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Abstract. The purpose of this paper is to present a new expansion class,
namely weakly n-ary S-prime hyperideals in Krasner (m,n)-hyperrings.

In summary, we give an extension of n-ary S-prime hyperideals. Some re-
sults and examples are given to explain the structure of this new concept.

Moreover, a version of Nakayama,s Lemma is considered on commutative

Krasner (m,n)-hyperrings.
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1. Introduction

In recent years, prime ideals and their expansions have gained significant
attention in commutative algebra, drawing the attention of numerous authors.
One of these extensions called S-prime ideals was introduced via a multiplica-
tive subset of a commutative ring in [10]. Afterward, the idea of weakly S-prime
ideals was investigated by Almahdi et al. in [1]. This study demonstrated that
weakly S-prime ideals exhibits numerous properties similar to those of weakly
prime ideals. Let A be a commutative ring, Q an ideal of A and S ⊆ A a
multiplicative set. The ideal Q is said to be weakly S-prime if there exists
s ∈ S such that, 0 6= xy ∈ Q for x, y ∈ A implies sx ∈ Q or sy ∈ Q.

The concept of hyperstructures was introduced by the French mathemati-
cian F. Marty in 1934 at the 8th Congress of Scandinavian Mathematicians [12].
Marty’s work laid the foundation for what would become the study of hyper-
structures, which are algebraic structures defined by multi-valued operations
known as hyperoperations. These structures generalize classical algebraic con-
cepts by allowing the composition of two elements to yield a set of values rather
than a single value. The study of hyperstructures is an active area of research,
with ongoing investigations into their properties, classifications, and applica-
tions across different mathematical and scientific disciplines. Several books and
many papers have been written now on hyperstructures [6,7,15,16,18]. The idea
of (m,n)-hyperrings was proposed by Mirvakili and Davvaz in [14]. Moreover,
these authors presented the notion of Krasner (m,n)-hyperring as a subclass of
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(m,n)-hyperrings in [13]. Let xji denote the sequence xi, xi+1, · · · , xj for j > i.

Note that xji is the empty symbol for j < i.

Definition 1.1. [13] The triple (A, f, g), or simply A, is a commutative Kras-
ner (m,n)-hyperring with a scalar identity 1A if

1. (A, f) is a canonical m-ary hypergroup,
2. (A, g) is a n-ary semigroup,
3. g(ai−11 , f(xm1 ), ani+1) = f(g(ai−11 , x1, a

n
i+1), · · · , g(ai−11 , xm, a

n
i+1)) for ev-

ery ai−11 , ani+1, x
m
1 ∈ A and 1 ≤ i ≤ n,

4. g(0, xn2 ) = g(x2, 0, x
n
3 ) = · · · = g(xn2 , 0) = 0 for each xn2 ∈ A,

5. f(an1 ) = f(a
σ(n)
σ(1) ) for all σ ∈ Sn, the group of all permutations of

{1, · · · , n} and for each an1 ∈ A,

6. g(x, 1
(n−2)
A ) = x for each x ∈ A.

A non-empty subset B of A is called a subhyperring of A if (B, f, g) is a
Krasner (m,n)-hyperring. Also, a non-empty subset Q of A is said to be a hy-
perideal if (Q, f) is an m-ary subhypergroup of (A, f) and g(xi−11 , Q, xni+1) ⊆ Q,
for each 1 ≤ i ≤ n and xn1 ∈ A. Let x ∈ A. The hyperideal gener-
ated by x is denoted by < x > and defined as < x >= g(A, x, 1(n−2)) =
{g(r, x, 1(n−2)) | r ∈ A} [2] . Also, let Q be a hyperideal of A. Then we define

(Q : x) = {a ∈ A | g(a, x, 1
(n−2)
A ) ∈ Q}. The important hyperideals of a com-

mutative Krasner (m,n)-hyperring A such as maximal, n-ary prime and n-ary
primary hyperideals were defined in [2]. A hyperideal M of A is maximal if for
each hyperideal N in A, M ⊆ N ⊆ A implies N = M or N = A. Let Q 6= A be
a hyperideal of A. Q is called n-ary prime if g(Qn1 ) ⊆ Q for hyperideals Qn1 in
A implies that Qi ⊆ Q for some i ∈ {1, · · · , n}. Lemma 4.5 in [2] proves that Q
is an n-ary prime hyperideal of A if g(xn1 ) ∈ Q for all xn1 ∈ A implies xi ∈ Q for
some i ∈ {1, · · · , n}. The radical of Q, denoted by rad(Q), is the intersection
of all n-ary prime hyperideals of A containing Q. We define rad(Q) = A if the
set of all n-ary prime hyperideals containing Q is empty. Theorem 4.23 in [2]
shows that

rad(Q) =

{
a ∈ A |

{
g(a(u), 1

(n−u)
A ) ∈ Q, u ≤ n

g(l)(a
(u)) ∈ Q u > n, u = l(n− 1) + 1

}}
.

Furthermore, Q is called n-ary primary if g(xn1 ) ∈ Q implies that xi ∈ Q
or g(xi−11 , 1A, x

n
i+1) ∈ rad(Q) for some i ∈ {1, · · · , n}. Theorem 4.28 in [2]

indicates that if Q is an n-ary primary hyperideal in A, then rad(Q) is an n-ary
prime hyperideal of A. An element x ∈ A is invertible if there exists y ∈ A such

that 1A = g(x, y, 1
(n−2)
A ) [2]. In recent years, different types of hyperideals have

been proposed in order to let us fully understand the structures of hyperrings in
general. There are various ways to generalize the concept of a prime hyperideal
in the context of Krasner (m,n)-hyperrings. Hila et al. in [11] studied an
extention of prime hyperideals called (k, n)-absorbing hyperideals. Then, this
notion was generalized to weakly (k, n)-absorbing hyperideals by Davvaz et al.



Weakly S-prime hyperideals – JMMR Vol. 14, No. 2 (2025) 177

in [8]. Let S ⊆ A be non-empty. If g(sn1 ) ∈ S for all sn1 ∈ S, then S is called
n-ary multiplicative. The notion of S-prime hyperideals which is an extension
of the prime hyperideals via an n-ary multiplicative subset of a Krasner (m,n)-
hyperring was investigated in [4].

In this paper, motivated by the research work on weakly S-prime ideals, the
notion of weakly n-ary S-prime hyperideals is introduced and investigated in
a commutative Krasner (m,n)-hyperring A, where S ⊆ A is a multiplicative
set. Among many results in this paper, we prove that every n-ary prime hy-
perideals of A is a weakly n-ary S-prime hyperideal but the converse may not
be always true in Example 2.2. It is shown that every weakly n-ary S-prime
hyperideal of A is n-ary prime if and only if A is an n-ary hyperintegral do-
main and every S-prime hyperideal of A is n-ary prime in Theorem 2.7. We
obtain that if Q is a strongly weakly n-ary S-prime hyperideal of A that is
not n-ary S-prime, then g(Q(n)) = 0 in Theorem 2.11. In theorem 2.15, we
propose a type of Nakayama,s Lemma for strongly weakly n-ary S-prime hy-
perideals. We indicate that a hyperideal Q satisfying g(Q(n)) = 0 may not be a
weakly S-prime hyperideal in Example 2.12. Moreover, we conclude that if Q
is a strongly weakly n-ary S-prime hyperideal of A that is not n-ary S-prime,

then g(g(s, rad(0), 1
(n−2)
A ), Q(n−1)) = 0 for some s ∈ S in Theorem 2.18. Fi-

nally, we study the stability of weakly n-ary S-prime hyperideals in various
hyperring-theoric constructions. Throughout this paper, we suppose that A is
a commutative Krasner (m,n)-hyperring with a scalar identity 1A.

2. weakly n-ary S-prime hyperideals

In [4], the notion of n-ary prime hyperideals was generalized to n-ary S-prime
hyperideals via an n-ary multiplicative subset in Krasner (m,n)-hyperrings.
Assume that Q is a hyperideal of a commutative Krasner (m,n)-hyperring A
and S ⊆ A is an n-ary multiplicative set such that Q∩ S = ∅. The hyperideal
Q is called n-ary S-prime if there exists an s ∈ S such that for every an1 ∈ A
with g(an1 ) ∈ Q, g(s, ai, 1

(n−2)
A ) ∈ Q for some i ∈ {1, · · · , n}. Our purpose here

is to introduce and study the notion of weakly n-ary S-prime hyperideals which
constitutes a generalization of n-ary S-prime hyperideals. The weakly-version
of n-ary S-prime hyperideals is defined as follows.

Definition 2.1. Assume that Q is a hyperideal of A and S is an n-ary multi-
plicative subset of A such that Q ∩ S = ∅. We say that Q is a weakly n-ary
S-prime hyperideal of A if there exists an s ∈ S such that for all an1 ∈ A if

0 6= g(an1 ) ∈ Q, we have g(s, ai, 1
(n−2)
A ) ∈ Q for some i ∈ {1, · · · , n}.

Example 2.2. The set A = {0, 1, 2, 3} with following 2-hyperoperation “ ⊕ ”
is a canonical 2-ary hypergroup
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⊕ 0 1 2 3
0 0 1 2 3
1 1 I 3 J
2 2 3 0 1
3 3 J 1 I

where I = {0, 1} and J = {2, 3}. Define a 4-ary operation g on A as g(a41) = 2
if a41 ∈ J or 0 if otherwise. Then, (A,⊕, g) is a Krasner (2,4)-hyperring (see
Example 4.8 in [2]). In the hyperring, the set S = {2, 3} is 4-ary multiplicative
and Q = {0} is a weakly 4-ary S-prime hyperideal but it is not 4-ary prime,
because g(1, 1, 2, 3) = 0 ∈ Q while 1, 2, 3 /∈ Q.

Example 2.3. Consider the set A={0,1,2}. In [2], it is verified that (A, f, g)
is a Krasner (3, 3)-hyperring, where 3-ary hyperoperation f and 3-ary operation
g are defined as
f(0, 0, 0) = 0, f(0, 0, 2) = 2, f(0, 1, 1) = 1, f(1, 1, 1) = 1, f(2, 2, 2) = 2,
f(0, 0, 1) = 1, f(0, 2, 2) = 2, f(1, 1, 2) = f(1, 2, 2) = f(0, 1, 2) = A,
g(1, 1, 1) = 1, g(1, 1, 2) = g(1, 2, 2) = g(2, 2, 2) = 2,

and g(0, a21) = 0 for a21 ∈ A.
In the hyperring, the set S = {1} is 3-ary multiplicative and Q = {0, 2} is a
weakly 3-ary S-prime hyperideal of A.

Proposition 2.4. Let S ⊆ A be an n-ary multiplicative set, Q a hyperideal of
A with Q ∩ S = ∅ and Qn−11 some hyperideals of A such that Qj ∩ S 6= ∅ for
each j ∈ {1, · · · , n− 1}. If Q is a weakly n-ary S-prime hyperideal of A, then
g(Qn−11 , Q) is a weakly n-ary S-prime hyperideal of A.

Proof. The proof is straightforward. �

Proposition 2.5. Let S ⊆ A be an n-ary multiplicative set and Q be a hyper-
ideal of A with Q ∩ S = ∅. If (Q : s) is a weakly n-ary prime hyperideal of A
for some s ∈ S, then Q is a weakly n-ary S-prime hyperideal of A.

Proof. Let (Q : s) be a weakly n-ary prime hyperideal of A for some s ∈ S.
Assume that 0 6= g(an1 ) ∈ Q for an1 ∈ A. Then we have 0 6= g(an1 ) ∈ (Q : s)
as Q ⊆ (Q : s). Since (Q : s) is a weakly n-ary prime hyperideal of A, we

obtain ai ∈ (Q : s) for some i ∈ {1, · · · , n} which implies g(s, ai, 1
(n−2)
A ) ∈ Q.

Consequently, Q is a weakly n-ary S-prime hyperideal of A. �

Now, we show that the converse of Proposition 2.5 is not true, in general.

Example 2.6. Consider Z12 = {0, 1, 2, 3, · · · , 11}. In [11], Example 3.2 veri-
fies that A = Z12/Z∗12 is a Krasner hyperring, where Z∗12 = {1, 5, 7, 11} is the
multiplicative group of units of Z12. The set S = {3Z∗12, 9Z∗12} is a 3-ary multi-
plicative subset of A. It is easily seen that Q = 〈0Z∗12〉 is a weakly 3-ary S-prime
hyperideal of A. However, the hyperideal (Q : s) = {0Z∗12, 4Z∗12} for each s ∈ S
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is not a weakly 3-ary prime hyperideal of A. Because, g((2Z∗12)(2), 3Z∗12) ∈ (Q :
s) but neither g(2Z∗12, s, 1A) ∈ (Q : s) nor g(3Z∗12, s, 1A) ∈ (Q : s) for all s ∈ S.

Theorem 2.7. Let S ⊆ A be an n-ary multiplicative set. Then every weakly
n-ary S-prime hyperideal of A is n-ary prime if and only if A is an n-ary
hyperintegral domain and every S-prime hyperideal of A is n-ary prime.

Proof. The proof is trivial.
�

Proposition 2.8. Let S ⊆ T ⊆ A be two n-ary multiplicative sets such that for
each t ∈ T , there exists t′ ∈ T with g(t(n−1), t′) ∈ S. Then Q is a weakly n-ary
T -prime hyperideal of A if and only if Q is a weakly n-ary S-prime hyperideal
of A.

Proof. (=⇒) Assume that 0 6= g(an1 ) ∈ Q for some an1 ∈ A. Since Q is a weakly
n-ary T -prime hyperideal of A, there exists t ∈ T such that g(t, ai, 1

(n−2)) ∈
Q for some i ∈ {1, · · · , n}. By the hypothesis, there exists t′ ∈ T such

that g(t(n−1), t′) ∈ S. Let s = g(t(n−1), t′). Therefore g(s, ai, 1
(n−2)
A ) =

g(g(t(n−1), t′), ai, 1
(n−2)
A ) = g(g(t(n−2), t′, 1A), g(t, ai, 1

(n−2)), 1
(n−2)
A ) ∈ Q, as

needed.
(⇐=) Let Q be a weakly n-ary S-prime hyperideal of A and 0 6= g(an1 ) ∈ Q.

Then there exists s ∈ S ⊆ T such that g(s, ai, 1
(n−2)) ∈ Q for some i ∈

{1, · · · , n}. This means that Q is a weakly n-ary T -prime hyperideal of A. �

The notion of Krasner (m,n)-hyperring of fractions was introduced and stud-
ied in [3].

Theorem 2.9. Let Q be a hyperideal of A and S ⊆ A be an n-ary multiplicative
set such that Q ∩ S = ∅ and 1A ∈ S. Then Q is a weakly n-ary S-prime
hyperideal of A if and only if Q is a weakly n-ary S?-prime hyperideal, where
S? = {a ∈ A | a/1A is invertible in S−1A}.

Proof. (=⇒) Since Q is a weakly n-ary S-prime hyperideal of A and S? is an
n-ary multiplicative subset of A containing S, it is proved.

(⇐=) Assume that t ∈ S?. This means that t/1A is invertible in S−1A.

Therefore G(t/1A, x/s, 1A/1A
(n−2)) = g(t, x, 1

(n−2)
A )/g(s, 1

(n−1)
A ) = 1A/1A for

some x ∈ A and s ∈ S which implies

0 ∈ g(s′, f(g(t, x, 1
(n−2)
A ),−g(s, 1

(n−1)
A ), 0(m−2)), 1

(n−2)
A )

= f(g(s′, t, x, 1
(n−3)
A ),−g(s′, s, 1

(n−2)
A ), 0(m−2))

for some s′ ∈ S. Since g(s′, s, 1
(n−2)
A ) ∈ S, we get

g(s′, t, x, 1
(n−3)
A ) ∈ f(g(s′, s, 1

(n−2)
A ), 0(m−1)) ⊆ S.

Assume that s′′ = g(s′, x, 1
(n−2)
A ). Then we conclude that s′′ ∈ S? as

G(g(s′, x, 1
(n−2)
A )/1A, g(t, 1

(n−1)
A )/g(s′, x, t, 1

(n−3)
A ), 1A/1A

(n−2))

= g(s′, x, t, 1
(n−3)
A )/g(s′, x, t, 1

(n−3)
A )
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= 1A/1A.

Hence we have g(t(n−1), g(s′′
(n−1)

, g(t, s′′, 1
(n−2)
A ))) = g(g(t, s′′, 1

(n−2)
A )n) ∈ S.

Put t′ = g(s′′
(n−1)

, g(t, s′′, 1
(n−2)
A )). So t′ ∈ S?. Since g(t(n−1), t′) ∈ S, we

conclude that Q is a weakly n-ary S-prime hyperideal of A by Proposition
2.8. �

Recall from [8] that a hyperideal Q of A is called strongly weakly n-ary prime
if 0 6= g(Qn1 ) ⊆ Q for all hyperideals Qn1 of A implies that Qi ⊆ Q for some
i ∈ {1, · · · , n}. Assume that S ⊆ A is an n-ary multiplicative set satisfying
Q ∩ S = ∅. A hyperideal Q of A refers to a strongly weakly n-ary S-prime
hyperideal if there exists an s ∈ S such that for every hyperideals Qn1 of A if

0 6= g(Qn1 ) ⊆ Q, we have g(s,Qi, 1
(n−2)
A ) ⊆ Q for some i ∈ {1, · · · , n}. In this

case, it is said that Q is associated to s. It is clear that every strongly weakly
n-ary S-prime hyperideal of A is a weakly n-ary S-prime hyperideal.

Theorem 2.10. Assume that Q is a strongly weakly n-ary S-prime hyperideal

of A such that Q is associated to s. If g(an1 ) = 0 for an1 ∈ A but g(s, ai, 1
(n−2)
A ) /∈

Q for all i ∈ {1, · · · , n}, then g(a1, · · · , âk1 , · · · , âk2 , · · · , âkv , · · · , Q(v)) = 0 for
each k1, · · · , kv ∈ {1, · · · , n}.

Proof. We use the induction on v. Let v = 1. Assume that g(ai−11 , Q, ani+1) 6= 0

for some i ∈ {1, · · · , n}. Therefore we get 0 6= g(ai−11 , a, ani+1) ∈ Q for some
a ∈ Q. So we conclude that

0 6= g(ai−11 , a, ani+1)

= f(g(an1 ), g(ai−11 , a, ani+1), 0(m−2))

= g(ai−11 , f(a, ai, 0
(m−2)), ani+1) ⊆ Q.

Then g(s, f(a, ai, 0
(m−2)), 1

(n−2)
A ) = f(g(s, a, 1

(n−2)
A ), g(s, ai, 1

(n−2)
A ), 0(m−2)) ⊆

Q which means g(s, ai, 1
(n−2)
A ) ∈ Q or g(s, aj , 1

(n−2)
A ) ∈ Q for some j ∈

{1, · · · , î, · · · , n}. It follows that g(s, ai, 1
(n−2)
A ) ∈ Q for some i ∈ {1, · · · , n}

which is impossible. Now, suppose that the claim is true for all positive integers
that less than v. Suppose on the contrary that

g(a1, · · · , âk1 , · · · , âk2 , · · · , âkv , · · · , Q(v)) 6= 0
for some k1, · · · , kv ∈ {1, · · · , n}. Without loss of generality, we eliminate
av1. So we have g(av+1, · · · , an, Q(v)) 6= 0. Then there exist xv1 ∈ Q such
that 0 6= g(av+1, · · · , an, xv1) ∈ Q. By induction hypothesis, we conclude
that 0 6= g(f(a1, x1, 0

(m−2)), · · · , f(av, xv, 0
(m−2)), anv+1) ⊆ Q. By the hy-

pothesis, we get g(s, f(ai, xi, 0
(m−2)), 1

(n−2)
A ) ⊆ Q for some i ∈ {1, · · · , v} or

g(s, aj , 1
(n−2)
A ) ∈ Q for some j ∈ {v + 1, · · · , n}. Therefore g(s, ai, 1

(n−2)
A ) ∈ Q

for some i ∈ {1, · · · , n} which is a contradiction. Hence we conclude that
g(a1, · · · , âk1 , · · · , âk2 , · · · , âkv , · · · , Q(v)) = 0 for each k1, · · · , ku ∈ {1, · · · , n}.

�
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Theorem 2.11. Let S ⊆ A be an n-ary multiplicative set. If Q is a strongly
weakly n-ary S-prime hyperideal of A that is not n-ary S-prime, then g(Q(n)) =
0.

Proof. Let Q be a strongly weakly n-ary S-prime hyperideal of A and Q is
associated to s. Suppose on the contrary that 0 6= g(Q(n)). We show that
Q is an n-ary S-prime hyperideal of A. Let g(an1 ) ∈ Q for an1 ∈ A. If

0 6= g(an1 ) ∈ Q, then we have g(s, ai, 1
(n−2)
A ) ∈ Q for some i ∈ {1, · · · , n}.

Assume that g(an1 ) = 0. From 0 6= g(Q(n)), it follows that there exists
xn1 ∈ Q such that g(xn1 ) 6= 0. By Theorem 2.10, we conclude that 0 6=
g(f(a1, x1, 0

(m−2)), · · · , f(an, xn, 0
(m−2)) ⊆ Q. By the hypothesis, we get

f(g(s, ai, 1
(n−2)
A ), g(s, xi, 1

(n−2)
A ), 0(m−2)) = g(s, f(ai, xi, 0

(m−2)) ⊆ Q for some

i ∈ {1, · · · , n} which means g(s, ai, 1
(n−2)
A ) ∈ Q as g(s, xi, 1

(n−2)
A ) ∈ Q. Thus Q

is an n-ary S-prime hyperideal of A, a contradiction. Consequently, g(Q(n)) =
0. �

Now, Example 2.12 shows that a hyperideal Q satisfying g(Q(n)) = 0 may
not be a weakly S-prime hyperideal.

Example 2.12. Consider Krasner (4, 3)-hyperring (Z55u ,+, ·), where + and
· are usual addition and multiplication and u > 4. In the hyperring, Q =
〈5u〉 is not a weakly 5-ary S-prime hyperideal of Z55u , where S = {1A} since
5.5.5.5.5u−4 ∈ Q but 5, 5u−4 /∈ Q while Q5 = 0.

In view of Theorem 2.11 and Theorem 3.9 in [4], we have Corollary 2.13.

Corollary 2.13. Let S ⊆ A be an n-ary multiplicative set and Q be a strongly
weakly n-ary S-prime hyperideal of A. Then Q ⊆ rad(0) or g(s, rad(0), 1(n−2)) ⊆
Q for some s ∈ S.

Corollary 2.14 is a version of Theorem 4.4 in [8].

Corollary 2.14. Let Q be a strongly weakly n-ary prime hyperideal of A but
is not n-ary prime hyperideal. Then g(Q(n)) = 0.

Proof. By taking S = {1} in Theorem 2.11, it is proved. �

Let R be a commutative ring, M a finitely generated R-module and I an
ideal of R contained in the Jacobson radical of R. Then IM = M implies
M = {0}. This is usually called Nakayama,s Lemma (for more details see [17]).
In Theorem 2.15, we study a version of Nakayama,s Lemma for strongly weakly
n-ary S-prime hyperideals. In this regard, we need the definition of (m,n)-
hypermodule (M,f ′, g′) over Krasner (m,n)-hyperring (A, f, g). Suppose that
M is a non-empty set and (A, f, g) is a commutative Krasner (m,n)-hyperring
. If (M,f ′) is an m-ary hypergroup and the map

g′ : A× · · · ×A︸ ︷︷ ︸
n−1

×M −→ P ∗(M)

satisfied the following conditions:
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(1) g′(xn−11 , f ′(am1 )) = f ′(g′(xn−11 , a1), · · · , g′(xn−11 , am))

(2) g′(xi−11 , f(ym1 ), xn−1i+1 , a) = f ′(g′(xi−11 , y1, x
n−1
i+1 , a), · · · , g′(xi−11 ym, x

n−1
i+1 , a))

(3) g′(xi−11 , g(xi+n−1i ), xn+m−2i+m , a) = g′(xn−11 , g′(xn+m−2m , a))

(4) 0 = g′(xi−11 , 0, xn−1i+1 , a),

for all xn+m−21 , ym1 ∈ A and am1 , a ∈ M then the triple (M,f ′, g′) is called an
(m,n)-hypermodule over (A, f, g) [5].

Theorem 2.15. Let (M,f ′, g′) be an (m,n)-hypermodule over (A, f, g) and Q
be a strongly weakly n-ary S-prime hyperideal of A that is not n-ary S-prime.

If M = g′(Q, 1
(n−2)
A ,M), then M = {0}.

Proof. Assume that Q is a strongly weakly n-ary S-prime hyperideal of A but

is not n-ary S-prime and M = g′(Q, 1
(n−2)
A ,M). By Theorem 2.11, we conclude

that g′(g(Q(n)), 1
(n−2)
A ,M) = {0}. Moreover, we have

g′(g(Q(n)), 1
(n−2)
A ,M) = g′(g(Q(n−1), 1A), 1

(n−2)
A , g′(Q, 1

(n−2)
A ,M))

= g′(g(Q(n−1), 1A), 1
(n−2)
A ,M)

= g′(g(Q(n−2), 1
(2)
A ), 1

(n−2)
A , g′(Q, 1

(n−2)
A ,M))

= g′(g(Q(n−2), 1
(2)
A ), 1

(n−2)
A ,M)

= · · ·
= g′(Q, 1

(n−2)
A , g′(Q, 1

(n−2)
A ,M))

= g(Q, 1
(n−2)
A ,M)

= M .
Then we conclude that M = {0}. �

Theorem 2.16 provides a useful characterization of the strongly weakly n-ary
S-prime hyperideal property.

Theorem 2.16. Let Q be a hyperideal of A and S ⊆ A is an n-ary multiplica-
tive set with Q∩S = ∅. Then Q is a strongly weakly n-ary S-prime hyperideal
of A if and only if there exists an element s ∈ S such that for every a /∈ (Q : s),
either (Q : a) ⊆ (Q : s) or (Q : a) = (0 : a).

Proof. (=⇒) Assume that Q is a strongly weakly n-ary S-prime hyperideal of
A such that Q is associated to s. Let a /∈ (Q : s) and (Q : a) 6= (0 : a). Then

there exists x ∈ (Q : a) such that g(x, a, 1
(n−2)
A ) 6= 0 as (0 : a) ⊆ (Q : a). Since

0 6= g(x, a, 1
(n−2)
A ) ∈ Q and g(s, a, 1

(n−2)
A ) /∈ Q, we get g(s, x, 1

(n−2)
A ) ∈ Q.

Take any b ∈ (Q : a). So g(a, b, 1
(n−2)
A ) ∈ Q. Let 0 6= g(a, b, 1

(n−2)
A ). Therefore

g(s, b, 1
(n−2)
A ) ∈ Q which means b ∈ (Q : s). If 0 = g(a, b, 1

(n−2)
A ), then

0 6= g(a, x, 1
(n−2)
A )

= f(g(a, x, 1
(n−2)
A ), g(a, b, 1

(n−2)
A ), 0(m−2))

= g(a, f(x, b, 0(m−2)), 1
(n−2)
A ) ∈ Q.

Since Q is a strongly weakly n-ary S-prime hyperideal of A and a /∈ (Q : s), we

get f(g(s, x, 1
(n−2)
A ), g(s, b, 1

(n−2)
A ), 0(m−2)) = g(s, f(x, b, 0(m−2)), 1

(n−2)
A ) ⊆ Q
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which implies g(s, b, 1
(n−2)
A ) ∈ Q as g(s, x, 1

(n−2)
A ) ∈ Q. This means that

b ∈ (Q : s) and so (Q : a) ⊆ (Q : s).

(⇐=) Let 0 6= g(Qn1 ) ⊆ Q for hyperidealsQn1 ofA such that g(s,Qi, 1
(n−2)
A ) *

Q for all i ∈ {1, · · · , n} and the element s mentioned in the hypothesis.
Take any ai ∈ Qi\(Q : s) for i ∈ {1, · · · , n}. Then g(Qi−11 , ai, Q

n
i+1) ⊆

Q which means g(Qi−11 , 1A, Q
n
i+1) ⊆ (Q : ai). Since g(Qi−11 , 1A, Q

n
i+1) ⊆

Qj * (Q : s) for each j 6= i, we conclude that g(Qi−11 , 1A, Q
n
i+1) ⊆ (Q :

ai) = (0 : ai) which implies g(Qi−11 , ai, Q
n
i+1) = 0. Now, let ai ∈ Qi ∩

(Q : s) for some i ∈ {1, · · · , n} and aj ∈ Qj for j ∈ {1, · · · , î, · · · , n}.
If aj /∈ (Q : s), then we obtain g(Qj−11 , aj , Q

n
j+1) = 0. Let aj ∈ (Q :

s). By the hypothesis, there exists xj ∈ Qj such that g(s, xj , 1
(n−2)
A ) /∈ Q.

This means xj /∈ (Q : s) and so f(aj , xj , 0
(m−2)) * (Q : s). Therefore we

get g(f(a1, x1, 0
(m−2)), · · · , f(ai−1, xi−1, 0

(m−2)), ai, f(ai+1, xi+1, 0
(m−2)), · · · ,

f(an, xn, 0
(m−2))) = 0. Then we conclude that g(an1 ) = 0 and so g(Qn1 ) = 0

which is impossible. Thus Q is a strongly weakly n-ary S-prime hyperideal of
A. �

Corollary 2.17. Let Q be a hyperideal of A. Then Q is a strongly weakly
n-ary prime hyperideal of A if and only if for every a /∈ Q, either (Q : a) = Q
or (Q : a) = (0 : a).

Proof. By taking S = {1} in Theorem 2.16, it is proved. �

Theorem 2.18. Let Q be a hyperideal of A and S ⊆ A is an n-ary multiplica-
tive set. If Q is a strongly weakly n-ary S-prime hyperideal of A that is not

n-ary S-prime, then g(g(s, rad(0), 1
(n−2)
A ), Q(n−1)) = 0 for some s ∈ S.

Proof. Suppose that Q is a strongly weakly n-ary S-prime hyperideal of A.
Then there exists an element s ∈ S such that for every a /∈ (Q : s), either
(Q : a) ⊆ (Q : s) or (Q : a) = (0 : a), by Theorem 2.16. Take any x ∈ rad(0).

If x ∈ (Q : s), then g(s, x, 1
(n−2)
A ) ∈ Q and so g(g(s, rad(0), 1

(n−2)
A ), Q(n−1)) = 0

by Theorem 2.11. Now, let x /∈ (Q : s). This implies that (Q : x) ⊆ (Q : s) or
(Q : x) = (0 : x). The first case leads to the following contradiction. Since x ∈
rad(0), there exists t ∈ N such that g(x(t), 1

(n−t)
A ) = 0 for t ≤ n or g(l)(x

(t)) =
0 for t = l(n − 1) + 1. Assume that t is a minimal integer satisfying the

possibilities. If g(x(t), 1
(n−t)
A ) = 0 for t ≤ n, then g(x(t−1), 1

(n−t+1)
A ) ∈ (Q : x) ⊆

(Q : s) which means g(g(x(t−1), 1
(n−t+1)
A ), s, 1

(n−2)
A ) = g(x(t−1), s, 1

(n−t)
A ) ∈ Q.

If 0 6= g(x(t−1), s, 1
(n−t)
A ), then we get g(s, x, 1

(n−2)
A ) ∈ Q which is impossible.

Therefore g(x(t−1), s, 1
(n−t)
A ) = 0. Assume that u is a minimal integer satisfying

g(s, xu, 1
(n−2)
A ) = 0. Assume that g(g(s, x, 1

(n−2)
A ), qn−11 ) 6= 0 for some qn−11 ∈

Q. Since Q is a strongly weakly n-ary S-prime hyperideal of A and 0 6=
g(g(s, x, 1

(n−2)
A ), qn−11 ) = g(g(s, x, 1

(n−2)
A ), f(xu−1, g(qn−11 , 1A), 0(m−2)), 1

(n−2)
A )
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⊆ Q, we get g(s, f(xu−1, g(qn−11 , 1A), 0(m−2)), 1
(n−2)
A ) ⊆ Q. Since g(s, qn−11 ) ∈

Q, we have 0 6= g(s, x(u−1), 1
(n−u)
A ) ∈ Q which implies g(s, x, 1

(n−2)
A ) ∈ Q

which is a contradiction. If g(l)(x
(t)) = 0 for t = l(n − 1) + 1, then by using

a similar argument, we get a contradiction. In the second case, we conclude

that g(x,Q, 1
(n−2)
A ) = 0 as Q ⊆ (Q : x). Thus g(s, g(x,Q, 1

(n−2)
A ), Q(n−2)) =

g(g(s, x, 1
(n−2)
A ), Q(n−1)) = 0 and so g(g(s, rad(0), 1

(n−2)
A ), Q(n−1)) = 0. �

Corollary 2.19. Let Q1 and Q2 be two hyperideals of A and S ⊆ A is an n-ary
multiplicative set. If Q1 and Q2 are strongly weakly n-ary S-prime hyperideals

of A that are not n-ary S-prime, then we have g(g(s,Q1, 1
(n−2)
A ), Q

(n−1)
2 ) =

g(g(s,Q2, 1
(n−2)
A ), Q

(n−1)
1 ) = 0 for some s ∈ S.

Proof. Let Q1 and Q2 be two strongly weakly n-ary S-prime hyperideals of A
that are not n-ary S-prime. Then we get Q1, Q2 ⊆ rad(0) by Theorem 2.11.
Therefore we have

g(g(s,Q1, 1
(n−2)
A ), Q

(n−1)
2 ) = g(Q1, g(s,Q

(n−1)
2 ), 1

(n−2)
A )

⊆ g(rad(0), g(s,Q
(n−1)
2 ), 1

(n−2)
A )

= g(g(s, rad(0), 1
(n−2)
A ), Q

(n−1)
2 ) = 0,

by Theorem 2.18. Similarly, we can conclude that g(g(s,Q2, 1
(n−2)
A ), Q

(n−1)
1 ) =

0 �

Corollary 2.20. Let Q be a strongly weakly n-ary prime hyperideal of A but
is not n-ary prime hyperideal. Then g(rad(0), Q(n−1)) = 0.

Proof. By taking S = {1} in Theorem 2.18, it is proved. �

3. Stability of weakly n-ary S-prime hyperideals

In this section, we examine the stability of weakly n-ary S-prime hyperideals
in various hyperring-theoric constructions.

Theorem 3.1. Let S ⊆ A be an n-ary multiplicative set with 1A ∈ S. If Q
is a weakly n-ary S-prime hyperideal of A, then S−1Q is a weakly n-ary prime
hyperideal of S−1A.

Proof. Let 0 6= G(a1/s1, · · · , an/sn) ∈ S−1Q for a1/s1, · · · , an/sn ∈ S−1A.

This means that g(an1 )/g(sn1 ) ∈ S−1Q and so g(t, g(an1 ), 1
(n−2)
A ) ∈ Q for some

t ∈ S. Since 0 6= g(g(t, a1, 1
(n−2)), an2 ) ∈ Q and Q is a weakly n-ary S-prime

hyperideal of A, there exists s ∈ S such that g(s, g(t, a1, 1
(n−2)
A ), 1

(n−2)
A ) =

g(s, t, a1, 1
(n−3)
A ) ∈ Q or g(s, ai, 1

(n−2)
A ) ∈ Q for some i ∈ {2, · · · , n}. Therefore

G(a1/s1, 1A/1A
(n−1)) = g(a1, 1

(n−1)
A )/g(s1, 1

(n−1)
A )

= g(s, t, a1, 1
(n−3)
A )/g(s, t, s1, 1

(n−2)
A )

∈ S−1Q
or

G(ai/si, 1A/1A
(n−1)) = g(ai, 1

(n−1)
A )/g(si, 1

(n−1)
A ))
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= g(s, ai, 1
(n−2)
A )/g(s, si, 1

(n−2)
A )

∈ S−1Q
for some i ∈ {2, · · · , n}. Hence S−1Q is a weakly n-ary prime hyperideal of
S−1A. �

Example 3.2. Consider the set A = {a, b, c, d, e, f}. In [9], Example 3.8,
shows that A is a Krasner (2, 2)-hyperring with the hyperoperation � and the
multiplication � defined as follows:

� a b c d e f
a {a} {b} {c} {d} {e} {f}
b {b} {a, b} {d} {c, d} {f} {e, f}
c {c} {d} {c} {d} {a, c, e} {b, d, f}
d {d} {c, d} {d} {c, d} {b, d, f} A
e {e} {f} {a, c, e} {b, d, f} {e} {f}
f {f} {e, f} {b, d, f} A {f} {e, f}

and
� a b c d e f
a a a a a a a
b a b a b a b
c a a c c e e
d a b c d e f
e a a e e c c
f a b e f c d

In the hyperring, S = {b, d} is a 2-ary multiplicative set. It is easy to check
that Q = {a, c, e} is a weakly 2-ary S-prime hyperideal of A. Then S−1Q is a
weakly 2-ary prime hyperideal of A by Theorem 3.1.

Theorem 3.3. Let S ⊆ A be an n-ary multiplicative set with 1A ∈ S and Q be
a hyperideal of A with Q∩S = ∅ . If S−1Q is a weakly n-ary prime hyperideal
of S−1A and S−1Q ∩ A = (Q : s) for some s ∈ S, then Q is a weakly n-ary
S-prime hyperideal of A

Proof. Let S−1Q be a weakly n-ary prime hyperideal of S−1A and S−1Q∩A =
(Q : s) for some s ∈ S. Suppose that 0 6= g(an1 ) ∈ Q for some an1 ∈ A. Then we
have 0 6= G(a1/1A, · · · , an/1A) ∈ S−1Q. Since S−1Q is a weakly n-ary prime
hyperideal of S−1A, we get ai/1 ∈ S−1Q for some i ∈ {1, · · · , n} which means

g(t, ai, 1
(n−2)
A ) ∈ Q for some t ∈ S. Therefore ai = g(t, ai, 1

(n−2)
A )/g(t, 1

(n−1)
A ) ∈

S−1Q. This means ai ∈ (Q : s). Therefore we have g(s, ai, 1
(n−2)
A ) ∈ Q. This

shows that I is a weaky n-ary S-prime hyperideal of A. �

Example 3.4. In Example 3.2, consider the hyperideal Q = {a, b} in A and
the 2-ary multiplicative subset S = {c, d} of A. Since S−1Q = {0S−1A} is a
weakly n-ary prime hyperideal of S−1A and S−1Q ∩ A = (Q : c) = {a}, we
conclude that Q is a weakly 2-ary S-prime hyperideal of A by Theorem 3.3.
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Theorem 3.5. Let S ⊆ A be an n-ary multiplicative set with 1A ∈ S and Q be a
hyperideal of A with Q∩S = ∅. If there exists t ∈ S satisfying (Q : s) ⊆ (Q : t)
for all s ∈ S and S−1Q is a weakly n-ary prime hyperideal of S−1A, then Q is
a weakly n-ary S-prime hyperideal of A.

Proof. Assume that there exists t ∈ S satisfying (Q : s) ⊆ (Q : t) for all s ∈ S.
Let 0 6= g(an1 ) ∈ Q for an1 ∈ A. Therefore we get 0 6= G(a1/1A, · · · , an/1A) ∈
S−1Q. It follows that ai/1 ∈ S−1Q for some i ∈ {1, · · · , n} as S−1Q is a weakly

n-ary prime hyperideal of S−1A. Hence g(s, ai, 1
(n−2)
A ) ∈ Q for some s ∈ S

which implies ai ∈ (Q : s) ⊆ (Q : t) and so g(t, ai, 1
(n−2)
A ) ∈ Q. Consequently,

Q is a weakly n-ary S-prime hyperideal of A. �

Theorem 3.6. Let S ⊆ A be an n-ary multiplicative set with 1A ∈ S. If A is
an n-ary hyperintegral domain and S−1A is a hyperfield, then 〈0〉 is the only
weakly n-ary S-prime hyperideal of A.

Proof. Assume that Q 6= 0 is a weakly n-ary S-prime hyperideal of A. Take a ∈
Q\{0}. So there exists x ∈ A\{0} and s ∈ S that G(a/1A, x/s, 1A/1A

(n−2)) =

g(a, x, 1
(n−2)
A )/g(s, 1

(n−1)
A ) = 1A/1A as S−1A is a hyperfield. Then there ex-

ists t ∈ S such that 0 ∈ g(t, f(g(a, x, 1
(n−2)
A ),−g(s, 1

(n−1)
A ), 0(m−2)), 1

(n−2)
A ) =

f(g(t, a, x, 1
(n−3)
A ),−g(t, s, 1

(n−2)
A ), 0(m−2)). Therefore we get g(t, a, x, 1

(n−3)
A ) ∈

f(g(t, s, 1
(n−2)
A ), 0(m−1)) ⊆ S. Since 0 6= g(t, a, x, 1

(n−3)
A ) ∈ Q, we get Q∩S 6= ∅

which is impossible. Thus 〈0〉 is the only weakly n-ary S-prime hyperideal of
A. �

Recall from [13] that a mapping h : A1 −→ A2 is called a homomorphism,
where (A1, f1, g1) and (A2, f2, g2) are commutative Krasner (m,n)-hyperrings
if for all am1 , b

n
1 ∈ A1 we have

(i) h(f1(a1, · · · , am)) = f2(h(a1), · · · , h(am)),
(ii) h(g1(b1, · · · , bn)) = g2(h(b1), · · · , h(bn))
(iii) h(1A1

) = 1A2
.

Theorem 3.7. Let (A1, f1, g1) and (A2, f2, g2) be two commutative Krasner
(m,n)-hyperrings, h : A1 −→ A2 a monomorphism and S ⊆ A1 an n-ary
multiplicative set. If Q2 is a weakly n-ary h(S)-prime hyperideal of A2, then
h−1(Q2) is a weakly n-ary S-prime hyperideal of A1.

Proof. Assume that Q2 is a weakly n-ary h(S)-prime hyperideal of A2. Then
there exists s ∈ S such that for all bn1 ∈ A2 with 0 6= g2(bn1 ) ∈ Q2, we have

g2(h(s), bi, 1
(n−2)
A2

) ∈ Q2 for some i ∈ {1, · · · , n}. Put Q1 = h−1(Q2). It is
easy to see that Q1 ∩ S = ∅. Let 0 6= g1(an1 ) ∈ Q1 for an1 ∈ A1. Then
0 6= h(g1(an1 )) = g2(h(a1), ..., h(an)) ∈ Q2 as h is a monomorphism. So, we

have g2(h(s), h(ai), 1
(n−2)
A2

) = h(g1(s, ai, 1
(n−2)
A1

)) ∈ Q2 for some i ∈ {1, · · · , n}
which implies g1(s, ai, 1

(n−2)
A1

) ∈ h−1(Q2) = Q1. Consequently, h−1(Q2) is a
weakly n-ary S-prime hyperideal of A1. �
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Corollary 3.8. Let S ⊆ A1 be an n-ary multiplicative set. If A1 is a subhy-
perring of A2 and Q2 is a weakly n-ary S-prime hyperideal of A2, then Q2∩A1

is a weakly n-ary S-prime hyperideal of A1.

Proof. Consider the monomorphism h : A1 −→ A2 , defined by h(a) = a.
Since h−1(Q2) = Q2 ∩A1, we conclude that Q2 ∩A1 is a weakly n-ary S-prime
hyperideal of A1, by Theorem 3.7. �

Let P be a hyperideal of a Krasner (m,n)-hyperring (A, f, g). Then the set

A/P = {f(ai−11 , P, ami+1) | ai−11 , ami+1 ∈ A}
endowed with m-ary hyperoperation f and n-ary operation g which for all
a1m11 , · · · , ammm1 ∈ A

f

(
f(a

1(i−1)
11 , P, a1m1(i+1)), · · · , f(a

m(i−1)
m1 , P, ammm(i+1))

)
= f

(
f(am1

11 ), · · · , f(a
m(i−1)
1(i−1) ), P, f(a

m(i+1)
1(i+1) ), · · · , f(amm1m )

)
and for all a1m11 , · · · , anmn1 ∈ A

g

(
f(a

1(i−1)
11 , P, a1m1(i+1)), · · · , f(a

n(i−1)
n1 , P, anmn(i+1))

)
= f

(
g(an111 ), · · · , g(a

n(i−1)
1(i−1) ), P, g(a

n(i+1)
1(i+1) ), · · · , f(anm1m )

)
construct a Krasner (m,n)-hyperring, and (A/P, f, g) is called the quotient

Krasner (m,n)-hyperring of A by P [2]. In Theorem 3.9, we determine when
the hyperideal Q/P is a weakly n-ary S̄-prime hyperideal in A/P , where S̄ =
{f(si−11 , P, sni+1) | si−11 , sni+1 ∈ S}.

Theorem 3.9. Let P and Q be two hyperideals of A with P ⊆ Q and S ⊆ A
be an n-ary multiplicative set such that 1A ∈ S, P ∩ S = ∅ and Q/P ∩ S̄ = ∅.

(i) If Q is a strongly weakly n-ary S-prime hyperideal of A, then Q/P is
a weakly n-ary S̄-prime hyperideal of A/P .

(ii) If P is a weakly n-ary S-prime hyperideal of A and Q/P is a weakly
n-ary S̄-prime hyperideal of A/P , then Q is a weakly n-ary S-prime
hyperideal of A.

Proof. (i) Let Q be a strongly weakly n-ary S-prime hyperideal of A. Then
there exists some s ∈ S such that if 0 6= g(an1 ) ∈ Q for an1 ∈ A, then we have
g(s, ai, 1

(n−2)) ∈ Q for some i ∈ {1, · · · , n}. Let

0A/P 6= g

(
f(a

1(i−1)
11 , P, a1m1(i+1)), · · · , f(a

n(i−1)
n1 , P, anmn(i+1))

)
∈ Q/P

for some f(a
1(i−1)
11 , P, a1m1(i+1)), · · · , f(a

n(i−1)
n1 , P, anmn(i+1)) ∈ A/P .

This implies

f

(
g(an111 ), · · · , g(a

n(i−1)
1(i−1) ), P, g(a

n(i+1)
1(i+1) ), · · · , g(anm1m )

)
∈ Q/P.
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Then

f

(
g(an111 ), · · · , g(a

n(i−1)
1(i−1) ), 0, g(a

n(i+1)
1(i+1) ), · · · , g(anm1m )

)
⊆ Q

which means

g

(
f(a

1(i−1)
11 , 0, a1m1(i+1)), · · · , f(a

n(i−1)
n1 , 0, anmn(i+1))

)
⊆ Q.

Since 0A 6= g(f(a
1(i−1)
11 , 0, a1m1(i+1)), · · · , f(a

n(i−1)
n1 , 0, anmn(i+1))) ⊆ Q and Q is a

strongly weakly n-ary S-prime hyperideal of A, then we conclude that

g

(
s, f(a

j(i−1)
j1 , 0, ajmj(i+1)), 1

n−2
A

)
⊆ Q.

for some j ∈ {1, · · · , n}. Hence

f

(
g(s, f(a

j(i−1)
j1 , 0, ajmj(i+1)), 1

n−2
A ), P, 0(m−2)

)
∈ Q/P

and so

f

(
g(g(s, 1

(n−2)
A ), f(a

j(i−1)
j1 , 0, ajmj(i+1)), 1

n−2
A ), P, 0(m−2)

)
∈ Q/P.

Thus we get

g

(
f(s, P, 1

(n−2)
A ), f(a

j(i−1)
j1 , P, ajmj(i+1)), 1

(n−2)
A/P

)
∈ Q/P.

Consequently, Q/P is a weakly n-ary S̄-prime hyperideal of A/P .

(ii) Let 0 6= g(an1 ) ∈ Q for an1 ∈ A. If g(f(a1, P, 0
(m−2)) · · · , f(an, P, 0

(m−2))) =
0A/P , then f(g(an1 ), P, 0(m−2)) = 0A/P and so 0A 6= g(an1 ) ∈ P . Since P
is a weakly n-ary S-prime hyperideal of A, there exitsts s ∈ S such that

g(s, ai, 1
(n−2)
A ) ∈ P ⊆ Q for some i ∈ {1, · · · , n}. Now, we assume that

g(f(a1, P, 0
(m−2)) · · · , f(an, P, 0

(m−2))) 6= 0A/P . Since Q/P is a weakly n-ary

S̄-prime hyperideal of A/P , there exist si−11 , sni+1 ∈ S such that

g(f(si−11 , P, sni+1), f(aj , P, 0
(m−2)), 1

(n−2)
A/P )) ∈ Q/P

for some j ∈ {1, · · · , n}. This means f(g(sj , aj , 1
(n−2)
A ), P, 0(m−2)) ∈ Q/P

which implies g(sj , aj , 1
(n−2)
A ) ∈ Q. Thus, Q is a weakly n-ary S-prime hyper-

ideal of A. �



Weakly S-prime hyperideals – JMMR Vol. 14, No. 2 (2025) 189

4. Conclusion

Over the years, various kinds of hyperideals have been defined and analysed
in order to let us fully comprehend the structures of hyperrings in general.
In this paper, the idea of weakly n-ary S-prime hyperideals was proposed in
Krasner (m,n)-hyperring A. This notion as a generalization of (weakly) prime
hyperideals was defined via an n-ary multiplicative subset S of A. We have
obtained numerous findings that provide a comprehensive explanation for this
structure. For instance, we indicated that if Q is a strongly weakly n-ary S-
prime hyperideal of A that is not n-ary S-prime, then g(Q(n)) = 0. However,
it was shown that a hyperideal Q satisfying g(Q(n)) = 0 may not be a weakly
S-prime hyperideal. Moreover, a type of Nakayama,s Lemma was presented for
a strongly weakly n-ary S-prime hyperideal of A. This study can be continued
in several directions, such as:

(i) to define φ-S-prime hyperideals.
(ii) to introduce S-J-hyperideals, where J is the intersection of all maximal

hyperideals of A.
(iii) to propose graded weakly S-prime hyperideals.

5. Future work

As a future work, we intend to analyse similar notions in the context of
(m,n)-hypermodules.
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