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Abstract. In this manuscript, we study the Lorentz hypersurfaces of the

Lorentz 5-pseudosphere (i.e. the pseudo-Euclidean 5-sphere) S51 having
three distinct principal curvatures. A well-known conjecture of Bang-Yen

Chen on Euclidean spaces says that every submanifold is minimal. We

consider an advanced version of the conjecture on Lorentz hypersurfaces
of S51. We present an affirmative answer to the extended conjecture on

Lorentz hypersurfaces with three distinct principal curvatures.
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1. Introduction

The category of biharmonic submnifolds plays an important role in the study
of minimal submnifolds. The first steps in the field of biharmonic submanifolds
have been taken by B.-Y. Chen and G. Y. Jiang ( [4,9]). In 1987 Chen claimed
(as a conjecture) that every biharmonic submanifold of an Euclidean space
has to be minimal. In several cases, Chen conjecture has been proved (see
[1, 3–8,13,18]).

In this paper, we study an extended version of biharmonicity condition on
Lorentz hypersurfaces of 5-dimensional Lorentz pseudo-sphere with some addi-
tional conditions. In Section 2, we present notations and preliminary concepts.
In section 3, we illustrate some C-biharmonic examples of Lorentz hypersur-
faces in Lorentz 5-pseudosphere. In section 4, we have several propositions and
theorems on Lorentz hypersurfaces in 5-dimensional Lorentz pseudo-sphere sat-
isfying the C-biharmonicity condition. The case of diagonal shape operator is
discussed in Section 4. The non-diagonal shape operator case will be explained
in Section 5.

2. Preliminaries

First, we recall necessary notations and concepts from [2, 10–12, 14, 17]. In
general, we remember the definition of pseudo-Euclidean k-space Ekt of index
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t ≥ 0, obtained from Euclidean k-space Ek by considering the non-degenerate

scalar product 〈a,b〉 := −
∑t
i=1 aibi +

∑k
i=t+1 aibi, for every a,b ∈ Ek. We

deal with the Lorentz k-space Lk := Ek1 and specially with the standard 5-
dimensional Lorentz pseudo-sphere S51 := S51(1) which are obtained from the
following general definition, for positive real number r:

M5
1(c) =

 S51(r) = {a ∈ L6|〈a,a〉 = r2} (where c = 1/r2)
H5

1(−r) = {a ∈ E6
2|〈a,a〉 = −r2, a1 > 0} (where c = −1/r2)

L5 (where c = 0)

where S51(r) denotes the 5-dimensional pseudo-sphere of radius r and curva-
ture 1/r2, and H5

1(−r) stands for the pseudo-hyperbolic 5-space of radius −r
and curvature −1/r2. In the canonical cases c = ±1, we get the standard
5-dimensional Lorentz pseudo-sphere (i.e. the de Sitter 5-space) dS5 := S51
and the standard pseudo-hyperbolic 5-space (i.e. the anti-de-Sitter 5-space)
AdS5 = H5

1 := H5
1(−1).

Clearly, the metric induced from S51 on its each Lorentzian hypersurface M4
1

(i.e. induced by means of isometric immersion x : M4
1 → S51) is Lorentzian. A

given basis Ω := {w1,w2,w3,w4} of the tangent space of M4
1 has two possible

cases as follows.

Definition 2.1. Let Ω := {w1,w2,w3,w4} be a basis for the tangent space
of Lorentz hypersurface x : M4

1 → S51 in de Sitter 5-space.

(1) Ω is said to be orthonormal if it satisfies equalities 〈w1,w1〉 = −1,
〈w2,w2〉 = 〈w3,w3〉 = 〈w4,w4〉 = 1 and 〈wi,wj〉 = 0 for each i 6= j.

(2) Ω is called pseudo-orthonormal if it satisfies 〈w1,w1〉 = 〈w2,w2〉 = 0,

〈w1,w2〉 = −1 and 〈wi,wj〉 = δji for i = 1, 2, 3, 4 and j = 3, 4. As
well-known, δ is the Kronecker delta.

The induced metric on M4
1 with respect to an orthonormal basis has the

matrix formM1 := diag[−1, 1, 1, 1] and with respect to an pseudo-orthonormal

basis it is of form M2 = diag[
[

0 1
1 0

]
, 1, 1].

According to the orthonormal basis, the shape operator of M4
1 has two

possible matrix form S1 = diag[λ1, λ2, λ3, λ4] and S2 = diag[
[

κ λ
−λ κ

]
, η1, η2]

, where λ 6= 0. We note that, when the matrix form of shape operator is S2, it
has two eigenvalues κ± iλ which are complex conjugate.

Now, consider the case that M2 is the matrix form of metric tensor with
respect to a pseudo-orthonormal basis. So, the matrix form of shape operator

has to be of forms S3 = diag[
[
κ 0
1 κ

]
, λ1, λ2] or S4 = diag[

[
κ 0 0
0 κ 1
−1 0 κ

]
, λ].

Remark 2.2. In the case M2, we substitute the pseudo-orthonormal basis by
a new orthonormal one Ω := {w̃1, w̃2,w3,w4}, where w̃1 := 1

2 (w1 + w2) and

w̃2 := 1
2 (w1 −w2).
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Then, we obtain new matrix forms S3 = diag[

[
κ+ 1

2
1
2

− 1
2

κ− 1
2

]
, λ1, λ2] and

S4 = diag[

[
κ 0

√
2

2

0 κ −
√

2
2

−
√

2
2 −

√
2

2 κ

]
, λ]

As usual, the principal curvatures of M4
1 , denoted by κ1, κ2, κ3, κ4 in four

possible cases of shape operator are defined as follows. When S = S1, we take
κi := λi, for i = 1, . . . , 4, such that λi’s are the eigenvalues of S1. In the case
S = S2, we put κ1 = κ + iλ, κ2 = κ − iλ, and κi := ηi−2, for i = 3, 4. In the
case S = S3, we take κi := κ for i = 1, 2, and κi := λi−2, for i = 3, 4. Finally,
when S = S4, we take κi := κ for i = 1, 2, 3, and κ4 := λ.

The characteristic polynomial of S on M4
1 is of the form

Q(t) =

4∏
i=1

(t− κi) =

4∑
j=0

(−1)jsjt
4−j ,

where, s0 := 1, si :=
∑

1≤j1<...<ji≤4 κj1 . . . κji for i = 1, . . . , 4.

For j = 1, . . . , 4, the jth mean curvature Hj of M4
1 is defined by Hj = 1

(4j )
sj .

When Hj is zero, M4
1 is said to be (j − 1)-minimal. The following function on

M4
1 will be used frequently:

µi;k =
∑

1≤j1<...<jk≤4;jl 6=i

κj1 . . . κjk , (i = 1, . . . , 4; 1 ≤ k ≤ 3).

Here, we give the definition of isoparametric hypersurface in two different cases.

Definition 2.3. Consider x : M4
1 → S51 as a timelike (Lorentz) hypersurface

in the 5-pseudosphere. Let S be its shape operator.

(1) If S has a diagonal matrix form with constant eigenvalues, then M4
1 is

said to be isoparametric.
(2) If S has a non-diagonal matrix form and the minimal polynomial of S

is constant, then M4
1 is said to be isoparametric.

Remark 2.4. We note that, M4
1 cannot be isoparametric in the case that it has

complex principal curvatures (see Theorem 4.10 from [12]).

The Newton operator on M4
1 is defined by

(1) N0 = I, Nj = sjI − S ◦ Nj−1, (j = 1, . . . , 4),

where I is the identity map. Also, its explicit formula isNj =
∑j
i=0(−1)isj−iS

i

(where S0 = I) (see [2, 15]).
When S = S1, we have Nj = diag[µ1;j , . . . , µ4;j ], for j = 1, 2, 3.

In the case S = S2, we haveN1 = diag

[[
κ + η1 + η2 −λ

λ κ + η1 + η2

]
, 2κ+ η2, 2κ+ η1

]
and

N2 = diag

[[
κ(η1 + η2) + η1η2 −λ(η1 + η2)

λ(η1 + η2) κ(η1 + η2) + η1η2

]
, κ2 + λ2 + 2κη2, κ

2 + λ2 + 2κη1

]
.
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When S = S3, we have

N1 = diag[
[
λ1 + λ2 + κ− 1

2 − 1
2

1
2 λ1 + λ2 + κ+ 1

2

]
, 2κ+ λ2, 2κ+ λ1]

and

N2 = diag[
[
λ1λ2 + (κ− 1

2
)(λ1 + λ2) − 1

2
(λ1 + λ2)

1
2
(λ1 + λ2) λ1λ2 + (κ + 1

2
)(λ1 + λ2)

]
, κ(κ+2λ2), κ(κ+2λ1)].

If S = S4, we have N1 = diag[

[
2κ + λ 0 −

√
2

2

0 2κ + λ
√

2
2√

2
2

√
2

2
2κ + λ

]
, 3κ] and

N2 = diag[

 2κλ + κ2 − 1
2

− 1
2

−
√

2
2

(κ + λ)

1
2

2κλ + κ2 + 1
2

√
2

2
(κ + λ)

√
2

2
(κ + λ)

√
2

2
(κ + λ) 2κλ + κ2

, 3κ2].

The following identities are recalled from [2,15].

(2) µi,1 = 4H1 − λi, µi,2 = 6H2 − λiµi,1 = 6H2 − 4λiH1 + λ2i , (1 ≤ i ≤ 4),

(3) tr(N1) = 12H1, tr(N2) = 12H2, tr(N1 ◦ S) = 12H2, tr(N2 ◦ S) = 12H3,

(4)
trS2 = 4(4H2

1−3H2), tr(N1◦S2) = 12(2H1H2−H3), tr(N2◦S2) = 4(4H1H3−H4).

We consider the Cheng-Yau operator C : C∞(M4
1 )→ C∞(M4

1 ) given by C(f) =
tr(N1 ◦ ∇2f), where, ∇2f : χ(M) → χ(M) denotes the self-adjoint linear
operator metrically equivalent to the Hessian of f which is defined by (∇2f)X =
∇X(∇f) for every smooth vector field X on M3

1 , where ∇f = ]df . In other
words, C(f) is given by

(5) C(f) =

4∑
i=1

εiµi,1(eieif −∇eieif).

For a Lorentzian hypersurface x : M4
1 → S51 we have

(6) Cx = 12H2n− 12H1x,

C2x = 24 (N2∇H2 −N1∇H1 − 9H2∇H2)

+ 12[CH2 − 12H2(2H1H2 −H3)− 12H1H2]n

− 12c[CH1 − 12(H2
2 +H2

1 )]x.

Definition 2.5. A hypersurface x : M4
1 → S51 is said to be strongly C-

biharmonic if it satisfies the condition C2x = 0. It is said to be C-biharmonic
if it satisfies the following conditions

(i) N2∇H2 −N1∇H1 = 9H2∇H2

(ii) CH2 = 12H2(2H1H2 −H3) + 12H1H2.
(7)
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3. Some examples

Here, we give some examples of C-biharmonic Lorentz hypersurfaces in S51,
with constant first and second mean curvatures (see [15,16]).

Example 3.1. Let 0 < r < 1 and Θ1 = S41(r) ⊂ S51 defined as

Θ1 = {(y1, . . . , y6) ∈ L6| − y21 +

5∑
i=2

y2i = r2, y6 =
√

1− r2},

having the normal vector field

n(y) =

√
1− r2
r

(y1, . . . , y5, 0) +
−r√

1− r2
(0, . . . , 0, y6)

as the Gauss map. Clearly, it has only one principal curvature of multiplicity

4 as κ1 = . . . = κ4 = −
√
1−r2
r ,. One can see that Θ1 is C-biharmonic and all of

its mean curvatures are constant.

Example 3.2. Let 0 < r < 1 and Θ2 = S31(r)× S1(
√

1− r2) ⊂ S51 defined as

Θ2 = {(y1, . . . , y6) ∈ L6| − y21 + y22 + y23 + y24 = r2, y25 + y26 = 1− r2},
having the normal vector field

n(y) =

√
1− r2
r

(y1, y2, y3, y4, 0, 0) +
−r√

1− r2
(0, 0, 0, 0, y5, y6)

as the Gauss map. Clearly, it has two distinct principal curvatures κ1 = κ2 =

κ3 = −
√
1−r2
r and κ4 = r√

1−r2 . One can see that Θ2 is C-biharmonic and all of

its mean curvatures are constant.

Example 3.3. Let 0 < r < 1 and Θ3 = S21(r)× S2(
√

1− r2) ⊂ S51 defined as

Θ3 = {(y1, . . . , y6) ∈ L6| − y21 + y22 + y23 = r2, y24 + y25 + y26 = 1− r2},
having the normal vector field

n(y) =

√
1− r2
r

(y1, y2, y3, 0, 0, 0) +
−r√

1− r2
(0, 0, 0, y4, y5, y6)

as the Gauss map. Clearly, it has two distinct principal curvatures κ1 = κ2 =
−
√
1−r2
r and κ3 = κ4 = r√

1−r2 . One can see that Θ3 is C-biharmonic and all of

its mean curvatures are constant.

Example 3.4. Let 0 < r, t < 1, r2 + s2 < 1 and Θ4 = S11(r) × S1(t) ×
S1(
√

1− r2 − t2) ⊂ S51 defined as

Θ4 = {(y1, . . . , y6) ∈ L6| − y21 + y22 = r2, y23 + y24 = t2, y25 + y26 = 1− r2 − t2},

having three distinct principal curvatures κ1 = −
√
1−r2−t2
r , κ2 =

√
1−r2−t2

t

and κ3 = κ4 =
√
r2+t2√

1−r2−t2 . Clearly, Θ4 is C-biharmonic and all of its mean

curvatures are constant.
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Example 3.5. Let v ∈ L6 be a spacelike unit constant vector. For each
σ ∈ (−1, 1), we consider the subset

Φσ := {p ∈ S51 : 〈p,v〉 = σ}.

Φσ is a totally umbilical hypersurface in S51 with Gauss map n(p) = 1√
1−σ2

(v−
σp) and shape operator S = σ√

1−σ2
I. Φσ is isometric to S41(

√
1− σ2). So, it is

C-biharmonic.

4. C-biharmonic hypersurfaces with diagonal shape operator

The main focus in this section is on Lorentz hypersurfaces of S51, whose shape
operator is assumed to be diagonal. In this case, we try to confirm a modified
version of conjecture.

Proposition 4.1. We consider a Lorentz hypersurface x : M4
1 → S51 satisfying

the following conditions:
(a) The shape operator of M4

1 is a diagonal matrix of form S1,
(b) The ordinary mean curvature of M4

1 is constant,
(c) The second mean curvature of M4

1 is non-constant.
If M4

1 is C-biharmonic, then it has a nonconstant principal curvature of multi-
plicity one.

Proof. We take the open subset K ⊂ M4
1 consisting of points in M4

1 , at
which ∇H2 is non-zero. By conditions (7)(i), taking w1 := ∇H2

||∇H2|| , we get

N2w1 = 9H2w1 on K. Clearly, one can choose a suitable orthonormal local
basis {w1,w2,w3,w4} of principal directions on M4

1 . So, we have Swi = κiwi

and N2wi = µi,2wi, for i = 1, 2, 3, 4. Then, we get

(8) µ1,2 = 9H2.

By canonic decomposition ∇H2 =
4∑
i=1

wi(H2)wi, we get

(9) w1(H2) 6= 0, w2(H2) = w3(H2) = w4(H2) = 0.

From (2) and (8) we get

(10) H2 =
1

3
κ1(κ1 − 4H1).

So, since H1 is assumed to be constant, from (9) we get

(11) w1(κ1) 6= 0, w2(κ1) = w3(κ1) = w4(κ1) = 0,

which gives that κ1 is non-constant. Now, using ∇wi
wj =

∑4
k=1 ω

k
ijwk for

j, i = 1, 2, 3, 4, the identity wk < wi,wj >= 0 gives εjω
j
ki = −εiωikj for

k, j, i = 1, 2, 3, 4. On the other hand, for distinct k, j, i = 1, 2, 3, 4, the Codazzi
equation gives

(12) wi(κj) = (κi − κj)ωjji, (κi − κj)ωjki = (κk − κj)ωjik.
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Since from (11) we get w1(κ1) 6= 0, so we can claim κj 6= κ1 for j = 2, 3, 4.
Assuming κj = κ1 for some integer j 6= 1, we have w1(κj) = w1(κ1) 6= 0. On

the other hand, from (12) we obtain 0 = (κ1 − κj)ωjj1 = w1(κj) = w1(κ1).
Hence, we have gotten a contradiction. �

The ordinary versions of Proposition 4.1 may be seen in [7, 18].

Proposition 4.2. Suppose that M4
1 be an orientable timelike hypersurface

of S51 with shape operator of form S1, constant mean curvature, non-constant
second mean curvature and exactly three distinct principal curvatures. If M4

1 is
C-biharmonic, then the following equalities occur according to the orthonormal
tangent frame {w1,w2,w3,w4} of principal directions of M4

1 with associated
principal curvatures κ1, κ2 = κ3, κ4, which satisfy the following equalities:

(i)∇w1
w1 = 0, ∇w2

w1 = αw2, ∇w3
w1 = αw3, ∇w4

w1 = −βw4,

(ii)∇w2
w2 = −αw1 + ω3

22w3 + γw4, ∇wi
w2 = ω3

i2w3 for i = 1, 3, 4 ;

(iii)∇w3
w3 = −αw1 − ω3

32w3 + γw4, ∇wi
w3 = −ω3

i2w2 for i = 1, 2, 4 ,

(iv)∇w1
w4 = 0, ∇w2

w4 = −γw2, ∇w3
w4 = −γw3, ∇w4

w4 = βw1,

(13)

where α := w1(κ2)
κ1−κ2

, β := w1(κ1+2κ2)
κ1−κ4

, γ := w4(κ2)
κ2−κ4

.

Proof. We consider the local orthonormal basis {w1,w2,w3,w4} of TM as the
previous proposition. So, the equations (8)−(12) occur and κ1 is of multiplicity
one and we get

[w2,w3](κ1) = [w3,w4](κ1) = [w2,w4](κ1) = 0,

which gives

(14) ω1
23 = ω1

32, ω
1
34 = ω1

43, ω
1
24 = ω1

42.

Since, by assumption, there exist 3 distinct principal curvatures, we can take
κ2 = κ3. So, we have κ4 = 4H1 − κ1 − 2κ2. Therefore, by (12) for distinct i, j
and k less than 5, we have w2(κ2) = w3(κ2) = 0 and then,

(i) ω1
11 = ω1

12 = ω1
13 = ω1

14 = ω2
31 = ω3

21 = ω2
34 = ω3

24 = ω4
42 = ω4

43 = 0,

(ii) ω2
21 = ω3

31 =
w1(κ2)

κ1 − κ2
, ω4

41 =
−w1(κ1 + 2κ2)

κ1 − κ4
, ω2

24 = ω3
34 =

−w4(κ2)

κ2 − κ4
,

(iii) (κ1 − κ4)ω1
24 = (κ1 − κ2)ω1

42, (κ1 − κ4)ω1
34 = (κ1 − κ2)ω1

43.

(15)

From (14) and (15) we get ω1
24 = ω1

42,= ω1
34 = ω1

43 = ω4
12 = ω4

13 = 0. All
claimed equalities can be gotten from the last results. �

Proposition 4.3. Assume M4
1 to be an orientable timelike hypersurface in

S51 with shape operator of form S1, three distinct principal curvatures, non-
constant second mean curvature and constant ordinary mean curvature. Let
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M4
1 be C-biharmonic. Then, the principal curvatures κ1, κ2 = κ3, κ4 asso-

ciated to its orthonormal (local) tangent frame {w1,w2,w3,w4} of principal
directions satisfy the equalities w4(κ2) = 0 and

(16) w1(κ2)w1(κ1 + 2κ2) =
1

2
κ2(κ1 − κ2)(κ4 − κ1)(2κ1 + 4κ2 + κ4).

Proof. First, we recall the Gauss curvature tensor formula for every tangent
vector fields V , W and Z as R(V,W )Z = ∇V∇WZ −∇W∇V Z −∇[V,W ]Z.

By putting different choices of w1, w2, w3 and w4 instead of vector fields
V , W and Z and applying Proposition 4.2, we get

(i) w1(α) + α2 = −κ1κ2, β2 −w1(β) = −κ1κ4;

(ii) w1

(
w4(κ2)

κ2 − κ4

)
+ α

w4(κ2)

κ2 − κ4
= 0;

(iii) w4(α)− (α+ β)
w4(κ2)

κ2 − κ4
= 0;

(iv) β2 −w1(β) = −κ1κ4;

(v) w4

(
w4(κ2)

κ2 − κ4

)
+ αβ −

(
w4(κ2)

κ2 − κ4

)2

= κ2κ4,

(17)

where α := w1(κ2)
κ1−κ2

and β := w1(κ1+2κ2)
κ1−κ4

. Also, from (5) and (7), by using the

result of Proposition (4.2) we get

(κ1 − 4H1)w1w1(H2)− (2(κ2 − 4H1)α+ (κ1 + 2κ2)β)w1(H2)

= 12H2(2H1H2 −H3).
(18)

On the other hand, using (9) and (13), we have

(19) wiw1(Hk+1) = 0,

for i = 2, 3, 4. Also, from derivation of α and β according to w4, we get

(κ1 − κ2)w4(α)− αw4(κ2) = w4w1(κ2) =
1

2
(κ1 − κ4)w4(β) + βw4(κ2),

then
1

2
(κ1 − κ4)w4(β) = (κ1 − κ2)w4(α)− (α+ β)w4(κ2),

which, using the value of w4(α) from (17), gives

w4(β) =
−8w4(κ2)(α+ β)(κ2 −H1)

(κ1 − κ4)(κ2 − κ4)
.

Again, differentiating (18)along w4 and using (19), (17) and the last value of
w4(β), we get w4(κ2) = 0 or
(20)
4(α+ β)[−H1(8κ1 + 12κ2) + κ1

2 + 3κ1κ2 + 16H2
1 ]w1(H2)

κ4 − κ1
+6H2(κ2 − κ4)

2
= 0.

Finally, we claim that w4(κ2) = 0.
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Indeed, if the claim is not true, then we obtain

(21)
4(α+ β)γw1(H2)

κ1 − κ4
= 6H2(κ2 − κ4)

2
,

where γ = −8H1κ1 +κ1
2 + 3κ1κ2− 12H1κ2 + 16H2

1 . Differentiating (21) along
w4, we get

2(α+ β) [6γ(κ2 −H1) + (3κ1 − 12H1)(κ1 + κ2 − 2H1)(κ1 + 3κ2 − 4H1)] w1(H2)

(κ1 + κ2 − 2H1)
2

= 36H2(4H1 + κ1 + 3κ2)
2
.

(22)

Eliminating w1(H2) from (21) and (22), we obtain

(23) γ(2κ1 − 2H1) = (κ1 − 4H1)(κ1 + κ2 − 2H1)(−4H1 + κ1 + 3κ2).

Also, we differentiate (23) along w4 which gives 4H1 = κ1. This is impossible
since κ1 is nonconstant. So, w4(κ2) = 0. The main result can be gotten from
equation (17). �

Theorem 4.4. Suppose that M4
1 is an orientable timelike hypersurface in S51

with shape operator of form S1, three distinct principal curvatures and constant
ordinary mean curvature. If M4

1 is C-biharmonic, then it has to be 1-minimal.

Proof. Assume that κ1, κ2 = κ3, κ4 are the distinct principal curvatures of M4
1

according to its orthonormal (local) tangent frame {w1,w2,w3,w4} of princi-
pal directions. In the first step, we claim that H2 is constant on M4

1 . Let H2 be
non-constant on an open subset W of M4

1 . We try to get a contradiction. By

derivation of (10) in the direction of w1 and using the notation β = w1(κ1+2κ2)
κ1−κ4

,
we get

(24) w1(H2) =
4

3
(2H1 − κ1)w1(κ2) +

4

3
(κ1 + κ2 − 2H1)(κ1 − 2H1)β.

By Proposition 4.3 and equalities (17), from (24) we obtain

w1w1(H2) =
4

3
κ1κ2(κ1 − κ2)(κ1 + 2H1)

+
4

3
(4H1 − κ1 − 2κ2)(κ1 − 2H1)(4κ1κ2 + κ1

2 − 4H1κ2 − 2H1κ1)

+

[
3β − 4α+ 2

(κ1 + κ2 − 2H1)β − (κ1 − κ2)α

κ1 − 2H1

]
w1(H2).

(25)

Combining (18) and (25), we get

(26) (P1,2α+ P2,2β)w1(H2) = P3,6,

where the polynomials P3,6, P2,2 and P1,2 in terms κ1 and κ2 are of degrees 6,
2 and 2, respectively.

Derivation of (26) in direction w1 and equalities (16), (17)(i) and (26), give

(27) P4,8α+ P5,8β = P6,5w1(H2).
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The polynomials P6,5, P4,8 and P5,8 in terms κ1 and κ2 are of degrees 5, 8 and
8, respectively.

By (24) and (27), we get(
P4,8 +

4

3
P6,5(κ1 − κ2)(κ1 − 2H1)

)
α

+

(
P5,8 −

4

3
P6,5(κ1 + κ2 − 2H1)(κ1 − 2H1)

)
β = 0.

(28)

Also, by Proposition 4.3, from equalities (24) and (26), we obtain

(29) P2,2(κ1 + κ2 − 2H1)(κ1 − 2H1)β2 − P1,2(κ1 − κ2)(κ1 − 2H1)α2 = ζ,

where ζ is given by

ζ = κ2(4H1−κ1−2κ2)(κ1−2H1)

(
â

â
P2,2(κ1 − κ2)− P1,2(κ1 + κ2 − 2H1)

)
+

3

4
P3,6.

Using Proposition 4.3 and equality (28), we get

α2 =
2
3P6,5(κ1 − κ4)(κ1 − 2H1) + P5,8

P4,8 + 4
3P6,5(κ1 − κ2)(κ1 − 2H1)

κ2κ4,

β2 =
4
3P6,5(κ1 − κ2)(κ1 − 2H1)− P4,8

P5,8 − 2
3P6,5(κ1 − κ4)(κ1 − 2H1)

κ2κ4.

(30)

From (29) and (32), we obtain a polynomial of degree 22 as follow.

− κ2κ4(κ1 + 2H1)(κ2 − κ1)P1,2

(
P5,8 −

2

3
P6,5(κ1 − κ4)(κ1 − 2H1)

)2

− 1

2
κ2κ4(κ1 + 2H1)(κ1 − κ4)P2,2

(
P4,8 +

4

3
P6,5(κ1 − κ2)(κ1 − 2H1)

)2

= ζ

(
P5,8 −

2

3
P6,5(κ1 − κ4)(κ1 − 2H1)

)(
P4,8 +

4

3
P6,5(κ1 − κ2)(κ1 − 2H1)

)
,

(31)

We choose an integral curve of w1 as γ(t) (where t ∈ I) passing through p =
γ(t0). So, w1(κ1) and w1(κ2) are nonzero and for i = 2, 3, 4 we have wi(κ1) =
wi(κ2) = 0. We take κ2 = κ2(t) and κ1 = κ1(κ2) in some neighborhood of
κ0 = κ2(t0). Using (28), we have

dκ1
dκ2

=
dκ1
dt

dt

dκ2
=

w1(κ1)

w1(κ2)

= 2
(κ1 + κ2 − 2H1)β − (κ1 − κ2)α

(κ1 − κ2)α

=
2
(
P4,8 + 4

3P6,5(κ1 − κ2)(κ1 − 2H1)
)

(κ1 + κ2 − 2H1)(
4
3P6,5(κ1 + κ2 − 2H1)(κ1 − 2H1)− P5,8

)
(κ1 − κ2)

− 2

(32)
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Now, we differentiate (31) with respect to κ2 and then substitute dκ1

dκ2
from

(32), which gives

(33) f(κ1, κ2) = 0,

where f(κ1, κ2) is an algebraic polynomial of degree 30 in terms of κ1 and κ2.
By resorting polynomials (31) and (33) in terms of κ2, we get two power

series equations as:

(i)

22∑
n=0

fn(κ1)κn2 = 0,

(ii)

30∑
m=0

gm(κ1)κm2 = 0.

(34)

By eliminating κ302 between (34)(i) and (34)(ii) we get a degree 29 polynomial
equation in terms κ2. By combining obtained equation with (34)(i), we get
degree 28 polynomial equation in terms κ2. By continuing this method, from
(34)(i) and its consequences we can eliminate κ2. In final, we obtain a non-
trivial algebraic polynomial equation in κ1 with constant coefficients which
implies that κ1 is constant and then by (10), κ2 and H2 are constants, which
contradicts with the first assumption. So, H2 is constant on M4

1 .
Now, we prove H2 = 0. Assuming H2 6= 0, from condition (7)(ii), we

get that H3 is constant. So, M4
1 is isoparametric. But, from Corollary 2.7

in [12], we know that every isoparametric timelike hypersurface of type S1 has
at most one nonzero principal curvature. Then, we have a contradiction with
the assumption of having three distinct principal curvatures. So H2 ≡ 0. �

5. Three Cases of shape operator with non-diagonal matrix

A timelike hypersurface of S51, whose shape operator has non-diagonal matrix
form, can satisfy the extended conjecture if it has at most three distinct prin-
cipal curvatures and constant mean curvature. First, we consider the case that
the matrix of shape operator of form S2. In this case, the modified conjecture
will be confirmed.

Theorem 5.1. Suppose that an orientable timelike hypersurface x : M4
1 → S51

has shape operator of matrix form S2, also suppose that it has one real constant
principal curvature and constant mean curvature. If M4

1 is C-biharmonic, then
it has a constant second mean curvature. Furthermore, either M4

1 is 1-minimal
or it is isoparametric and 3-minimal.

Proof. We have to show the constancy of H2. In fact, we prove the emptiness
of U = {p ∈ M4

1 : ∇H2
2 (p) 6= 0}. By assumption U 6= ∅, we try to get

a contradiction. Using the matrix form S2 for S with respect to a suitable
(local) orthonormal tangent frame {w1, . . . ,w4}, we have Sw1 = κw1 − λw2,
Sw2 = λw1 + κw2, Sw3 = η1w3, Sw4 = η2w4 and then, the 2nd Newton
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transformation satisfies:
N2w1 = [κ(η1 + η2) + η1η2]w1 + λ(η1 + η2)w2,
N2w2 = −λ(η1 + η2)w1 + [κ(η1 + η2) + η1η2]w2,
N2w3 = (κ2 + λ2 + 2κη2)w3 and N2w4 = (κ2 + λ2 + 2κη1)w4.

Using the canonic decomposition ∇H2 =
4∑
i=1

εiwi(H2)wi, by (7)(i) we get

(i) (κη1 + κη2 + η1η2 − 9H2)ε1w1(H2)− λ(η1 + η2)ε2w2(H2) = 0,

(ii) λ(η1 + η2)ε1w1(H2) + (κη1 + κη2 + η1η2 − 9H2)ε2w2(H2) = 0,

(iii) (κ2 + λ2 + 2κη2 − 9H2)ε3w3(H2) = 0,

(iv) (κ2 + λ2 + 2κη1 − 9H2)ε4w4(H2) = 0.

(35)

Now, by assumption the constancy of H1 and η1, we prove a simple claim as
wi(H2) = 0 for i = 1, 2, 3, 4.
If w1(H2) 6= 0, dividing equalities (35)(i) and (35)(ii) by ε1w1(H2) and putting

u := ε2w2(H2)
ε1w1(H2)

we get

(i) κ(η1 + η2) + η1η2 − 9H2 = λ(η1 + η2)u,

(ii) (κ(η1 + η2) + η1η2 − 9H2)u = −λ(η1 + η2),
(36)

which gives λ(η1 + η2)(1 + u2) = 0, then λ(η1 + η2) = 0. Since λ 6= 0, we get
η1 + η2 = 0. So, using (36)(i), we obtain κ2 + λ2 = 1

3η
2
1 . Since η1 is assumed

to be constant, so 9H2 = −η21 = −η21 is constant. Also, H1 = 1
2κ is assumed

constant, then H3 = −1
2 κη

2
1 and H4 = −1

3 η
4
1 are constants. These results are in

contradiction with the assumption w1(H2) 6= 0. Hence, the claim is affirmed
for i = 1.

By a similar manner for i = 2, we assume w2(H2) 6= 0. Dividing (35)(i) and

(35)(ii) by ε2w2(H2) and taking v := ε1w1(H2)
ε2w2(H2)

, we get λ(η1 + η2)(1 + v2) =

0. Hence, by a similar way we get the same results, which contradicts with
assumption w2(H2) 6= 0. Therefore, the claim is satisfied for i = 2.

Now, we start to prove the claim when i = 3. We assume w3(H2) 6= 0.
From equality (35)(iii) we have κ2+λ2+2κη2 = 9H2, and by a straightforward
computation we get

−3κ2 + 2(4H1 − η1)κ+ 3η1(4H1 − η1) = −λ2 < 0,

then,

−2[2κ2 + (η1 − 4H1)κ+ 2η1(η1 − 3H1)] = −(λ2 + κ2 + η21) < 0.

Clearly, the last inequality satisfies if and only if

δ = (η1 − 4H1)2 − 16η1(η1 − 3H1) = −15η21 + 40η1H1 + 16H2
1

is less than zero. On the other hand, δ < 0 if and only if δ̄ < 0 where

δ̄ = (40H1)2 + (4× 15× 16)H2
1 = 2560H2

1 .

This is a contradiction. So, the claim is affirmed in case i = 3.
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For case i = 4 of the claim, we start with assumption w4(H2) 6= 0. From
equality (35)(iv) we have κ2 + λ2 + 2κη1 = 9H2, and by a straightforward
computation we get

−11κ2 + (24H1 − 10η1)κ+ 12η1H1 − 3η21 = −λ2 < 0,

then,

−2[6κ2 + (5η1 − 12H1)κ+ 2η1(η1 − 3H1)] = −(λ2 + κ2 + η21) < 0.

It is straightforward to check that the last inequality occurs if and only if ϑ < 0
where

ϑ = (5η1 − 12H1)2 − 48η1(η1 − 3H1) = −23η21 + 24η1H1 + 144H2
1 .

Also, we have ϑ < 0 if and only if ϑ̄ < 0 where

ϑ̄ = (24H1)2 + (4× 23× 144)H2
1 = 13824H2

1 .

The last inequality is clearly impossible. Hence, the case i = 4 of claim is
checked.

Therefore, H2 is constant.
For the second part of the theorem, by constancy of H2 we have CH2 = 0.

Then, by (7)(ii), we have 9H1H
2
2 − 3H2H3 = 0. If H2 6= 0, the last equality

gives the constancy of H3 = 3H1H2. Also, we get

H4 = (4H3 − 6H2η1)η1 + (4H1 + η1)η31 − 2η41 ,

which gives the constancy of H4. Therefore, M4
1 is isoparametric. Also, S can

have at most one non-zero real eigenvalue ( [12]). Hence, we have η1η2 = 0
which gives H4 = (κ2 + λ2)η1η2 = 0. So, M4

1 is 3-minimal. �

Theorem 5.2. Suppose that an orientable timelike hypersurface x : M4
1 → S51

has shape operator of matrix form S3, three distinct principal curvatures and
constant mean curvature. If M4

1 is C-biharmonic, then it is isoparametric and
1-minimal.

Proof. Our first step is to show the constancy of H2. We prove the emptiness of
U = {p ∈ M4

1 : ∇H2
2 (p) 6= 0}. Assuming U 6= ∅, we try to get a contradiction.

Since the shape operator S of M4
1 is of type S3, there exists a local orthonormal

basis {w1, . . . ,w4} for T (M4
1 ) satisfying: Sw1 = (κ + 1

2 )w1 − 1
2w2, Sw2 =

1
2w1 + (κ − 1

2 )w2, Sw3 = λ1w3 and Sw4 = λ2w4. So, the second Newton
transformation satisfies the equalities:
N2w1 = [µ1,2;2 + (κ− 1

2 )µ1,2;1]w1 + 1
2µ1,2;1w2,

N2w2 = − 1
2µ1,2;1w1 + [µ1,2;2 + (κ− 1

2 )µ1,2;1]w2,
N2w3 = µ3;2w3 and N2w4 = µ4;2w4.
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From condition (7)(i), using the polar decomposition∇H2 =
4∑
i=1

εiwi(H2)wi,

we obtain

(i) [λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2]ε1w1(H2) =

1

2
(λ1 + λ2)ε2w2(H2),

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]ε2w2(H2) = −1

2
(λ1 + λ2)ε1w1(H2),

(iii) (κ2 + 2κλ2 − 9H2)ε3w3(H2) = 0,

(iv) (κ2 + 2κλ1 − 9H2)ε3w4(H2) = 0.

(37)

Now, we claim that wi(H2) = 0 for i = 1, 2, 3, 4.
If w1(H2) 6= 0, then dividing equalities (37)(i, ii) by ε1w1(H2) we get

(i) λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2 =

1

2
(λ1 + λ2)u,

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]u = −1

2
(λ1 + λ2),

(38)

where u := ε2w2(H2)
ε1w1(H2)

. From (38)(i, ii), we obtain (λ1 + λ2)(u + 1)2 = 0, then

either u = −1 or λ1 + λ2 = 0.
If λ1 + λ2 = 0, using (38)(i) we get 9H2 = −λ21, which gives 3κ2 = −λ21. Since
H1 is assumed constant on M4

1 , then κ = 2H1, λ1 and λ2 are constant on M4
1 .

Hence, M4
1 is isoparametric having three real principal curvatures. This result

contradicts with Corollary 2.7 in [12]. So, λ1 + λ2 6= 0 and u = −1. Hence, we
have λ1λ2 + κ(λ1 + λ2) = 9H2 and then

3κ2 + 4κ(λ1 + λ2) + λ1λ2 = 0.

By constancy of 4H1 = 2κ+ λ1 + λ2, from the last equality we get λ2−H1λ−
3H2

1 = 0, which means λ, κ and Hks (for k = 2, 3, 4) are constant. This
contradiction implies that the claim is true for i = 1.

Similarly, for i = 2, 3, 4, the assumptions wi(H2) 6= 0 gives λ2 + 2κλ = 9H2,
which implies the affirmation of claim.

Now, we prove that H2 = 0. Constancy of H1 and H2 and the condition
(7)(ii) give that H3 is constant. So, M4

1 is isoparametric. Then, by Corollary
2.7 from [12], it has at most one nonzero principal curvature, so λ = 0 (for
example). Then H1 = 1

2κ, H2 = 1
6κ

2 and H3 = 0, and consequently, by (7)(ii),
we get κ = 0 and then H2 = 0. �

Theorem 5.3. Suppose that an orientable timelike hypersurface x : M4
1 → S51

has shape operator of matrix form S4 and constant mean curvature. If M4
1 is

C-biharmonic, then it is isoparametric and 1-minimal.

Proof. First we prove that H2 is constant. In fact, we show that the open subset
U = {p ∈ M4

1 : ∇H2
2 (p) 6= 0} has no member. Assuming U 6= ∅ we try to get

a contradiction. Since M4
1 is of type S4, there exists an orthonormal tangent
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frame {w1, . . . ,w4} on M4
1 such that the shape operator is of form S4. So, we

have Sw1 = κw1 −
√
2
2 w3, Sw2 = κw2 −

√
2
2 w3, Sw3 =

√
2
2 w1 −

√
2
2 w2 + κw3

and Sw4 = λw4. and then, we have

N2w1 = (κ2 + 2κλ− 1
2 )w1 + 1

2w2 +
√
2
2 (κ+ λ)w3,

N2w2 = −1
2 w1 + (κ2 + 2κλ+ 1

2 )w2 +
√
2
2 (κ+ λ)w3,

N2w3 = −
√
2

2 (κ+ λ)w1 +
√
2
2 (κ+ λ)w2 + (κ2 + 2κλ)w3 and N2w4 = 3κ2w4.

From (7)(i) and polar decomposition ∇H2 =
4∑
i=1

εiwi(H2)wi, we get

(i) (κ2 + 2κλ− 1
2 − 9H2)ε1w1(H2)− 1

2ε2w2(H2)−
√
2
2 (κ+ λ)ε3w3(H2) = 0,

(ii) 1
2ε1w1(H2) + (κ2 + 2κλ+ 1

2 − 9H2)ε2w2(H2) +
√
2
2 (κ+ λ)ε3w3(H2) = 0,

(iii)
√
2
2 (κ+ λ)(ε1w1(H2) + ε2w2(H2)) + (κ2 + 2κλ− 9H2)ε3w3(H2) = 0,

(iv) (3κ2 − 9H2)ε4w4(H2) = 0.
Our first claim is wi(H2) = 0 for i = 1, 2, 3, 4.

If w1(H2) 6= 0, then by dividing both sides of equalities (i), (ii) and (iii) by
ε1w1(H2), and using the identity 2H2 = κ2 + κλ (in the case S4),we get

(a) − 1

2
− 7

2
κ2 − 5

2
κλ− 1

2
ν1 −

√
2

2
(κ+ λ)ν2 = 0

(b)
1

2
+ (

1

2
− 7

2
κ2 − 5

2
κλ)ν1 +

√
2

2
(κ+ λ)ν2 = 0

(c)
−
√

2

2
(κ+ λ)(1 + ν1)− (

7

2
κ2 +

5

2
κλ)ν2 = 0,

(39)

where, ν1 := ε2w2(H2)
ε1w1(H2)

and ν2 := ε3w3(H2)
ε1w1(H2)

.

By comparing (39)(a) and (39)(b), we get −12 κ(7κ+5λ)(1+u1) = 0. If κ = 0,

then H2 = 0. Assuming κ 6= 0, we get u1 = −1 or λ = − 7
5κ. If u1 6= −1 then

λ = − 7
5κ. So, by (39)(c) we obtain u1 = −1, which is a contradiction. Hence

we have u1 = −1, which by (39)(a, c) gives u2 = 0.
Now we discuss on two cases λ = − 7

5κ and λ 6= − 7
5κ. If λ = − 7

5κ, then,

κ = 5
2H1, H2 = −1

5 κ
2, H3 = −4

5 κ
3 and H4 = −7

5 κ
4 are all constants on U .

Also, the case λ 6= − 7
5κ is in contradiction with (39)(b).

Hence, the claim in the case i = 1 is affirmed. The second case of claim (i.e.
w2(H2) = 0) can be proved by a similar way.

By applying the results w1(H2) = w2(H2) = 0, from (39)(b) and (39)(c) we
get w3(H2) = 0.

The final case of claim (i.e. w4(H2) = 0), can be proved using (iv), in a
straightforward manner.

In the second step, we prove that H2 = 0. By (7)(ii), we have CH2 =
9H1H

2
2 − 3H2H3 = 0. If H2 = 0, it remains nothing to prove. By assumption

H2 6= 0, we get 3H1H2 = H3, which gives κ(κ2 − 3H1κ + 3H2
1 ) = 0, where

κ2 − 3H1κ + 3H2
1 > 0, Hence, κ = 0. Therefore, H2 = H3 = H4 = 0. So, M4

1

is isoparametric and 1-minimal �
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[6] Dimitrić, I. (1992) Submanifolds of En with harmonic mean curvature vector, Bull. Inst.

Math. Acad. Sin., 20, 53-65. https://www.researchgate.net/publication/266138884.
[7] Gupta, R. S. (2016), Biharmonic hypersurfaces in E5

s, An. Stiint. Univ. Al. I. Cuza Iasi

Mat. (N.S.), 112:2, 585-593.

[8] Hasanis, T. and Vlachos, T. (1995) Hypersurfaces in E4 with harmonic mean curvature
vector field, Math. Nachr., 172, 145-169. doi:10.1002/mana.19951720112.

[9] Jiang, G. Y. (1987), The conservation law for 2-harmonic maps between Riemannian

manifolds, Acta Math. Sin., 30, 220–225.
[10] Kashani, S. M. B. (2009), On some L1-finite type (hyper)surfaces in Rn+1, Bull. Korean

Math. Soc., 46:1, 35-43. http://doi:10.4134/BKMS.2009.46.1.035.
[11] Lucas, P. and Ramirez-Ospina, H. F. (2011), Hypersurfaces in the Lorentz-

Minkowski space satisfying Lkψ = Aψ + b, Geom. Dedicata, 153, 151-175.

http://doi:10.1007/s10711-010-9562-z.
[12] Magid, M. A. (1985), Lorentzian isoparametric hypersurfaces, Pacific J. of Math., 118:1

, 165-197. http://doi:10.2140/PJM.1985.118.165.

[13] Pashaie, F. and Mohammadpouri, A. (2017), Lk-biharmonic spacelike hyper-
surfaces in Minkowski 4-space E4

1, Sahand Comm. Math. Anal., 5:1 , 21-30.

http://doi:10.22130/scma.2017.20589.

[14] O’Neill, B. (1983), Semi-Riemannian Geometry with Applicatins to Relativity, 2nd edi-
tion, Academic Press Inc..

[15] Pashaie, F. and Kashani, S. M. B. (2013), Spacelike hypersurfaces in Riemannian or

Lorentzian space forms satisfying Lkx = Ax+ b, Bull. Iran. Math. Soc., 39:1, 195–213.
http://bims.iranjournals.ir/article−338.html.

[16] Pashaie, F. and Kashani, S. M. B. (2014), Timelike hypersurfaces in the Lorentzian
standard space forms satisfying Lkx = Ax + b, Mediterr. J. Math., 11:2, 755-773.
https://link.springer.com/article/10.1007/s00009-013-0336-3.

[17] Petrov, A. Z. (1969), Einstein Spaces, Oxford and New York: Pergamon Press, Hungary.
[18] Turgay, N. C. (2014), Some classifications of biharmonic Lorentzian hypersurfaces in

Minkowski 5-space E5
1, Mediterr. J. Math., 13:1, 401-412. http://doi: 10.1007/s00009-

014-0491-1.



Biharmonic hypersurfaces in the standard Lorentz... – JMMR Vol. 14, No. 2 (2025) 219

Ghorbanali Haghighatdoost
Orcid number: 0000-0002-7979-6122

Department of Mathematics, Faculty of Sciences

Azarbaijan Shahid Madani University
Tabriz, Iran

Email address: gorbanali@azaruniv.ac.ir

Sara Hoseinpour

Orcid number: 0009-0002-8696-4398

Department of Mathematics, Faculty of Sciences
Azarbaijan Shahid Madani University

Tabriz, Iran

Email address: s.h.13971402@gmail.com

Firooz Pashaie

Orcid number: 0000-0002-3020-7649
Department of Mathematics, Faculty of Basic Sciences

University of Maragheh, P.O.Box 55181-83111

Maragheh, Iran
Email address: f−pashaie@maragheh.ac.ir

Leila Shahbaz
Orcid number: 0000-0001-6312-6231

Department of Mathematics, Faculty of Basic Sciences

University of Maragheh, P.O.Box 55181-83111
Maragheh, Iran

Email address: l−shahbaz@maragheh.ac.ir


	1. Introduction
	2. Preliminaries
	3. Some examples
	4. C-biharmonic hypersurfaces with diagonal shape operator
	5. Three Cases of shape operator with non-diagonal matrix
	6. Aknowledgement
	References

