
cos(γ) +

1

2

)
cos(jγ)dγ.



158 M. Riahi Beni

Integrating by parts gives

cj =
2

πδj

[
1

j
sin(jγ)φ

(
1

2
cos(γ) +

1

2

)∣∣∣∣π
0

+
1

2j

∫ π

0

sin(jγ) sin(γ)φ′
(

1

2
cos(γ) +

1

2

)
dγ

]
.

With the help of trigonometric relation

sin(jγ) sin(γ) =
1

2
(cos((j − 1)γ)− cos((j + 1)γ)) ,

and reuse of integration by part one obtains

cj =
2

πδj

1

2j

[
1

2

[
sin((j − 1)γ)

(j − 1)
− sin((j + 1)γ)

(j + 1)

]
φ′
(

1

2
cos(γ) +

1

2

)∣∣∣∣π
0

+
1

4

∫ π

0

sin(γ)φ′′
(

1

2
cos(γ) +

1

2

)
Υj(γ)dγ

]
=

1

4πjδj

∫ π

0

sin(γ)φ′′
(

1

2
cos(γ) +

1

2

)
Υj(γ)dγ,

where Υj(γ) = sin((j−1)γ)
(j−1) − sin((j+1)γ)

(j+1) . On the other hand |Υj(γ)| ≤ 2
j2−1 , j ≥

2. This relationship along with the property of function φ(z) implies that

|cj | ≤
1

4πjδj

2πM
j2 − 1

=
M

4j(j2 − 1)
.

�

Remark 4.2. In Theorem 4.1, for the two special cases of c0 and c1, the upper
bounds of the error are as follows

|c0| ≤
τ

2
, |c1| ≤

2τ

π
,

where |φ(z)| ≤ τ for all z ∈ (0, 1).

Lemma 4.3. Let φ(z) ∈ L2([0, 1];ω), where ω(z) = 1√
z(1−z)

, and let ϑ =

span{V L∗0, V L∗1, . . . , V L∗N}. If the Gram matrix G corresponding to ϑ is in-
vertible (Matrix G in Corrolary 2.10), the best approximation of φ(z) in the
subspace ϑ exists and is unique.

Proof. Existence: The subspace ϑ is finite-dimensional, spanned by the func-
tions {V L∗0, V L∗1, . . . , V L∗N}. Since ϑ is finite-dimensional, the projection of
φ(z) onto ϑ exists. In a finite-dimensional Hilbert space, the projection of any
element onto a subspace always exists, thus the best approximation of φ(z) in
ϑ exists.
Uniqueness: Since the Gram matrix G is invertible, we have that the set
of functions {V L∗0, V L∗1, . . . , V L∗N} is linearly independent. From the proper-
ties of the Gram matrix, the invertibility ensures that the projection of φ(z)
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onto the subspace ϑ is unique. In fact, the solution to the least-squares prob-
lem, which provides the best approximation of φ(z) in ϑ, is unique due to the
invertibility of the Gram matrix. �

For more details on the existence and uniqueness of the best approximation
and related topics, refer to [29].

Theorem 4.4. Let φ(z) ∈ L2([0, 1];ω) and

ϑ = span{V L∗0, V L∗1, . . . , V L∗N}.

If φN (z) is the best approximation to φ(z) from ϑ, then the error bound is as
follows

‖φ(z)− φN (z)‖2 ≤
∆
√
π

(N + 1)!
,

where ∆ = max{φ(N+1)(z), z ∈ [0, 1]}, and φ(z) is assumed to be sufficiently
smooth, specifically that it has a derivative of order (N + 1).

Proof. For z0 ∈ [0, 1], the function φ(z) expands as

φ(z) = φ(z0) + (z − z0)φ′(z0) +
(z − z0)

2

2!
φ′′(z0) + · · ·

+
(z − z0)

N

N !
φ(N)(z0) +

(z − z0)
N+1

(N + 1)!
φ(N+1)(η),

where η ∈ [z0, z]. Suppose φ̃N (z) ∈ ϑ, and assume that

φ̃N (z) = φ(z0) + (z − z0)φ′(z0) +
(z − z0)

2

2!
φ′′(z0) + · · ·+ (z − z0)

N

N !
φ(N)(z0),

then

φ(z)− φ̃N (z) =
(z − z0)

N+1

(N + 1)!
φ(N+1)(η).

Since φN (z) is the best approximation to φ(z) out of ϑ, one obtains

‖φ(z)− φN (z)‖2 ≤
∥∥∥φ(z)− φ̃N (z)

∥∥∥
2

=

√∫ 1

0

∣∣∣φ(z)− φ̃N (z)
∣∣∣2ω(z)dz

=

√√√√∫ 1

0

∣∣∣∣∣ (z − z0)
N+1

(N + 1)!
φ(N+1)(η)

∣∣∣∣∣
2

ω(z)dz

≤

√
∆2

[(N + 1)!]
2

∫ 1

0

∣∣∣(z − z0)
N+1

∣∣∣2ω(z)dz

≤

√√√√√∆2
[
(1)

N+1
]2

[(N + 1)!]
2

∫ 1

0

ω(z)dz =
∆
√
π

(N + 1)!
,
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in which ω(z) = 1√
z(1−z)

and
∫ 1

0
ω(z)dz = π. These complete the proof. �

Remark 4.5. If φ̃N (z) ∈ ϑ, where ϑ = span{V L∗0, V L∗1, . . . , V L∗N}, and φ(z) ∈
L2([0, 1];ω), then by considering the Taylor expansions of the functions φ(z)

and φ̃
(k)
N (z), it follows that for any z0 ∈ [0, 1], the order of accuracy of the

derivative approximation in equation (30) is O((z − z0)N+1−k).

5. Consistency and Stability [6, 18]

In this section, we analyze the consistency and stability of the approximation
method presented in this paper, specifically focusing on the best approximation
of the function φ(z) in the subspace ϑ = span{V L∗0, V L∗1, . . . , V L∗N}.

5.1. Consistency. Consistency refers to the property of the approximation
method where the approximation converges to the true function φ(z) as the
number of basis functions increases. Specifically, we show that the error of the
best approximation φN (z) decreases as N increases and converges to zero in
the limit.

From Theorem 4.4, we obtain a clear bound on the error of the best approx-
imation

‖φ(z)− φN (z)‖2 ≤
∆
√
π

(N + 1)!
,

where ∆ = max{φ(N+1)(z), z ∈ [0, 1]}. This error bound shows that as N
increases, the error in the approximation diminishes. The rapid decay of the
factor (N + 1)! ensures that as more basis functions are added, the approxima-
tion φN (z) becomes very close to φ(z). Therefore, the method is consistent as
the number of basis functions increases, the approximation improves.

5.2. Stability. Stability refers to the robustness of the approximation method
with respect to small perturbations in the input data or the choice of basis
functions. In other words, small changes in φ(z) or in the set of basis functions
{V L∗0, V L∗1, . . . , V L∗N} should not lead to large deviations in the approximation
φN (z).

The stability of this approximation is ensured by the invertibility of the
Gram matrix G, which is discussed in Corrolary 2.10. Since the Gram ma-
trix is invertible, the system of equations for the best approximation has a
unique and stable solution. This means that small changes in φ(z) or in the
coefficients of the basis functions result in only small changes in the approxi-
mation φN (z). Therefore, the method is stable. Furthermore, since the func-
tions {V L∗0, V L∗1, . . . , V L∗N} are linearly independent and the Gram matrix is
positive definite, the approximation error does not grow disproportionately in
response to small changes in the data. This ensures that the method is stable.
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6. Test Problems

In this section, we illustrate the accuracy and efficiency of the proposed tech-
nique by solving some numerical examples. The method is implemented using
the Maple 16 software. The error function is given by eN (z) = |φ(z)− φN (z)|.
To numerically calculate the convergence order ord∞N , we use the following
formula [21]

(44) ord∞N =

ln

(
max

0<z<1
eN (z)

)
− ln

(
max

0<z<1
e2N (z)

)
ln 2

.

Example 6.1. [1,22] As a first example, we consider the following fractional
variable-order integro-differential equation

(45) LC
0 Dη(z)

z φ(z) + 6

∫ z

0

φ(ξ)dξ + 2zφ′(z) + φ(z) = h(z),

where η(z) = 3
5 (sin(z) + cos(z)), and

h(z) =
5Γ(3)

Γ(3− η(z))
z2−η(z) +

15Γ(2)

Γ(2− η(z))
z1−η(z) + 5z(2z2 + 14z + 9).

Equation (45), with the initial condition φ(0) = 0, has the exact solution 5z2 +
15z. We apply the presented method to find the approximate solution using the
truncated Vieta-Lucas series for N = 2. The essential matrix equation for this
problem is given by[

CTASη(z)A
−1 + GT

0 Ψ(z)CT + GT
1 Ψ(z)CTD

]
Ψ(z)

+6ΨT (z)EvC = h(z),
(46)

where

CT =
[
c0 c1 c2

]
, GT

0 =
[

1
2 0 0

]
, GT

1 =
[

1
2

1
2 0

]
,

and

A =

 2 0 0
−2 4 0
2 −16 19

 , A−1 =

 1
2 0 0
1
4

1
4 0

3
16

1
4

1
16

 , D =

0 0 0
2 0 0
0 8 0

 ,

Sη(z) =

0 0 0

0 Γ(2)z−η(z)

Γ(2−η(z)) 0

0 0 Γ(3)z−η(z)

Γ(3−η(z))

 , Kv =

 1
4 0 0
0 0 0
0 0 0

 ,

Ψ(z) =

 2
4z − 2

16z2 − 16z + 2

 , Qv(z) =

 z z2

2
z3

3
z2

2
z3

3
z4

4
z3

3
z4

4
z5

5

 .
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From the relation Ev(z) = KvAQv(z)AT , we get

Ev(z) =

z z2 − z 8z3

3 − 4z2 + z
0 0 0
0 0 0

 .
The matrix equation for the initial condition φ(0) = 0, according to (41), is
given by

CTΨ(0) = 0, or 2c0 − 2c1 + 2c2 = 0.

By solving the system at collocation points z0 = 1
6 , z1 = 3

6 , and z2 = 5
6 , we

obtain the following system
4c0 + 0.900126952c1 − 10.61518232c2 = 19.93339028,

8c0 + 4.813894046c1 − 6.390304879c2 = 59.57249995,

12c0 + 10.50647492c1 + 20.18894180c2 = 115.0914189.

Replacing the third equation with the initial condition 2c0 − 2c1 + 2c2 = 0 and
solving the system, we obtain the following result for the unknown vector C

CT =

[
75

16
5

5

16

]
.

Thus, we obtain the solution φ(z) = CTΨ(z) = 5z2 + 15z, which is the exact
solution of the equation.

In [1] and [22], numerical methods for solving variable-order fractional integro-
differential equations (FVOIDEs) are proposed. The method in [1] uses Vieta-
Fibonacci polynomials to construct operational matrices and convert the prob-
lem into an algebraic system with fractional differentiation and integration op-
erators. The method in [22] applies the second kind of Chebyshev polynomials to
derive operational matrices for fractional differentiation and integration, also
transforming the equation into an algebraic system. These methods provide
approximate solutions, whereas the proposed method using Vieta-Lucas polyno-
mials yields the exact solution to the problem.

Example 6.2. [10, 35] As a second example, we consider the following frac-
tional variable-order integro-differential equation (FVOIDE)

(47) LC
0 Dη(z)

z φ(z)− C
0 Dβ(z)

z φ(z)− 56

∫ 1

0

(z + ξ)φ3(ξ) dξ = h(z),

where

h(z) = 9 + 6z +
2Γ(3)z2−η(z)

Γ(3− η(z))
− 6Γ(2)z1−η(z)

Γ(2− η(z))
− Γ(3)z2−β(z)

Γ(3− β(z))
+

3Γ(2)z1−β(z)

Γ(2− β(z))
,

with initial conditions

φ(0) = 1, φ′(0) = −3,

and the exact solution φ(z) = z2−3z+1. The variable-order fractional deriva-
tives are given by η(z) = 1 + z

3 and β(z) = z
3 .
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Now, we aim to find the approximate solution of this problem in the form

(48) φN (z) =

N∑
j=0

cjV L
∗
j (z),

where N = 2 as described in Section 3, with collocation points z0 = 1
6 , z1 =

3
6 , z2 = 5

6 . By applying the method outlined in Section 3, we obtain the following
system of equations

− 3136

5
c0c

2
2 −

448

5
c2c

2
2 −

352

5
c1c

2
3 − 448c0c

2
2 + 448c20c2 − 224c21c1

+
98609

17104
c1 +

51744

4903
c2 − 448c30 −

224

5
c31 +

576

5
c32

− 448

5
c0c1c2 =

64264

6573
,

2c0 − 2c1 + 2c2 = 1,

4c1 − 16c2 = −3.

Solving this system, we obtain the following values for the coefficients

c0 = − 1

16
, c1 = −1

2
, c2 =

1

16
.

Finally, by substituting the obtained coefficient vector C into the expression
(48), we get the approximate solution

φ2(z) = 1− 3z + z2,

which coincides with the exact solution of the problem.
From the obtained results, it is evident that our method provides the exact

solution for N = 2, unlike the approximate solutions obtained by the methods
in [10] and [35]. The Vieta-Lucas polynomial-based approach, combined with
the collocation method, achieves the exact solution with a low-order expansion,
whereas the operational matrix method based on Bernstein polynomials [35] and
the Galerkin method with Chebyshev polynomials [10] require higher values of
N to reach similar accuracy.

The key advantage of our method lies in its ability to capture the solution’s be-
havior accurately using fewer terms, which allows it to outperform other meth-
ods that depend on higher-order expansions. While methods like Bernstein and
Chebyshev polynomials are effective, they struggle to provide exact solutions for
variable-order fractional integro-differential equations without significant com-
putational effort and a higher N . Therefore, the Vieta-Lucas polynomial ap-
proach is more efficient, providing the exact solution with fewer computational
resources.

Example 6.3. [35] Consider the following fractional variable-order integro-
differential equation (FVOIDE)

(49) LC
0 Dη(z)

z φ(z)−
∫ 1

0

zξφ(ξ) dξ −
∫ z

0

(zξ)2φ(ξ) dξ = h(z), φ(0) = 1,
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where

h(z) = −z − z2 (−2 + ez (2 + (z − 2)z)) +
ez (Γ(1− η(z))− Γ(1− η(z), z))

Γ(1− η(z))
,

and Γ(., .) denotes the incomplete gamma function. The analytic solution to
this equation is φ(z) = ez, and in this case, we set η(z) = sin(z).

By applying the SVLOMT for N = 4 and N = 6, we obtain the following
approximate solutions

φ4(z) = 1 + 0.999288127z + 0.506280082z2 + 0.147504731z3 + 0.064870034z4,

φ6(z) = 1 + 0.999997164z + 0.500043250z2 + 0.166412246z3 + 0.500043250z4

+ 0.007225671z5 + 0.002199893z6.

A comparison of the L2 errors obtained by the proposed method for N =
2, 4, 6, 8, along with the results from [35] using Bernstein polynomials, is pre-
sented in Table 2. Additionally, a comparison of the absolute errors at selected
points, obtained using different numbers of basis functions (N = 2, 3, 4, 5, 6),
is shown in Table 3. The graphs of the absolute error functions for different
values of N are provided in Figs. 1 and 2. Figure 3 compares the approximate
solutions φN (z) with the exact solution for various values of N . From these
comparisons, it is evident that the errors decrease as N increases. Moreover,
the method in Section 3 proves to be quite effective, and the calculations per-
formed in Maple demonstrate its reliability. In this example, the convergence
order has been computed and is presented in Table 4, along with the CPU time
and condition number. The results indicate that the SVLOMT yields high-order
accurate results. Since the condition number is less than or equal to 1, the prob-
lem is fully stable, meaning the output is not sensitive to changes in the input
data.

Table 2. L2-norm errors (Example 6.3)

N 2 4 6 8

SVLOMT 2.66e−03 1.14e−05 2.34e−08 5.64e−10
Method [35] 1.75e−02 4.94e−05 1.23e−07 2.11e−08

Example 6.4. [30] In this example, we consider the following variable-order
fractional integro-differential equation

(50) LC
0 Dη(z)

z φ(z) +

∫ z

0

ezφ(ξ) dξ + φ(z) = h(z),

where h(z) = (2z+3)(z+6) and η(z) = 1
3 (sin(z) + cos(z)). The exact solution

of this problem is not known.
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Table 3. Absolute error (Example 6.3)

N

z 2 3 4 5 6

0.1 3.79e−04 2.53e−05 1.00e−06 4.21e−08 9.41e−10
0.3 3.16e−05 9.13e−07 3.38e−07 1.31e−08 4.56e−11
0.5 1.72e−04 1.47e−05 3.85e−08 1.67e−08 5.11e−10
0.7 2.20e−04 4.36e−06 4.08e−07 3.90e−08 9.42e−10
0.9 1.25e−03 6.47e−05 1.93e−06 6.09e−08 6.72e−10

Figure 1. Comparison of the absolute error for φ(z) in prob-
lem 6.3

Figure 2. Comparison of the absolute error for φ(z) in prob-
lem 6.3

Since the exact solution is unavailable for comparison, the approximate error
is estimated using the following expression

eN (z) =

∣∣∣∣LC0 Dη(z)
z φN (z) +

∫ z

0

ezφN (ξ) dξ + φN (z)− h(z)

∣∣∣∣ ' 0.
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Figure 3. Comparison of the exact and approximate solu-
tions of the problem (49)

Table 4. The numerical calculation of the condition number
(C. N), convergence order (ord∞N ), and time (S) for Example
6.3

N 2 3 4 5 6 7

C. N 0.90451 0.99849 0.99987 0.99999 0.99999 1.00000
ord∞N 10.9658 12.5507 17.9316 19.60964046 24.2535 29.8973
Time 0.96 1.15 1.45 1.64 1.89 2.09

Table 5 presents a comparison of the absolute error at selected points for
various values of N (i.e., N = 5, 6, 7, 8, 9) obtained using the current method.
Figures 4-5 show the graphs of the absolute error functions for different values
of N . In Figure 6, the approximate solutions φN (z) for the problem in (50)
are compared for different values of N . The results from these comparisons
clearly demonstrate that the errors decrease as the value of N increases. The
convergence order for this example has been calculated and is presented in Table
6, along with the CPU time and the condition number. Given that the condition
numbers are small, it can be concluded that the problem is stable and well-
conditioned.

Example 6.5. Consider the following variable-order fractional integro-differential
equation (FVOIDE)

(51) LC
0 Dη(z)

z φ(z)−
∫ 1

0

ξ sin(z)φ(ξ) dξ−
∫ z

0

(z− ξ)φ(ξ) dξ = h(z), φ(0) = 0,
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Table 5. Absolute error (Example 6.4)

N

z 5 6 7 8 9

0.1 7.60e−04 2.25e−04 5.80e−05 1.80e−06 1.43e−06
0.3 3.93e−04 3.74e−06 5.61e−07 1.70e−08 1.32e−09
0.5 2.93e−04 4.38e−06 0 3.24e−09 0
0.7 3.70e−04 2.17e−06 2.13e−07 6.46e−09 5.00e−10
0.9 7.04e−04 4.98e−05 5.54e−06 1.65e−07 1.27e−07

Figure 4. Comparison of the absolute error for φ(z) in prob-
lem 6.4

Table 6. The numerical calculation of the condition number
(C. N), convergence order (ord∞N ), and time for Example 6.4

N 2 3 4 5 6 7

C. N 0.97870 1.03985 1.04089 1.04066 1.04055 1.04038
ord∞N 4.21864 7.92964 11.4750 16.7095 19.6843 22.6842
Time 0.54 0.70 0.89 1.00 1.07 1.15

where

h(z) =
Γ
(

23
4

)
Γ
(

23
4 − η(z)

)z 19
4 −η(z) +

Γ
(

36
5

)
Γ
(

36
5 − η(z)

)z 31
5 −η(z)

− 16

621
z

27
4 − 25

1476
z

41
5 − 299

1107
sin(z).

In this problem, we take η(z) = z and the exact solution is given by φ(z) =

z
19
4 + z

31
5 [16].
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Figure 5. Comparison of the absolute error for φ(z) in prob-
lem 6.4

Figure 6. Comparison of the exact and approximate solu-
tions of the problem (50)

Figures 7-8 present the graphs of the absolute error functions for various
values of N . Figure 9 shows the approximate solutions φN (z) for different
values of N . Furthermore, Table 7 compares the absolute error at selected
points, obtained using the current method and the methods from [16,17,36], all
with the same number of basis functions (N = 7).

Additionally, the condition number is computed and presented in Table 8
to assess the stability of the problem. This table also includes the CPU time
and the convergence order ord∞N . Given that the condition number for this
problem is less than 5, it indicates that the problem is relatively stable; however,
caution should still be exercised regarding rounding errors and computational
inaccuracies. This condition number suggests that the problem’s output is not
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highly sensitive to input variations, and standard computational precision can
provide fairly reliable results. Moreover, as seen from the data in the table, the
condition number decreases gradually as N increases, indicating that increasing
N leads to greater stability of the problem.

In conclusion, the results demonstrate that the SVLOMT provides high-order
accurate solutions, with stable performance as indicated by the computed con-
dition number, CPU time, and convergence order. The comparison of absolute
errors across different methods further supports the effectiveness of the proposed
approach.

Figure 7. Comparison of the absolute error for φ(z) in prob-
lem 6.5

Figure 8. Comparison of the absolute error for φ(z) in prob-
lem 6.5
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Figure 9. Comparison of the exact and approximate solu-
tions of the problem (51)

Table 7. The comparison of the absolute error with the meth-
ods presented in [17], [16], [36], and the SVLOMT method for
N = 7, Example 6.5.

z SVLOMT Method [17] Method [16] Method [36]

0.1 1.37e−07 4.39e−07 7.82e−07 8.25e−04
0.3 4.77e−08 5.54e−07 1.22e−06 9.11e−05
0.5 5.33e−08 3.41e−06 1.66e−07 1.26e−03
0.7 6.27e−08 4.78e−07 7.92e−07 9.58e−03
0.9 7.32e−08 2.72e−07 6.61e−07 8.66e−02

Table 8. The numerical calculation of the condition number
(C. N), convergence order (ord∞N ), and time for Example 6.5

N 2 3 4 5 6 7

C. N 5.44855 5.39532 4.91202 4.88266 4.87906 4.87844
ord∞N 5.38082 6.79586 9.38082 11.5162 13.0504 16.6540
Time 0.60 0.65 0.96 1.10 1.23 1.52

7. Concluding Remarks

In this article, an operational matrix method based on the shifted Vieta-
Lucas polynomials (SVLOMT) and the collocation technique is presented for
solving linear (or nonlinear) fractional-variable-order integro-differential equa-
tions (FVOIDEs). In the proposed method, all terms in the equation are
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replaced by corresponding operational matrices, and combined with the col-
location technique, this transforms the problem into an algebraic system of
equations. The method is particularly straightforward to implement, and its
software implementation is relatively simple. Furthermore, with minor modi-
fications, it can also be applied to solve nonlinear equations, as demonstrated
in the examples provided.

One of the main advantages of this approach is that, when the exact solution
of the equation is in polynomial form, the approximate solution obtained by the
proposed method exactly matches the exact solution. Moreover, an error anal-
ysis of the SVLOMT was conducted, demonstrating that the method achieves
high accuracy and efficiency. The condition number, CPU time, and numerical
convergence rate were also calculated, with the results indicating that when the
condition number is small, the method exhibits excellent stability. The con-
vergence speed and accuracy of the method are both impressive, highlighting
its effectiveness. Stability and consistency analyses further confirmed that the
method performs robustly under varying conditions.

In future work, this method could be extended to higher-order equations and
more complex nonlinear systems. Optimization for parallel computing may also
enhance its efficiency for large-scale problems. Furthermore, its applicability
in more intricate real-world systems could be explored, and hybrid approaches
combining this method with other numerical techniques could lead to further
improvements in both accuracy and stability. In conclusion, the SVLOMT
proves to be an effective and powerful tool for solving fractional-variable-order
integro-differential equations, making it highly suitable for large-scale and com-
plex scientific and industrial applications.
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[20] Izadi, M., Yüzbaşı, Ş., & Ansari, K. J. (2021). Application of Vieta–Lucas series to
solve a class of multi-pantograph delay differential equations with singularity. Symmetry,

13(12), 2370. https://doi.org/10.3390/sym13122370

[21] Izadi, M., & Atangana, A. (2024). Computational analysis of a class of singular nonlinear
fractional multi-order heat conduction model of the human head. Scientific Reports,

14(1), 3466. https://doi.org/10.1038/s41598-024-53822-
[22] Liu, J., Li, X., Wu, L., & others. (2016). An operational matrix technique for solv-

ing variable order fractional differential-integral equation based on the second kind

of Chebyshev polynomials. Advances in Mathematical Physics, 2016(1), 6345978.
https://doi.org/10.1155/2016/6345978

[23] Odzijewicz, T., Malinowska, A. B., & Torres, D. F. M. (2013). Fractional variational

calculus of variable order. Advances in Harmonic Analysis and Operator Theory: The
Stefan Samko Anniversary Volume, 229, 291–301. https://doi.org/10.1007/978-3-0348-

0516-2-16
[24] Oyedepo, T., Ayinde, A. M., & Didigwu, E. N. (2024). Vieta-Lucas poly-

nomial computational technique for Volterra integro-differential equations.

Electronic Journal of Mathematical Analysis and Applications, 12(1), 1–8.

https://doi.org/10.21608/ejmaa.2023.232998.1064



Vieta-Lucas operational matrix technique for fractional... – JMMR Vol. 14, No. 2 (2025) 173

[25] Patnaik, S., Hollkamp, J. P., & Semperlotti, F. (2020). Applications of variable-order
fractional operators: a review. Proceedings of the Royal Society A, 476(2234), 20190498.

https://doi.org/10.1098/rspa.2019.0498

[26] Pirouzeh, Z., Skandari, M. H. N., Pirbazari, K. N., & Shateyi, S. (2024).
A pseudo-spectral approach for optimal control problems of variable-order frac-

tional integro-differential equations. AIMS Mathematics, 9(9), 23692–23710. doi:

https://doi.org/10.3934/math.20241151
[27] Podlubny, I. (1999). Fractional differential equations: an introduction to fractional

derivatives, fractional differential equations, to methods of their solution and some of

their applications. Mathematics in science and engineering, 198, 1–340.
[28] Pooseh, S., Almeida, R., & Torres, D. F. M. (2013). Numerical approximations of frac-

tional derivatives with applications. Asian Journal of Control, 15(3), 698–712. Wiley
Online Library. https://doi.org/10.1002/asjc.617

[29] Rivlin, T. (1969). Introduction to Approximation Theory. JSTOR.

[30] Sahu, P. K., & Routaray, M. (2023). Numerical solution of variable order fractional
integro-differential equations using orthonormal functions. Palestine Journal of Mathe-

matics, 12(1).

[31] Samko, S. (2013). Fractional integration and differentiation of variable order: an
overview. Nonlinear Dynamics, 71, 653–662. https://doi.org/10.1007/s11071-012-0485-0

[32] Samko, S. G., & Ross, B. (1993). Integration and differentiation to a variable fractional

order. Integral transforms and special functions, 1(4), 277–300. Taylor & Francis.
[33] Sarwar, S. (2022). On the existence and stability of variable order Ca-

puto type fractional differential equations. Fractal and Fractional, 6(2), 51.

https://doi.org/10.3390/fractalfract6020051
[34] Sun, H. G., Chang, A., Zhang, Y., & Chen, W. (2019). A review on variable-order

fractional differential equations: mathematical foundations, physical models, numeri-
cal methods and applications. Fractional Calculus and Applied Analysis, 22(1), 27–59.

https://doi.org/10.1515/fca-2019-0003

[35] Tuan, N. H., Nemati, S., Ganji, R. M., & Jafari, H. (2020). Numerical solution of multi-
variable order fractional integro-differential equations using the Bernstein polynomials.

Engineering with Computers, 1–9. https://doi.org/10.1007/s00366-020-01142-4

[36] Yi, M., Huang, J., & Wang, L. F. (2013). Operational matrix method for solving variable
order fractional integro-differential equations. CMES-Computer Modeling in Engineering

and Sciences, 96(5), 361–377. https://doi.org/10.3970/cmes.2013.096.361

[37] Zaeri, S., Saeedi, H., & Izadi, M. (2017). Fractional integration operator for nu-
merical solution of the integro-partial time fractional diffusion heat equation with

weakly singular kernel. Asian-European Journal of Mathematics, 10(04), 1750071.

https://doi.org/10.1142/S1793557117500711

Mohsen Riahi Beni

Orcid number: 0000-0001-7061-6917
Department of Mathematics

University of Saravan

Saravan, Iran
Email address: m.riahi@saravan.ac.ir


	1. Introduction
	2. Some materials and mathematical tools
	2.1. Definitions of variable-order fractional derivatives
	2.2. Vieta-Lucas polynomials
	2.3. Shifted Vieta-Lucas polynomials
	2.4. Fundamental matrix relations

	3. Description of SVLOMT
	4. Error analysis
	5. Consistency and Stability atkinson1991introduction,golub2013matrix
	5.1. Consistency
	5.2. Stability

	6. Test Problems
	7. Concluding Remarks
	References

