

Journal of Mahani Mathematical Research

Print ISSN: 2251-7952 Online ISSN: 2645-4505

SOME RESULTS ON GENERALIZATION $\alpha-$ CHEBYSHEV WAVELETS

H. MAZAHERI [®] ⋈, A.W. SAFI, and S.M. Jesmani

Article type: Research Article

(Received: 29 September 2024, Received in revised form 06 December 2024)

(Accepted: 19 February 2025, Published Online: 20 February 2025)

ABSTRACT. In this paper, we introduce generalized formulae for well-known functions such as α -Chebyshev functions. We define α -Chebyshev wavelets approximation and generalization α -wavelet coapproximation. We show that if $\sum_{n=0}^{k}\sum_{n=0}^{\infty}|t_n|^2L_{n,m}^{\alpha}$ is convergent, then generalization α -Chebyshev wavelets approximation (generalization α - wavelets coapproximation) exists.

Keywords: Generalized α -Chebyshev functions, Generalized α -Chebyshev wavelets approximation, Generalized α -wavelets coapproximation 2020 MSC: 41A65, 41A52, 46N10.

1. Introduction

We define α -Chebyshev functions and found the recurrence relations for these functions

Definition 1.1. We can define some kinds of Chenyshev functions, where $x = \cos\theta$ and $\alpha \ge 0$

The α - Chebyshev functions for $|x| \leq 1$ (see [1-3, 7]):

Kinds	$\alpha - Chebyshev functions$
$First-Kind \ \alpha-Chebyshev \ Function$	$T_n^{\alpha}(x) = \cos(n+\alpha)\theta$
$Second-Kind \ \alpha-Chebyshev \ Function$	$U_n^{\alpha}(x) = \frac{\sin(n+1-\alpha)\theta}{\sin\theta}$
$Third-Kind \ \alpha-Chebyshev \ Function$	$V_n^{\alpha}(x) = \frac{\cos(n+\alpha)\theta}{\cos\theta}$
Fourth Kind α – Chebyshev Function	$W_n^{\alpha}(x) = \sin(n+\alpha)\theta$

Lemma 1.2. For $n \ge 1$

i)
$$T_{n+1}^{\alpha}(x) = 2xT_n^{\alpha}(x) - T_{n-1}^{\alpha}(x)$$
, $T_0^{\alpha}(x) = \cos(\alpha\cos x) = u_1(x)$ and $T_1^{\alpha}(x) = u_1(x)(2x-1)$,

ii)
$$U_{n+1}^{\alpha}(x) = 2xU_n^{\alpha}(x) - U_{n-1}^{\alpha}(x)$$
, $U_0^{\alpha}(x) = \frac{\sin(1-\alpha)(\cos x)}{\sin(\cos x)} = u_2(x)$ and $U_1^{\alpha}(x) = u_2(x)(2x+1)$,

iii)
$$V_{n+1}^{\alpha}(x) = 2xV_n^{\alpha}(x) - V_{n-1}^{\alpha}(x)$$
, $V_0^{\alpha}(x) = \frac{\cos(\alpha\cos x)}{\cos(\cos x)}u_3(x)$ and $V_1^{\alpha}(x) = u_3(x)(2x-1)$,

⊠ hmazaheri@yazd.ac.ir, ORCID: 0000-0001-8169-8655 https://doi.org/10.22103/jmmr.2025.24101.1702 Publisher: Shahid Bahonar University of Kerman © (§)

© the Author(s)

How to cite: H. Mazaheri, A.W. Safi, S.M. Jesmani, Some results on generalization $\alpha-Chebyshev$ wavelets, J. Mahani Math. Res. 2025; 14(2): 191-201.

iv)
$$W_{n+1}^{\alpha}(x) = 2xW_n^{\alpha}(x) - W_{n-1}^{\alpha}(x)$$
, $W_0^{\alpha}(x) = \sin(\alpha cos x) = u_4(x)$ and $W_1^{\alpha}(x) = u_4(x)(2x+1)$.

Proof. i) We have $T_n^{\alpha}(x) = \cos(n + \alpha)\theta$,

$$\begin{array}{lcl} T_{n+1}^{\alpha}(x) + T_{n-1}^{\alpha}(x) & = & \cos(n+1+\alpha)\theta + \cos(n-1+\alpha)\theta \\ & = & 2\cos\Big(\frac{n+1+\alpha+n-1+\alpha}{2}\Big)\theta\cos\Big(\frac{n+1+\alpha-n+1-\alpha}{2}\Big)\theta \\ & = & 2\cos(n+\alpha)\cos\theta. \\ & = & 2xT_{n}^{\alpha}(x) \end{array}$$

The proof of parts ii), iii) and iv) are similar i).

Lemma 1.3. The first kind α -Chebyshev functions, the second kind α -Chebyshev functions, the third kind α -Chebyshev and the fourth kind α -Chebyshev functions, where $\sin 2(\alpha \pi) = 0$ are

$$\int_{-1}^{1} T_n^{2\alpha}(x) \frac{1}{\sqrt{1-x^2}} dx =$$

$$\int_{-1}^{1} U_n^{2\alpha}(x) \sqrt{1-x^2} dx =$$

$$\int_{-1}^{1} V_n^{2\alpha}(x) \sqrt{1-x^2} dx =$$

$$\int_{-1}^{1} W_n^{2\alpha}(x) \frac{1}{\sqrt{1-x^2}} dx$$

$$= \frac{\pi}{2},$$

and if $n \neq m$ and n + m = 2k, k = 1, 2, 3, ...

$$\int_{-1}^{1} T_{n}^{\alpha}(x) T_{m}^{\alpha}(x) \frac{1}{\sqrt{1 - x^{2}}} dx =$$

$$\int_{-1}^{1} U_{n}^{\alpha}(x) U_{m}^{\alpha}(x) \frac{1}{\sqrt{1 - x^{2}}} dx =$$

$$\int_{-1}^{1} V_{n}^{\alpha}(x) V_{m}^{\alpha}(x) \frac{1}{\sqrt{1 - x^{2}}} dx =$$

$$\int_{-1}^{1} W_{n}^{\alpha}(x) W_{m}^{\alpha}(x) \frac{1}{\sqrt{1 - x^{2}}} dx =$$

$$= 0.$$

For $|x| \leq 1$ and $a,b,c,d \in \mathbb{R}$, generalized α -Chebyshev polynomials $G_n^{\alpha}(x)$ is defined by the recurrence relation

$$G_{n+1}^{\alpha}(x) = 2xG_n^{\alpha}(x) - G_{n-1}^{\alpha}(x); \ n \ge 1,$$

$$\begin{cases} G_0^{\alpha}(x) = au_1(x) + bu_2(x) + cu_3(x) + du_4(x) \\ G_1^{\alpha}(x) = (au_1(x) + bu_2(x) + cu_3(x) + du_4(x))(2x - a + b - c + d). \end{cases}$$

We call each term $G_n^{\alpha}(x)$ as Generalized α -Chebyshev polynomials for $n \geq 1$. We also indicate that this function can be transformed into the other kinds of Chebyshev polynomials for the special choices of a, b, c and d

If a=1 and b=c=d=0, then it turns into the first-kind α -Chebyshev polynomial sequences are known as

$$\{T_n^{\alpha}(x)\}=\{u_1(x),u_1(x)(2x-1),\cdots\},\$$

If a=c=d=0 and b=1, then it turns into the second kind $\alpha-$ Chebyshev polynomial sequences are known as

$$\{U_n^{\alpha}(x)\}=\{u_2(x),u_2(x)(2x+1),\cdots\},\$$

If a = b = d = 0 and c = 1, then it turns into the third kind α -Chebyshev polynomial sequences are known as

$$\{V_n^{\alpha}(x)\}=\{u_3(x),u_3(x)(2x-1),\cdots\},\$$

If a = b = c = 0 and d = 1, then it turns into the fourth kind Chebyshev polynomial sequences are known as

$$\{W_n^{\alpha}(x)\}=\{u_4(x),u_4(x)(2x+1),\cdots\}.$$

It is necessary to study multiresolution analysis and Mallat's Theorem for generalized $\alpha-$ Chebyshev wavelets.

Definition 1.4. Multiresolution Analysis: An MRA with scaling function ϕ is a collection of closed subspaces $\{V_j\}_{j\in \mathbb{Z}}$ of $L^2(\mathbb{R})$, such that

- (i) $V_j \subset V_{j+1}$; (ii) $f(x) \in V_j \iff f(2x) \in V_{j+1}$; (iii) $\overline{\cup V_j} = L^2(\mathbb{R})$, (iv) $\cap V_j = 0$;

- (v) There exists a function $\phi \in V_0$ such that the collection $\{\phi(x-k): k \in \mathbb{Z}\}$ is a Riesz basis of V_0 .

The sequence of wavelet subspaces W_j of $L^2(\mathbb{R})$ is such that $V_j \perp W_j$, for all jand $V_{j+1} = V_j \bigoplus W_j$. Closure of $\bigoplus W_j$ is dense in $L^2(\mathbb{R})$ for L^2 norm.

Now we state Mallat's theorem which guarantees that in the presence of an orthogonal MRA, an orthonormal basis for $L^2(\mathbb{R})$ exists.

Lemma 1.5. (Mallat's Theorem) Given an orthogonal MRA with scaling function ϕ , there is a wavelet $\psi \in L^2(\mathbb{R})$ such that for each $j \in \mathbb{Z}$, the family $\{\psi_{j,k}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for W_j . Hence the family $\{\psi_{j,k}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for $L^2(\mathbb{R})$.

Definition 1.6. (i) Let $P_n(f)$ be the orthogonal projection of $L^2([-1,1])$ onto V_n . Then

$$P_n(f) = \sum_{-\infty}^{\infty} \langle f, \phi_{n,k} \rangle \phi_{n,k}, \ n = 1, 2, 3, \cdots$$

(ii) The wavelet approximation of the Chebyshev polynomial is defined by

$$E_n(f) = ||f - P_n(f)||_2 = \int_{-1}^1 |f(t) - P_n(f)(t)|^2 dt = o(\phi(n)).$$

Definition 1.7. We define generalized α -Chebyshev wavelets. Suppose $k \in \mathbb{N}$ (degree of multiresolution), $m \geq 0, n = 1, 2, \dots, 2^k$ (see [4-6])

$$\Psi_{n,m}^{\alpha}(t) = \sqrt{\frac{2^{k+1}}{n}} G_m^{\alpha}(2^k t - 2n + 1) \chi_{[\frac{n-1}{2^{k-1}}, \frac{n}{2^{k-1}})}(t).$$

A function $f \in L^2[-1,1)$ is expanded by generalized α -Chebyshev wavelets series as

$$f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} c_{n,m} \Psi_{n,m}^{\alpha}(t),$$

where

$$c_{n,m} = \int_{-1}^{1} f(t) \Psi_{n,m}^{\alpha}(t) \omega_{n,m}^{\alpha}(t) dt,$$

and $\omega_{n,m}$ is the weight function of generalized α -Chebyshev functions. Suppose

$$\int_{-1}^{1} \Psi_{n,m}^{\alpha}(x) \Psi_{n,m}^{\alpha}(x) \omega_{n,m}(x) dx = L_{n,m}^{\alpha},$$

2. Generalized α -Chebyshev wavelets approximation

Theorem 2.1. Let $f \in L^2([-1,1])$ be a continuous function and $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha}(t)$ and the series $\sum_{n=1}^{2^k} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}$ be convergent. Then generalized α -Chebyshev wavelet approximation f, for every M is the partial sums $s_{2^k,M-1}(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{M-1} t_{n,m} \Psi_{n,m}^{\alpha}(t)$, and $E_{2^k,l}(f) = o((\sum_{n=1}^{2^k} \sum_{m=l+1}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha})^{\frac{1}{2}})$.

Proof. We have

$$\| f - s_{2^{k}, M-1} \|_{2}^{2}$$

$$= \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha}(t)$$

$$- \sum_{n=1}^{2^{k}} \sum_{m=0}^{M-1} t_{n,m} \Psi_{n,m^{\alpha}}(t) |^{2} \omega_{n,m}(t) dt$$

$$= \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha}(t) |^{2} \omega_{n,m}(t) dt$$

$$\leq \sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} |t_{n,m}|^{2} \int_{-1}^{1} |\Psi_{n,m}^{\alpha}(t)|^{2} \omega_{n,m}(t) dt$$

$$= \sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} |t_{n,m}|^{2} L_{n,m}^{\alpha}$$

Therefore $||f - s_{M-1}||_2 \le (\sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha})^{\frac{1}{2}}$. That is

$$E_{2^k, M-1}(f) = o(\sum_{n=1}^{2^k} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha})^{\frac{1}{2}}),$$

Suppose $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \psi_{n,m}^{\alpha}(t)$, for $l \ge 1$, we put

$$f_1(x) = \sum_{n=1}^{2^k} \sum_{m=0}^l t_{n,m} \psi_{n,m}^{\alpha}(t),$$

and

$$f_2(x) = \sum_{n=1}^{2^k} \sum_{m=0}^l t_{n,m} \psi_{n,m}^{\alpha}(t),$$

Theorem 2.2. Let $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{m,n}^{\alpha}^{+}(t)$ be expanded in terms of generalized α -Chebyshev wavelets. If $\sum_{n=1}^{2^k} \sum_{m=0}^{\infty} |t_{n,m}|^2$ is converge, then for every $l \geq 1$, generalized α -Chebyshev wavelet approximation $E_{2^k,l}(t)$ of f is $f_1(t)$.

$$E_{2^k,l}(f) = o((\sum_{n=1}^{2^k} \sum_{m=l+1}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha})^{\frac{1}{2}}).$$

Proof.

$$||f - f_{1}||_{2}^{2} = \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha} + (t)$$

$$- \sum_{n=0}^{2^{k}} \sum_{m=0}^{1} t_{n,m} \Psi_{n,m}^{\alpha} + (t)|^{2} \omega_{n,m}^{\alpha}(t) dt$$

$$= \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=l+1}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha} + (t)|^{2} \omega_{n,m}^{\alpha}(t) dt$$

$$\leq \sum_{n=1}^{2^{k}} \sum_{m=l+1}^{\infty} |t_{n,m}|^{2} \int_{-1}^{1} |\Psi_{n,m}^{\alpha} + (t)|^{2} \omega_{n,m}^{\alpha}(t) dt$$

$$\leq \sum_{n=1}^{2^{k}} \sum_{m=l+1}^{\infty} |t_{n,m}|^{2} \int_{-1}^{1} |\Psi_{n,m}^{\alpha}(t)|^{2} \omega_{n,m}^{\alpha}(t) dt$$

$$\leq \sum_{n=1}^{2^{k}} \sum_{m=l+1}^{\infty} |t_{n,m}|^{2} L_{n,m}^{\alpha}.$$

Therefore

$$||f - f_1(t)||_{\infty} \le \left(\sum_{n=1}^{2^k} \sum_{m=l+1}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}\right)^{\frac{1}{2}},$$

and therefore

$$E_{2^k,l}(f) = o(\sum_{n=1}^{2^k} \sum_{m=l+1}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha})^{\frac{1}{2}}).$$

Theorem 2.3. Let $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{m,n}^{\alpha}(t,s,p,q)$ be expanded in terms of generalized $-\alpha$ -Chebyshev wavelets. If $\sum_{n=1}^{2^k} \sum_{m=0}^{\infty} |t_{n,m}|^2$ is converge, then for every $l \geq 1$, generalized α -Chebyshev wavelet approximation $E_{2^k,l}(t)$ of f is $-f_2(t)$ and

$$E_{2^k,l}(f) = o((\sum_{n=1}^{2^k} \sum_{m=l+1}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha})^{\frac{1}{2}}).$$

Proof. The proof is similar to Theorem 2.2.

3. Generalized α -wavelets coapproximation

In this section, we define generalized α —wavelets coapproximation and obtain some results.

Definition 3.1. Suppose $W \subseteq L^2([-1.1])$ and $f \in L^2([-1,1])$ is a continuous function and $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha}(t)$. We say that the function $g \in L^2([-1,1])$ is generalized α -wavelet coapproximation f concerning W, If

$$F_f(p) := ||g - p||_2 - ||f - p||_2 = o(\phi(n)),$$

for every $p \in W$.

If $F_f(p) \leq 0$ for every $p \in W$, then g is called best coapproximation for f. We put

$$W_{1} = \{ \sum_{n=1}^{2^{k}} \sum_{m=0}^{\infty} c_{n,m} \Psi_{n,m}^{\alpha} : c_{n,m} \in \mathbb{R} \},$$

$$W_{1} = \{ \sum_{n=1}^{2^{k}} \sum_{m=0}^{\infty} c_{n,m} \Psi_{n,m}^{\alpha} : c_{n,m} \in \mathbb{R} \},$$

$$W_2 = \{ \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} c_{n,m} |\Psi_{n,m}^{\alpha}| : c_{n,m} \in \mathbb{R} \},$$

Theorem 3.2. Let $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha}(t)$ be expanded in terms of generalized α -Chebyshev wavelets. If the series $\sum_{n=1}^{2^k} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}$ is convergent, then generalized α -wavelet coapproximation f with respect to W_1 , for every $M \geq 0$ is the partial sums

$$u_{2^k,M-1} = \sum_{n=1}^{2^k} \sum_{m=0}^{M-1} t_{n,m} \Psi_{n,m}^{\alpha},$$

and

$$F_f(p) = o(\sum_{n=1}^{2^k} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}).$$

for every $p \in W_1$.

Proof. Suppose
$$p = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} c_m \Psi_{n,m}^{\alpha} \in W_1$$
.

$$\begin{split} \|p - u_{2^{k-1},M-1}\|_2 &= \int_{-1}^{1} |\sum_{n=1}^{2^{k-1}} \sum_{m=0}^{\infty} c_{n,m} \Psi_{n,m}^{\alpha}(t) \\ &- \sum_{n=1}^{\infty} \sum_{m=0}^{M-1} t_{n,m} \Psi_{n,m}^{\alpha}(x)|^2 \omega_{n,m}^{\alpha}(t) dt \\ &= \int_{-1}^{1} |\sum_{n=1}^{2^k} \sum_{m=0}^{M-1} (c_{n,m} - t_{n,m}) \Psi_{n,m}^{\alpha}(t) \\ &+ \sum_{n=1}^{\infty} \sum_{m=M}^{\infty} c_{n,m} \Psi_{n,m}^{\alpha}(t)|^2 \omega_{n,m}^{\alpha}(t) dt \\ &= \int_{-1}^{1} |\sum_{n=1}^{2^k} \sum_{m=0}^{M-1} (c_{n,m} - t_{n,m}) \Psi_{n,m}^{\alpha}(t) \\ &+ \sum_{n=1}^{\infty} \sum_{m=M}^{\infty} (c_{n,m} - t_{n,m}) \Psi_{n,m}^{\alpha}(t) \\ &+ \sum_{n=1}^{\infty} \sum_{m=M}^{\infty} t_{n,m} \Psi_{n,m}^{\alpha}(x)|^2 \omega_{n,m}^{\alpha}(t) dt \\ &\leq \int_{-1}^{1} |\sum_{n=1}^{2^k} \sum_{m=0}^{\infty} (t_{n,m} - c_{n,m}) \Psi_{n,m}^{\alpha}(t))|^2 \omega_{n,m}^{\alpha}(t) dt \\ &+ \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} |t_{n,m}|^2 \int_{-1}^{1} |\Psi_{n,m}^{\alpha}(t)|^2 \omega_{n,m}^{\alpha}(t) dt \\ &\leq \|f - p\|_2 + \sum_{n=1}^{2^k} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}. \end{split}$$

Therefore

$$||p - u_{2^{k-1}, M-1}||_2 - ||f - p||_2 \le \sum_{n=1}^{2^k} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}.$$

That is

$$F_f(p) = o(\sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}),$$

for every $p \in W_1$.

Theorem 3.3. Let $f(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{\infty} t_{n,m} |\Psi_{n,m}^{\alpha}|(t)$ be expanded in terms of generalized α -Chebyshev wavelet. If the series $\sum_{n=1}^{2^k} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}$ is

convergent, Then generalized α -wavelet coapproximation $E_l(f)$ of f is

$$u_{2^k, M-1}(t) = \sum_{n=1}^{2^k} \sum_{m=0}^{M-1} t_{n,m} |\Psi_{n,m}^{\alpha}|(t)$$

with respect to W_2

$$E_l(f) = o(\sum_{n=M}^{\infty} \sum_{m=0}^{\infty} |t_{n,m}|^2 l_{n,m}^{\alpha}).$$

Proof. Suppose $p = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} c_m |\Psi_{n,m}| \in W_2$.

$$\begin{split} \|p - u_{2^{k-1},M-1}\|_{2} &= \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=0}^{\infty} c_{n,m} |\Psi_{n,m}^{\alpha}|(t) \\ &- \sum_{n=1}^{\infty} \sum_{m=0}^{M-1} t_{n,m} |\Psi_{n,m}^{\alpha}|(t)|^{2} \omega_{n,m}^{\alpha}(t) dt \\ &= \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=0}^{M-1} (c_{n,m} - t_{n,m}) |\Psi_{n,m}^{\alpha}|(t) \\ &+ \sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} c_{n,m} |\Psi_{n,m}^{\alpha}|(t,s,p,q)|^{2} \omega_{n,m}^{\alpha}(t) dt \\ &= \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=0}^{M-1} (c_{n,m} - t_{n,m}) |\Psi_{n,m}^{\alpha}|(t) \\ &+ \sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} (c_{n,m} - t_{n,m}) ||\Psi_{n,m}^{\alpha}||(t) \\ &+ \sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} t_{n,m} |\Psi_{n,m}|(t) |^{2} \omega_{n,m}^{\alpha}(t) dt \\ &\leq \int_{-1}^{1} |\sum_{n=1}^{2^{k}} \sum_{m=0}^{\infty} (t_{n,m} - c_{n,m}) \Psi_{n,m}^{\alpha}(t) ||^{2} \omega_{n,m}^{\alpha}(t) dt \\ &+ \sum_{n=1}^{2^{k}} \sum_{m=M}^{\infty} |t_{n,m}|^{2} \int_{-1}^{1} |\Psi_{n,m}^{\alpha}(t)|^{2} \omega_{n,m}^{\alpha}(t) dt \\ &\leq ||f - p||_{2} + L \sum_{n=0}^{2^{k}} \sum_{m=M}^{\infty} |t_{n,m}|^{2} L_{n,m}^{\alpha}. \end{split}$$

Therefore

$$||p - u_{2^{k-1}, M-1}||_2 - ||f - p||_2 \le L \sum_{n=0}^{2^k} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}.$$

That is

$$F_f(p) = o(L \sum_{n=0}^{2^{k-1}} \sum_{m=M}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}),$$

for every $p \in W_2$.

Suppose $1 \le M \le 2^k$ is a fixed natural number and $f(t) = \sum_{n=M}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}(t)$,

$$f_1(t) = \sum_{n=M}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^{-}(t),$$

and

$$f_2(t) = \sum_{n=M}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}^+(t),$$

then

$$f = f_1 - f_2$$

Theorem 3.4. Let $f(t) = \sum_{n=Ml}^{2^k} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}(t)$ be expanded in terms of generalized α -Chebyshev wavelets. If the series $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}$ is convergent, Then generalized α -wavelet coapproximation $E_M(f)$ of f_2 is f_1 with respect to any set $W \subset L^2([-1,1])$. and

$$E_M(f) = o(\sum_{n=M}^{2^k} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}).$$

Proof. Suppose $p \in W_1$. We have

$$||p - f_1||_2 = ||p - f_1 + f_2 - f_2||_2$$

$$= ||p - f_2 - f||_2$$

$$\leq ||f_2 - p||_2 + ||f||_2$$

and

$$F_{f}(p) = \|p - f_{1}\|_{2} - \|f_{2} - p\|_{2}$$

$$\leq \|f\|_{2}$$

$$= \sum_{n=M}^{2^{k}} \sum_{m=0}^{\infty} |t_{n,m}|^{2} L_{n,m}^{\alpha}$$

Corollary 3.5. Let $f(t) = \sum_{n=M}^{\infty} \sum_{m=0}^{\infty} t_{n,m} \Psi_{n,m}(t)$ be expanded in terms of generalized α -Chebyshev wavelets. If the series $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}$ is convergent, Then generalized α -wavelet coapproximation $E_l(f)$ of f_1 is f_2 with respect to W

$$E_l(f) = o(\sum_{n=M}^{\infty} \sum_{m=0}^{\infty} |t_{n,m}|^2 L_{n,m}^{\alpha}).$$

Declarations

Ethical Approval : not applicable

Funding: No funding

Availability of data and materials: Data sharing is not applicable to this article.

References

- [1] Altınkaya, S., Yalçın, The (p,q)-Chebyshev polynomial bounds of a general bi-univalent function class. Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 341–348.
- [2] Brandi, Ricci, P. E., Some properties of the pseudo-Chebyshev polynomials of half-integer degree Tbilisi Math. J. 12 (2019), no. 4, 111-121
- [3] Çakmak, M. Uslu, K. A. generalization of Chebyshev polynomials with well-known kinds and transition relations. Acta Univ. Apulensis Math. Inform. No. 57 (2019), 19-30.
- [4] Kumar, L. S., Mishra, S., Awasthi, S. K., Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions. Carpathian Math. Publ. 14 (2022), no. 1, 29-48.
- [5] Nigam, H. K. Mohapatra, R. N. Murari, K. Wavelet approximation of a function using Chebyshev wavelets. Thai J. Math. (2020), 197-208.
- [6] Jesmani, S. M., Mazaheri, H. and Shojaeian, S. Wavelet approximation with Chebyshev. Iranian Journal of Numerical Analysis and Optimization. 1 (2024), no. 28, 315-329.
- [7] Mason, J. C. Handscomb, D. C. Chebyshev polynomials. Chapman and Hall/CRC, Boca Raton, FL, 2003.

HAMID MAZAHERI

ORCID NUMBER: 0000-0001-8169-8655 DEPARTMENT OF MATHEMATICS YAZD UNIVERSITY, 89195-741

Yazd, Iran

 $Email\ address: {\tt hmazaheri@yazd.ac.ir}$

AABDUL WALI SAFI

Orcid Number: 0009-0009-2254-3667 Department of Mathematics Yazd University, 89195-741

Yazd, Iran

 $Email\ address: {\tt safiabdulwali@gmail.com}$

SEAYED MOHAMMAD JESMANI ORCID NUMBE: 0000-0002-1491-4159

DEPARTMENT OF MATERIALS AND METALLURGICAL ENGINEERING

NATIONAL UNIVERSITY OF SKILLS(NUS)

Tehran, Iran

Email address: smjesmani@nus.ac.ir