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Abstract In dairy industry, high producing fresh dairy cows commonly 

experience adipose tissue mobilization to support their energy requirements. 
Precise prediction of blood beta-hydroxybutyric acid (BHBA) concentration could 
significantly enhance the cow health and welfare, therefore, this study aimed to 
identify the key factors influencing BHBA levels and develop predictive models 
based on nutritional and performance data in fresh dairy cows. In this trial, four 
years data from 325 fresh Holstein cows were collected and analyzed. Various 
machine learning algorithms, including decision trees, random forests, Lasso and 
ridge regression models, as well as boosting and bagging techniques, were 
employed to estimate BHBA levels and identify the influential factors. These 
algorithms were assessed using the coefficient of determination (R²). The random 
forest model demonstrated the lowest error, with a mean absolute error of 0.02, 
while the linear model exhibited the highest error, with a mean absolute error of 
1.25. It was found that factors including milk production, previous lactation days 
in milk (DIM), sampling day, body weight change, BCS at parturition, and the 
amount and type of dietary fat, as well as overall diet quality were highly 
significant for estimating blood BHBA levels (P<0.05). Notably, the results 
indicated that cows with a BCS of 3 or lower, as well as those with a score of 
3.75, are crucial categories for predicting BHBA. Additionally, the level and type 
of fatty acids in the diet, particularly lauric (C12:0), palmitic (C16:0), linolenic 
(C18:3), and oleic acids (C18:1), had significant influence on BHBA in fresh cows 
(P<0.05). These findings highlight the importance of integrating these critical 
factors into predictive models to enhance metabolic health monitoring and 
improve dairy herd management practices. 
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Introduction 
displaced abomasum, higher culling rates, and reduced   

Management of metabolic health in dairy herds is  reproductive success (McArt et al., 2013). Additionally,  
essential for optimizing milk production and ensuring  metabolic issues in early lactation have been linked to   
animal welfare. A key metabolic indicator of health in dairy  altered lactation curves, characterized by a lower peak milk   
cows is the level of blood beta-hydroxybutyric acid  yield and decreased 305-day milk production (Hut et al.,   
(BHBA), a primary ketone body, which is produced 2021). However, traditional metabolic monitoring methods  
during tissue fatty acid metabolism (Khezri et al., 2009). are often invasive and time-intensive. Consequently, there   
High blood BHBA concentrations as a sign of ketosis in  Is increasing interest in developing predictive models that   
early lactation, are associated with increased risk of  use on-farm data to estimate BHBA levels in a non-invasive   
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and cost-effective way (Jansen et al., 2021). 
Data generation in agriculture and biotechnology has 

greatly increased in recent years due to the very rapid 
development of high-performance technologies 
(Mohammadabadi et al., 2024). These data are obtained 
by studying products, foods, and biological molecules to 
understand the role of different aspects of agriculture in 
determining the structure, function, and dynamics of 
living systems (Hamidi et al., 2017). Artificial neural 
networks have been proposed to alleviate the limitation 
of traditional methods and can be used to handle 
nonlinear and complex data, even when the data are 
imprecise and noisy (Hamidi et al., 2017; Ghotbaldini et 
al., 2019).  

Machine learning (ML) is a valuable tool for 
understanding the complex biological systems and can 
also highlight the gaps in scientific knowledge. 
Furthermore, this technique has opened new 
possibilities for predictive analytics in various fields such 
as dairy herd management. A crucial step in creating 
robust ML models is feature selection, which involves 
identifying the most relevant variables to enhance 
prediction accuracy. Effective feature selection improves 
model performance, reduces computational demands, 
and increases interpretability (Guyon and Elisseeff, 
2003). In the context of BHBA prediction, feature 
selection can provide insights into key indicators of 
metabolic health, supporting targeted intervention 
strategies (Shine and Murphy, 2021). 

Despite the potential of ML-based models, their 
implementation in real-world dairy herd management is 
not without challenges. One significant limitation is the 
variability and quality of on-farm data, which can be 
inconsistent due to differences in recording practices, 
environmental conditions, and management systems. To 
overcome this, standardizing the data collection 
protocols and integrating automated systems for 
accurate and consistent data logging is essential. 
Another challenge lies in the interpretability of complex 
ML algorithms, which can be improved by employing 
simpler algorithms where possible or integrating 
explainable AI techniques (Schillings et al., 2021). 
Additionally, the computational demands of ML models, 
particularly for large datasets, may limit their applicability 
to smaller farms or in regions with limited technological 
infrastructure. 

Recently, application of ML in dairy science has 
gained attention, providing valuable insights into herd 
management and production, because of successfully 
predicted traits relevant to dairy cow health and 
performance, including mastitis incidence (Kamphuis et 
al., 2010; Ebrahimie et al., 2018) and milk yield (Gianola 
et al., 2011; Wallén et al., 2018). Machine learning 
algorithms, capable of handling large datasets and 
uncovering complex variable relationships, offer 
promising tools for predicting BHBA levels using 
accessible on-farm data. Several studies have 
attempted to estimate blood BHBA levels based on 
behavioral data, rumination time and locomotion  

 

(Monshouwer, 2020), milk components (Satoła and 
Bauer, 2021), breed, parity, DIM, daily milk yield, and 
milk fatty acid profiles (Mandujano Reyes et al., 2021), 
and near-infrared analysis of milk of cows (Giannuzzi et 
al., 2022), but to authors’ knowledge no research has yet 
explored the application of ML for predicting BHBA levels 
in fresh dairy cows based on diet analysis. Therefore, 
this study aimed to develop an ML-based model to 
predict blood BHBA levels in dairy herds using on-farm 
data. Moreover, the objectives were to identify the most 
significant predictors through rigorous feature selection 
and to validate the model's predictive performance. By 
integrating new ML techniques with comprehensive on-
farm data, this research also seeks to provide a practical 
tool for the early detection and management of ketosis 
through blood BHBA prediction, ultimately enhancing 
dairy herd health and productivity. 
 

Materials and methods 

Animals and diets 

Data were collected from 325 fresh Holstein dairy cows 
at the Khazaei dairy farm (35.63° N latitude and 59.49° 
E longitude) in Jolge Rokh, Khorasan Razavi Province, 
over a four-year period (2018–2021). Cows were 
randomly selected post-calving without considering 
factors such as parity, BCS, or other relevant 
characteristics and weighed at two intervals, including 
calving and 21-d of lactation. The selection process 
ensured inclusion of cows from all parties and body 
condition score ranges, representing a diverse cross-
section of the herd to enhance reproducibility and 
applicability of the findings. The data were categorized 
into three primary sections: blood parameters, 
performance metrics, and nutritional information. After 
calving, the cows were housed in a dedicated fresh-cow 
barn, where they were provided a carefully formulated 
diet to meet the nutritional demands of a cow producing 
40 kilograms of milk per day. The average forage and 
chemical composition of the diets was as follows: forage 
(43.85 ± 1.62 %); net energy for lactation (NEL, 1.73 ± 
0.06 Mcal/kg); crude protein (CP, 17.05 ± 0.35 %); 
rumen-degradable protein (RDP, 11.65 ± 0.45 % of CP); 
rumen-undegradable protein (RUP, 5.41 ± 0.27 % of 
CP); fat (3.7 ± 0.22 %); neutral detergent fiber (NDF, 
29.9 ± 0.84 %); acid detergent fiber (ADF, 19.75 ± 0.76 
%); organic matter (OM,  91.5 ± 0.42 %); calcium (Ca, 
0.86 ± 0.07 %) and phosphorus (P, 0.6 ± 0.05 %). 

Sampling and data collection 

The BHBA levels were measured using a Novavet 
ketone meter (Sensivity: 95 %, WD1624, England) and 
based on validation of BHBA test-strips for venous 
samples. Blood samples were collected into EDTA blood 
tubes by jugular venipuncture from all examined cows 
two hours after morning feeding on days 1 and 21 post-
calving. Milk yield was recorded twice monthly (d-15 and 
30) until the end of lactation period. Nutritional  
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requirements were continuously monitored, and diets 
were adjusted as necessary. 

 Ration information, including the diet summaries, 
energy, fatty acids (C12:0, C16:0, C18:0, C18:1, C18:2, 
C18:3 and …), carbohydrates (WSC, starch and …), 
crude protein, organic matter, NDF, ADF, and minerals 
(Na, Cl, Ca, S and P) were extracted from the feed report 
of the National Academies of Sciences and Medicine's 
software (NASM, 2021). All relevant data were recorded 
in Excel for further analysis. To ensure data integrity, 
cross-checks were performed by comparing feed 
composition results with values provided in the software 
database. 

The performance data used in the modeling included: 
lactation period, calving weight, weight at 21 days of 
lactation, weight difference between calving and 21 days 
of lactation, percentage of weight difference, blood 
BHBA concentration, sampling day,  month of parturition, 
calving status, days in milk, total milk yield, standardized 
milk yield for 305 days (standardized to kilograms of fat- 
and protein-corrected milk, FPCM), mean milk yield, 
previous lactation DIM, previous milk yield, standardized 
milk yield for 305 days in previous lactation, average of 
milk yield in previous lactation, BCS at parturition, BCS 
in the first and second months postpartum, BCS at dry-
off (BCS was measured on a scale of 1 to 5 by three 
skilled individuals independently), daily milk yield at 15, 
30, and 45 days of lactation. This comprehensive 
dataset facilitated the modeling of BHBA concentrations 
and other performance metrics to predict and mitigate 
potential metabolic issues in dairy cows.  
 

Data preprocessing 

To prepare the data for modeling, various standard data 
preprocessing techniques were employed. First, data 
imputation was utilized to address any missing values. 
Second, outliers were detected using a combination of 
the interquartile range (IQR) method and visual 
inspection of scatter plots. Data points falling beyond 1.5 
times the IQR above the third quartile or below the first 
quartile were flagged as potential outliers. Identified 
outliers were evaluated for biological plausibility, and 
those deemed erroneous were excluded or replaced 
using mean substitution. Finally, normalization 
techniques were used to ensure that different attributes 
of the model were assigned equal weights by Box-Cox 
method (log-transformed). The preprocessing 
procedures were carried out using several Python 
libraries, including NumPy and scikit-learn, among 
others. These tools facilitated the efficient handling and 
preparation of the data, ensuring data suitability for 
subsequent modeling and analysis (Gareth at al., 2021). 
 

Machine learning algorithms 

Machine learning algorithms were evaluated for their 
effectiveness in predicting blood BHBA concentrations 
and the metabolic status of dairy cows. The implemented  
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models fell within the category of regression models, 
including various linear models. Each model comprised  
260 variables, which included factors such as body 
weight and its normalized and scaled values, changes in 
body weight, pre- and post-partum body condition 
scores, milk production during the first 45 days, calving 
condition score, parity, open days, BHBA sampling day, 
days in milk before parturition, average pre-parturition 
milk yield, standardized milk yield, total pre-parturition 
milk yield, normalized and scaled values, and dietary 
information. 

The choice of specific algorithms, such as ridge and 
Lasso regression, was guided by their ability to handle 
multicollinearity and high-dimensional data efficiently. 
Ridge regression was selected for its effectiveness in 
scenarios with many correlated predictors, while Lasso 
regression was chosen for its capacity to perform 
variable selection, resulting in more interpretable 
models. Decision trees and random forests were 
included due to their robustness in handling nonlinear 
relationships and their effectiveness in ensemble 
learning approaches. Other potential algorithms, such as 
support vector machines and neural networks, were not 
considered due to their higher computational demands 
and potential overfitting risks with relatively small 
datasets (Schapire, 2003). 

Evaluating multiple algorithms within a specific 
domain is standard in machine learning, as algorithm 
performance can be influenced by various factors such 
as variables, sample sizes, and data characteristics. 
This study explored several linear models, including 
simple linear models, multiple linear models, ridge and 
Lasso regression models, decision trees, and random 
forests. The K-fold cross-validation method was 
employed to partition the data into training and test 
datasets at 80:20 ratio. Models were trained on the 
training data, and their accuracy was subsequently 
assessed using the test data. This approach ensured a 
robust evaluation of model performance and predictive 
accuracy (Pedregosa et al., 2011).  

In this study, the linear model was employed with a 
focus on its predictive utility rather than inferential 
interpretation (Kutner et al., 2005). The methodologies 
utilized in this investigation are further elaborated as 
follows. 

 
The primary objective of the ridge and Lasso linear 

models in the current study was to minimize the sum of 
squared errors (SSE; Hastie et al., 2009). The formula 
for SSE is given by: 

 
In ridge regression, an additional penalty term was 

introduced to the objective function to be minimized: 
 
 

Yi = β0 + β1Xi + εi , i = 1,2, … , n 

SSE =   (yi − y )2 =    (yi − (β 0 +  β m xij

m

j=1

))2 

n
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Ridge regression is particularly useful when the 

number of predictive variables exceeds the number of 
observations, or when multicollinearity exists among the 
variables. These challenges arise when the model fits 
the data too closely using all available variables, which 
can lead to overfitting and poor generalizability to new 
data. By adding a penalty term, ridge regression helped 
to reduce the model's parameters, thereby decreasing 
the number of significant independent variables. 

Models generated by the Lasso linear model are 
generally more straightforward to interpret compared to 
those produced by the ridge linear model (Tibshirani, 
1996). This makes the following Lasso model an 
attractive alternative for situations where model 
interpretability is paramount. 
 

      
    The decision tree algorithm was used to serves as a 
decision support model, represented by a tree-like 
diagram that illustrates decisions and their potential 
outcomes at each node. In this algorithm sub-trees 
(lower levels of the tree) were constructed through the 
recursive partitioning of each sample and the objective 
of selecting each feature at each node was to minimize 
the residual sum of squares, thereby optimizing the 
model's predictive accuracy as follows: 

The Random Forest algorithm was used to leverage 
multiple decision trees to construct a highly effective 
predictive model and multiple decision trees were 
generated from the training samples. During the 
construction of these trees, a random subset of 
predictors was selected as candidates for each split, 
rather than considering the full set of predictors. 
Typically, the number of predictors considered at each 
split was the square root of the total number of 
predictors. This random sampling of predictors helped in 
enhancing the model's robustness and accuracy.  

 The bagging technique was employed to reduce the 
variance in decision trees by averaging the predictions 
from multiple trees. The concept is based on the principle 
that the averaging multiple observations reduces the 
overall variance. Specifically, the variance of the mean 

of 𝑛 observations with variance σ2 is σ2/n. This principle 
was effectively applied to decision trees in the bagging 
process. By drawing multiple training sets from the 
population, constructing separate decision tree models  

 

for each set, and then averaging their predictions, a 
single, low-variance decision tree model was obtained. 
This process involves calculating f ̂1 (x), f ̂2(x), ..., f ̂B(x) 

using 𝐵 separate training sets and averaging their 
predictions (Breiman, 1996). This ensemble method 
produced a more stable and accurate model by 
mitigating the variability inherent in individual decision 
trees. 

Boosting technique was also used to enhance 
decision tree predictions through combining multiple 
decision trees (f ̂1, ..., f ̂B). Each new tree was trained to 
focus on the residual errors of the preceding trees, 
thereby enhancing the model's overall accuracy. By 
leveraging information from previous trees, boosting 
ensures that each subsequent tree is dependent on its 
predecessors, which stands in contrast to bagging’s 
approach of constructing independent trees (Schapire, 
2003). 

Model evaluation 

The employed models, trained with six machine learning 
algorithms, were evaluated using 10-fold cross-
validation. In this method, the dataset was partitioned 
into ten equal, mutually exclusive subsets. The 
evaluation process iterates ten times, with each iteration 
using a different 10% of the data as the test set while the 
remaining 90% serves as the training set. To ensure that 
no cow appears in both the training and test sets 
simultaneously, each cow was included only once in 
each cross-validation loop. This systematic partitioning 
guarantees that different subsets of data were utilized for 
training and testing across the iterations, making this 
method an effective resampling technique for estimating 
the model’s error. 

Results and Discussion 

Correlation analyses  

Figure 1 presents the scatterplots depicting the 
relationships between blood BHBA levels and various 
performance parameters with Pearson correlation 

coefficients (𝑟) provided in each panel, the presence of 
patterns, and outliers which we intended to estimate. 
The correlation between BHBA concentration and 
calving weight was 0.23 (P =0.00038; Figure 1). Though 
modest, this correlation is meaningful when considering 
the diverse management and environmental factors 
affecting dairy cows, including feed type, milk 
production, and climatic conditions. Despite the low 
correlation, the significance of the P value (below 0.05) 
is notable, especially in studies with large sample sizes 
or multiple influencing factors (Thomas and Krebs, 
1997). In the current study, a correlation coefficient of 
0.60 was observed between lactation period and cow 
weight at calving (Figure 2), consistent with other 
research showing similar increases in weight and age 
(Erb and Ashworth, 1961). As cows mature, their weight 
and milk production generally increase; however, weight  
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gains are more notable at younger ages, tending to 
stabilize as cows reach maturity (NASM, 2021).  

The effect of cow weight on milk production was 
strongest in the first month (r =0.44), decreasing slightly 
in the second month (r =0.41) (Figure 2). Heavier cows 
also tended to lose more weight in the first month, as 
indicated by a correlation of 0.33 (Figure 2). Similar  
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findings were reported by Roche et al. (2009), who noted 
a positive association between body weight and milk 
yield, indicating that heavier cows typically produce more 
milk, although this relationship can vary depending on 
factors like breed, diet, and management practices 
(Ebrahimi et al., 2015; Martens, 2023). 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Scatterplot of blood beta-hydroxybutyric acid (BHBA) based on various performance factors in dairy cows  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Correlation between beta-hydroxybutyric acid (BHBA) and performance factors in dairy cows 
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The correlations between blood BHBA concentration 
and standard milk production and parturition weight were 
0.25 and 0.23, respectively (Figure 2). Additionally, a 
modest association was found between weight change 
and BHBA concentration (r =0.24, P =0.00018). 
Research by Ospina et al. (2010) supports that elevated 
BHBA levels are linked to subclinical ketosis, which 
negatively impacts milk yield and overall health, 
underscoring BHBA's significance as a metabolic status 
indicator affecting milk production. 

Analysis of data in the current study showed that in 
the early postpartum months, milk production was 
significantly influenced by factors such as parity (0.3), 
cow weight (0.47), and locomotion score (0.14). 
However, no specific relationship was observed between 
milk production and weight loss during this period. Over 
time, the correlation between milk production and the 
metabolic status of the animals increased, ranging from 
0.07 to 0.12 (Figure 2). These are in agreement with the 
findings of Dechow et al. (2002), indicating that older 
cows (higher parity) and cows with better body condition 
scores and mobility tend to have higher milk yields. 
However, the exact correlation values may differ due to 
variations in herd management and environmental 
conditions. In the current study, present study, milk 
production during early lactation showed to be a reliable 
predictor of future milk yield, demonstrating a high and 
accurate coefficient. Consistent with these results, 
Coffey et al. (2002) also showed that milk production in 
the initial weeks of lactation was a reliable indicator of 
overall lactation performance. This predictive 
relationship can guide dairy management decisions 
related to feeding and breeding.  

Model selection 

Traditional statistical analysis of data with numerous 
dependent variables can be challenging, but machine 
learning (ML) algorithms, which better handle large 
datasets, can properly manage extensive farm data with 
highly correlated variables. In this study, we assessed  
 

 

body weight change (%) in the first 21 days of lactation 
as a factor in a linear model hypothesized to represent 
the energy balance. However, using only this factor 
proved insufficient for precise prediction. Similar to 
findings by Grzesiak et al. (2003), in our study, ML 
methods demonstrated superior predictive accuracy 
over traditional statistical models in estimating milk yield 
and body condition score changes, particularly with 
complex, non-linear relationships among multiple 
variables. Roche et al. (2009) emphasized that BCS and 
weight changes were critical metabolic indicators but 
highlighted the necessity of multifactorial approaches 
that incorporate additional variables, such as feed intake 
and milk yield, for more accurate predictions. 

In the current study, inclusion of all predictive factors 
in one linear equation did not also yield optimal results, 
but applying feature selection methods improved the 
accuracy (Table 1). Sahin et al. (2012) found that feature 
selection enhanced the regression model performance 
for milk yield prediction, highlighting that selecting 
relevant predictors rather than including all available 
variables is critical to enhance the predictive accuracy. 
This approach aligns with the current findings that 
optimal predictive factors should be carefully selected. 
Furthermore, skewed linear model error distributions in 
our study further limited the effectiveness of linear 
approaches, aligning with De Vries et al. (2011), who 
recommended the ML models for skewed data due to 
their capacity to handle non-normal distributions. 

In our study, the forward selection method was also 
used, starting with an empty model and adding variables 
iteratively to minimize residual sum of squares (RSS). 
The final model was evaluated using R², AIC, and BIC to 
select the most appropriate predictive factors. By 
employing AIC and BIC, the model's prediction error for 
unseen data was reduced (Table 1). Grzesiak et al. 
(2006) also demonstrated the effectiveness of stepwise 
selection for complex data, emphasizing the importance 
of combining multiple criteria, like AIC and BIC, for model 
selection to avoid overfitting and ensuring model 
robustness.  
 

Table 1. Performance of machine learning algorithms in linear regression prediction of blood beta-

hydroxybutyric acid (BHBA) concentration 
Model type Mean absolute 

error 
SD of MSE1 Minimum of MSE Maximum of MSE 

The linear model t-test 1.258620 4.158575 0.004027 33.497567 
The forward selection model R2 0.028770 0.025506 0.000183 0.112742 
Forward selection model AIC 0.027620 0.023730 0.000439 0.101792 
Forward selection model BIC 0.023440 0.015959 0.001279 0.058719 
Ridge linear model 0.021858 0.015900 0.000159 0.059979 
Lasso linear model 0.026066 0.020277 0.005266 0.088457 
Decision tree model 0.031359 0.029421 0.000000 0.127274 
Bagging model 0.020820 0.017289 0.000262 0.067841 
Random forest model 0.020634 0.017324 0.000603 0.071668 
Gradient boosting model 0.023740 0.018940 0.000041 0.088894 

1 Standard deviation of the mean squared errors 
 

In our study, R² favored 53 variables in the model 
(Figure 3a) with highest adjusted R² (Table 2 shows 53 
variables), while AIC and BIC recommended fewer 
predictors for improved accuracy, with AIC selecting 49  

variables (Figure 3b) and BIC only 5 variables (Figure 
3c) with lowest AIC and BIC. Burnham and Anderson 
(2004) affirmed the superiority of AIC and BIC for model 
selection, as models chosen with these criteria typically  
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offer better predictive performance and are less prone to 
overfitting, supporting our findings. 

Figure 3. Model Selection Based on R2(a), Akaike information 

criterion (AIC) (b) and Bayesian information criterion (BIC) (c) 
 

Ridge and random forest regressions resulted in the 
best performance for estimating BHBA concentration 
(Table 1), demonstrating the lowest errors by adding 
penalty terms or using ensemble methods to handle data 
complexity and prevent overfitting (Hut et al., 2021). 
These results are in agreement with DeVries et al. 
(2020), who reported that advanced regression 
techniques, including ridge regression and random 
forest regression, are effective in improving the 
prediction accuracy and managing the multicollinearity in 
dairy cow data.  

In the current study, the random forest  model 
exhibited superior performance (Table 1), which is 
comparable to studies on milk yield estimation (Grzesiak 
et al., 2006; Gianola et al., 2011) and mastitis detection 
(Cavero et al., 2008; Sun et al., 2010). Moreover, ridge 
regression models also provided valuable parameters  

Machine Learning application to predict blood BHBA in dairy herds  

and weights, and feature selection was facilitated by 
both forward and backward linear models. The model 
with the lowest error, based on squared errors, included 
53 features. The ten most significant predictive 
variables, as determined by the linear and random forest 
models, are presented in Table 3. 

Feature selection 

This study aimed to predict plasma BHBA 
concentrations using herd performance and nutritional 
parameters, particularly through dietary factors readily 
accessible in dairy herds. Notably, features like dietary 
sodium and chlorine, though less commonly reported, 
emerged as important contributors to the dietary cation-
anion difference (DCAD), which influences milk 
production and fat content. DCAD modulates systemic 
acid-base balance, which can directly affect metabolic 
processes, including energy partitioning and utilization in 
early lactation. Hu et al. (2007) showed that higher 
dietary DCAD levels can enhance milk production and 
alter milk composition. However, our study found that the 
optimal DCAD concentration remains uncertain, 
consistent with the variability reported in other studies 
(Lean et al., 2006). Notably, features like dietary sodium 
and chlorine, though less commonly reported, emerged 
as important contributors to the DCAD with influence on 
milk production and fat content. Our models 
demonstrated that since DCAD can impact milk 
production, fat content, and feed intake (Iwaniuk et al., 
2015), it may also influence the energy status of cows in 
early lactation and potentially affect the level of blood 
BHBA, consistent with the variability reported in other 
studies (Lean et al., 2006; Duffield et al., 2009; Ospina 
et al., 2010, 2013; Iwaniuk et al., 2015). 

The effect of NaCl on rumen function and milk yield 
in our study was partially supported by studies indicating 
that salt intake can affect rumen contraction rate and 
acetate to propionate ratio (White et al., 2019). Acetate 
serves as a primary precursor for milk fat synthesis, 
while propionate supports gluconeogenesis. Inadequate 
gluconeogenic precursors can elevate BHBA levels as 
cows mobilize body fat to meet their energy deficits. 

Our study confirmed that weight loss, as an indicator 
of negative energy balance, can be managed through 
targeted nutrition. These findings agree with Roche et al. 
(2009) and Hut et al. (2021), who showed that nutritional 
strategies can have crucial role in minimizing the weight 
loss of dairy cows during early lactation. The correlation 
between greater weight loss and higher negative energy 
balance also concurs with the existing literature 
(Castañón et al., 2023; Mekuriaw, 2023). 

BCS provides a precise assessment of the energy 
status, though it may be less applicable in extremely 
obese or underweight cows (Roche et al., 2015). BCS at 
calving is particularly crucial, as it influences the dry 
matter intake (DMI) in early lactation, postpartum BCS 
decline, milk yield, immune strength, and fertility (Roche 
et al., 2015; 2023). These researchers discussed how  
 

73 



Moodi et al. 

higher BCS levels were associated with decreased DMI 
and increased metabolic disorders.  

Adipose tissue mobilization in over-conditioned cows 
releases non-esterified fatty acids (NEFAs) into the 
bloodstream, which are partially oxidized into BHBA in 
the liver thus increasing the nutrient intake challenges 
and fat mobilization issues during the transition from dry 
periods to lactation. BCS at calving affects feed intake  
 

 

capacity and is inversely related to DMI, although the 
underlying mechanisms remain unclear (Richards et al., 
2020). Our study found an inverse relationship between 
BCS and DMI as shown by Poczynek et al. (2023). 
Leaner cows typically demonstrate lower milk production 
and longer intervals between calving and estrus, 
suggesting potential discomfort (Roche et al., 2015; Hut 
et al., 2021; Mekuriaw, 2023; Roche et al., 2023). 

 
Table 2. The variables of R2  adjusted model selection 
N Features Coefficient N Features Coefficient 

1 Constant1 211.51 28 Diet 1 sulfur 5.615189 
2 C18:3 diet 1 0.002713 29 Diet 1 C18:0 -0.00019 
3 Body weight loss square2 0.000205 30 Lameness 0.002521 
4 Diet sodium (Na) 4.473716 31 Diet 1 magnesium (Mg) 3.351681 
5 Previous lactation days 0.000118 32 Number of inseminations previous milk period -6.7E-05 
6 Body condition score less than 3 -0.00976 33 Previous average milk scaled and normalized -0.02386 
7 Diet 1 DCAD3 0.001844 34 Previous standard milk scaled and normalized 0.028914 
8 Body condition= 3.75 -0.02116 35 Diet 1 ash -0.1236 
9 Diet 2 WSC4 -0.02424 36 Week 1 of sampling6 -0.0058 
10 Diet 2 chlorine (CL) -3.03436 37 Diet 2 calcium (Ca) 0.483042 
11 C18:1 trans 0.144041 38 C12:0 0.14207 
12 C14:0 -0.09207 39 Diet 1 fat C140 0.021879 
13 Diet chlorine (CL) 1.11041 40 Others fatty acids7 0.006961 
14 Diet 1 C18:1 trans -0.05108 41 C18:1 trans -0.09994 
15 Magnesium (Mg) -4.12864 42 C18:2 0.001566 
16 Days used diet 1 -0.00288 43 Forage NDF 0.042128 
17 Diet 2 NDF5 0.08139 44 Dietary 1 water intake 0.003859 

18 BCS 4 and higher 0.002839 45 
Days of first Insemination in  previous 
lactation period 

0.001435 

19 Average milk normalized 115.7359 46 Lactation  period -0.00775 

20 
Total milk previous lactation scaled and 
normalized 

-0.06639 47 Lactation  period = 4& more 0.025597 

21 Lactation  period 3 0.018561 48 Phosphorus -1.11492 
22 NDF5 -0.12329 49 NEL8 -0.81461 

23 Diet 2 sodium (Na) 3.999608 50 
Average milk production in previous lactation  
period 

-126.72 

24 Days used diet 2 0.002106 51 
Average milk production scaled and 
normalized 

487.0803 

25 WSC4 -0.02191 52 Diet 2 DCAD 0.010128 
26 Diet 1 sodium (Na) -3.99446 53 Percentage of  lost weight 0.008476 
27 Dystocia 0.002568 54 Total saturated fatty acids -0.00157 

Due to dietary adjustments made during the experiment, the feeding period was divided into diet 1 and diet 2 
1Constant: Y-intercept 
2Square of weight loss in fresh dairy cows: (Lost weight of fresh cows)2 
3DCAD: Dietary cation-anion difference 
4WSC: Water soluble carbohydrates 
5NDF: Neutral detergent fiber 
6Week 1 of sampling: Blood sampling of BHBA in first 7 days 
7Others fatty acids: Fatty acids except C12:0, C14:0, C16:0, C16:1, C18:0, C18:1 trans, C18:1 cis, C18:2, C18:3 based on NRC (2021) 
8Net energy for lactation 

 
Table 3. Important variables based on different models 

Selected features based on Random Forest Selected features based on BIC1 Selected features based on AIC2 and R2 

Previous days in milk Fat C18:3 Fat C18:3 
Sampling day Body weight loss squared Body weight loss squared 
12-Carbon saturated fatty acids Dietary sodium Dietary sodium (Na) 
First-feed days Pre-calving lactation days Previous lactation days 
Second-feed days Body condition score less than 3 Body condition score less than 3 
Total saturated fatty acids  Dietary DCAD 
Palmitic acid  Body condition score 3.75 
Body weight loss squared  Water soluble carbohydrates  
Weight change  Dietary chlorine (CL) 
Milk production day 45  Fat C18:1 

1Bayesian Information Criterion 
2Akaike Information Criterion  

 
In the present study, BCS levels of 3.75 and below 3 

were identified as critical scores for further investigation. 
Some studies noted that cows with a BCS below 3  

produced more milk than those with higher scores 
(Roche et al., 2009), resulting in a more pronounced 
negative energy balance and elevated blood BHBA  
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concentrations. Conversely, Berry et al. (2007) found 
that cows with a BCS of 3 or lower produced less milk 
throughout lactation, aligning with our findings. In our 
herd case study, a target BCS of 3.5 at calving was 
associated with higher instances of lameness and illness 
among cows with a BCS below 3. 

Our study also identified dietary content of water-
soluble carbohydrates (WSC) as a significant predictor 
of blood BHBA levels. WSC showed a negative 
correlation with BHBA concentrations, supporting rumen 
fermentation and milk production benefits. These 
findings align with previous studies (Lee et al., 2003; Wei 
and Liu, 2018; Ravelo et al., 2022), which highlight 
improved nitrogen utilization and rumen conditions in 
response to dietary WSC. According to NASEM (2021), 
WSC facilitates microbial fermentation in the rumen, 
enhancing the production of acetate and butyrate, which 
are vital for milk synthesis and energy supply. 

Diets with up to 5% WSC of dry matter have shown 
positive impacts on rumen fermentation and milk 
production (Klevenhusen et al., 2019; Ravelo et al., 
2022). Moreover, some studies reported increased feed 
intake, milk yield, and milk protein content with reduced 
milk fat in lactating goats (Schmidely et al.,1999; 
Tajaddini et al., 2021). They also noted decreased non-
esterified fatty acids, blood BHBA, blood urea, and 
increased blood insulin, aligning with our results on 
blood BHBA levels. 

In the current study, fatty acids, including linolenic, 
oleic, lauric, and palmitic acids, were also included in the 
models and analyzed to estimate blood BHBA 
concentrations. Fatty acids provide critical energy for 
high-producing dairy cows and play a crucial role in 
hepatic nutrient partitioning, which is governed by key 
metabolic pathways, fatty acids and other substrates 
(Weld et al., 2020). An imbalance in hepatic fatty acid 
metabolism can contribute to metabolic disorders such 
as hyperketonemia and hepatic lipidosis, generating 
ketone bodies like BHBA (White, 2015). Our findings on 
stearic and oleic acids in triglyceride storage and milk 
production correspond with Ibeagha-Awemu et al. 
(2016). Although the regulatory mechanisms in the liver 
remain somewhat obscure, results of some studies 
shows that high fatty acid levels impact genes like 
pyruvate carboxylase, enhancing tricarboxylic acid 
(TCA) cycle activity and potentially increasing ketone 
production and glycerol accumulation, which can lead to 
hyperketonemia and hepatic lipidosis (Reynolds et al., 
2003; White, 2015). Furthermore, it has been shown that 
inclusion of linseed and sunflower oils in diets of dairy 
cows can reduce milk fat by 30% and influence 
mammary gland gene expression, potentially 
ameliorating the negative energy balance (Ibeagha-
Awemu et al., 2016). 

In our study, previous lactation DIM data was used to 
estimate blood BHBA levels. Lean et al. (2023) found 
that ketosis risk increased from 0.1% in primiparous 
cows to 13% in cows with over four lactations, consistent 
with other findings in this field (Benedet et al., 2019). 
Evaluating the relationship between milk yield and blood  

Machine Learning application to predict blood BHBA in dairy herds  

BHBA concentrations in the current study showed that 
higher-producing cows experienced longer periods of 
negative energy balance, thus increasing risk of ketosis 
and aligns with the findings of Kaufman et al. (2016). 

Conclusions 

In this study, we aimed to predict blood BHBA levels in 
dairy cows using machine learning algorithms based on 
nutritional and performance data. Our results highlighted 
the key predictors, including dietary fats, weight changes 
post-calving, previous lactation DIM, and body condition 
score. Saturated and unsaturated fatty acids, such as 
palmitic, lauric, oleic, and linoleic acids, along with body 
condition score at parturition, play critical roles in the 
health and performance of dairy cows during the 
transition period. These findings emphasize the need for 
targeted nutritional and management strategies to 
optimize cow health and production. Dairy farmers are 
encouraged to manage body condition scores, monitor 
weight changes post-calving, and optimize dietary fatty 
acid composition to reduce ketosis risks. Adjusting 
dietary cation-anion difference (DCAD) is also 
recommended for improving energy balance. Future 
research should explore additional predictors such as 
rumen microbiota and refine machine learning models to 
improve predictive accuracy, enabling more precise and 
actionable insights for dairy herd management. 
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