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Abstract. This study explores the Z-eigenvalue inclusion theorem, fo-

cusing on its role in improving the best rank-one approximation for ten-

sors. We propose novel inclusion sets inspired by Brauer and Brualdi’s
frameworks, offering sharper bounds on Z-eigenvalues. These sets are

demonstrated to provide more accurate results than existing approaches.

Additionally, we apply these results to obtain refined estimates of best
rank-one approximation, particularly for weakly symmetric nonnegative

tensors. The paper includes numerical examples to validate the enhanced

bounds presented.
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1. Introduction

Let C (resp., R) denote the set of complex (resp., real) numbers, and Cn
(resp., Rn) denote the vector space of n-dimensional complex (resp., real) vec-
tors. Given two positive integers m ≥ 2 and n ≥ 2, we define [n] = {1, 2, . . . , n}.
The space C[m,n] (resp., R[m,n]) represents the set of all m-order n-dimensional
complex (resp., real) tensors, which are multidimensional arrays consisting
of nm complex-valued (resp., real-valued) entries ai1i2...im , where each index
ij ∈ [n] for j = 1, 2, . . . ,m. In particular, tensors of order 1 correspond to
vectors, while tensors of order 2 are equivalent to matrices.

For a tensor A = (ai1i2...im) ∈ R[m×n], we say that A is nonnegative if
all its components satisfy ai1i2...im ≥ 0. A tensor A = (ai1i2...im) is termed
symmetric [26] if

ai1i2...im = aiπ(1)iπ(2)...iπ(m)
, ∀π ∈ Πm,

where Πm denotes the set of all permutation group of the indices (1, . . . ,m).
Additionally, an m-order n-dimensional real tensor A = (ai1i2...im) is termed
weakly symmetric [5], if

∇(Axm) = mAxm−1, ∀x ∈ Rn,
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where ∇ represents the gradient operator, Axm is the homogeneous polynomial
defined by

fA(x) = Axm = xT (Axm−1) =

n∑
i1,i2,...,im=1

ai1i2...imxi1xi2 . . . xim ,

and Axm−1 is an n-dimensional vector in Cn, with its i-th element given by(
Axm−1

)
i

=

n∑
i2,i3,...,im=1

aii2...imxi2 . . . xim .

It is important to note that while every symmetric tensor is inherently weakly
symmetric, the reverse is not necessarily true. Consequently, certain conclu-
sions that hold for symmetric tensors may not apply to weakly symmetric
tensors. This distinction underscores the need for careful consideration when
extending results from symmetric to weakly symmetric cases.

The concept of Z-eigenvalues for tensors was independently introduced by
Qi [26] and Lim [20] in 2005.

Definition 1.1. Let A = (ai1i2...im) ∈ R[m,n] be a given tensor. If there exist
a scalar λ ∈ C and a nonzero vector x = (x1, . . . , xn) ∈ Cn\{0} such that

Axm−1 = λx and xTx = 1,(1)

then λ is termed an E-eigenvalue of A, and x is called an E-eigenvector asso-
ciated with λ. If both λ and x are real, then λ is referred to as a Z-eigenvalue
of A, with x as the corresponding Z-eigenvector.

Let A be an m-order n-dimensional real tensor, and denote the set of all
Z-eigenvalues of A as σ(A), known as the Z-spectrum. If σ(A) 6= ∅, the
Z-spectral radius of A, represented by ρ(A) = max {|λ| : λ ∈ σ(A)} . Chang,
Pearson, and Zhang [5] pointed out that for nonnegative tensors, ρ(A) does not
always correspond to a positive Z-eigenvalue of A. They further established
that when A is a weakly symmetric nonnegative tensor, ρ(A) is guaranteed to
be a Z-eigenvalue of A.

The study of Z-eigenvalue problems for tensors has gained significant at-
tention due to their broad range of applications, including the best rank-one
approximation [11,24,37], the geometric measure of entanglement in multipar-
tite quantum states [34,35], and providing sufficient conditions for the positive
definiteness of homogeneous polynomial forms, which are essential for evaluat-
ing the asymptotic stability of time-invariant polynomial systems [28, 36]. In
this paper, we focus specifically on the best rank-one approximation.

A tensor A of order m and dimension n is called a rank-one tensor if it can
be represented as the outer product of m vectors, given by the expression

R1 =

A ∈ R[m×n] : A =

m⊗
j=1

v(j), v(j) ∈ Rn
 .
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This means that every entry ai1i2...im of A can be written as the product of
the corresponding components of the vectors

ai1i2...im = v
(1)
i1
v

(2)
i2
. . . v

(m)
im

,

for i1, i2, . . . , im ∈ [n]. In particular, if all the vectors involved in the outer
product are identical, the tensor is referred to as a symmetric rank-one tensor.
In this case, each entry ai1i2...im of the tensor is given by

ai1i2...im = vi1vi2 . . . vim , i1, i2, . . . , im ∈ [n].

The best rank-one approximation of tensors is fundamental in a variety of ap-
plications, including MIMO communication systems [10], data analysis [11,25],
image and signal processing [9], independent component analysis [4], higher-
order statistics [22,23], and magnetic resonance imaging [12]. When considered
under the Frobenius norm, this approximation can be framed as an extreme
Z-eigenvalue problem [24,25]. In [24], Qi introduced the notion of the best rank-
one approximation ratio, denoted App(V ), for tensor space V , providing both
lower and upper bounds for this ratio. These bounds are crucial in understand-
ing the convergence behavior of the greedy rank-one update algorithm [1, 32]
and play an important role in evaluating the performance of rank-truncated
steepest descent methods in low-rank matrix and tensor optimization [30].

Various engineering and scientific problems including the best rank-one ten-
sor approximation can be framed as the Z-eigenvalue problem of tensor. How-
ever, unlike the eigenvalue problem for matrices, finding eigenvalues for tensors
is NP-hard [15]. Despite this challenge, several algorithms have been developed
to compute eigenvalues for specific types of tensors, such as nonnegative and
symmetric tensors [7,17,18]. Nevertheless, these methods often face difficulties
when dealing with large tensors and, more importantly, do not always ensure
that the computed Z-eigenvalues are the largest. Consequently, it is necessary
to study the Z-eigenvalue inclusion theorem for tensors.

In recent years, there has been increasing focus on the localization of Z-
eigenvalues for tensors and the development of bounds for the Z-spectral radius
of weakly symmetric nonnegative tensors. Wang, Zhou, and Caccetta [33]
generalized Gersgorin’s and Brauer-type eigenvalue inclusion theorems from
the matrix setting to the Z-eigenvalue problem. Further investigations into
the Z-eigenvalue localization theorem for tensors are available in works such
as [13,14,16,19,21,27,34–36].

In this paper, we introduce optimal Z-eigenvalue inclusion sets for tensors
and explore their applications in improving the best rank-one approximation
within nonnegative tensor spaces.

The structure of this paper is as follows. In Section 2, we establish two
enhanced Brauer-type and Brualdi-type Z-eigenvalue localization sets, which
provide more precise results than those presented in [16, 33]. Section 3 intro-
duces a new Brualdi-type Z-eigenvalue inclusion theorem for tensors, based on
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classifying tensor entries according to the digraph associated with even-order
tensors. Additionally, we demonstrate that, in a specific case, the Brualdi-type
inclusion set of Z-eigenvalues is tighter than the set provided in [35]. In Section
4, we concentrate on estimating the best rank-one approximation for weakly
symmetric tensors.

2. Brauer-type and Brualdi-type Z-eigenvalue localization
sets

In this section, we propose two refined Z-eigenvalue inclusion sets based
on Brauer-type and Brualdi-type approaches for tensors. Furthermore, we
compare these newly developed sets with several existing results to highlight
their improvements.

Define ri (A) =
∑

i2,...,im∈[n]

|aii2...im |. Wang, Zhou, and Caccetta [33] intro-

duced the following Gershgorin-type theorem, which establishes a Z-eigenvalue
localization set for tensors.

Theorem 2.1. Let A = (ai1i2...im) be a tensor of m-order n-dimensional, then

σ (A) ⊆ K (A) =
⋃
i∈[n]

Ki (A) := {z ∈ R : |z| ≤ ri (A)} .

Brauer’s well-known eigenvalue inclusion set for matrices, introduced in [2],
is recognized as a subset of the Gershgorin set. Recently, this eigenvalue inclu-
sion set has been extended from matrices to tensors, leading to the following
Brauer-type Z-eigenvalue inclusion set for tensors [33].

Theorem 2.2. [33, Theorem 3.2] Let A = (ai1i2...im) be a tensor of m-order
n-dimensional. Then all Z-eigenvalues of A are located in the following set

L(A) :=
⋃
i∈[n]

⋂
j∈[n]
j 6=i

Li,j(A) = {z ∈ C : (|z| − (ri(A)− |aij...j |)) |z| ≤ |aij...j | rj(A)} .

We define the Kronecker symbol for m indices as δi1i2...im , which is given by

δi1i2...im =

{
1 if i1 = i2 = · · · = im

0 otherwise.

Define Ri(A) = ri(A) − |ai...i|. A modification of Theorem 2.2 presents an
optimal Brauer-type Z-eigenvalue inclusion set.

Theorem 2.3. Let A = (ai1i2...im) be a tensor of m-order n-dimensional and
assume that Ri(A) > 0 for i ∈ [n]. Then

σ (A) ⊆ B (A) = B1 (A) ∪B2 (A) ,

where B1 (A) =
⋃

i,j∈[n]
i 6=j

{z ∈ R : (|z| − |ai···i|)m−1
(|z| − |aj···j |) ≤ (Ri(A))

m−1

Rj(A), |z| > |ai···i|}, and B2 (A) =
⋃
i∈[n] {z ∈ R : |z| < |ai···i|} .
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Proof. Let λ be a Z-eigenvalue with a corresponding Z-eigenvector x. Assum-
ing Ri(A) > 0, we deduce that λ ∈ B(A) whenever |λ| = |ai···i| for some i ∈ [n].
Next, consider the case where |λ| > |ai···i| for all i ∈ [n]. Using Equation (1),
we get

|λ| |xi|m−1 ≤ |λ| |xi| ≤ |ai···i| |xm−1
i |+

∑
i2,...,im∈[n]
δii2...im=0

|aii2...im | |xi2 | . . . |xim | ,

which implies that

(|λ| − |ai···i|) |xm−1
i | ≤

∑
i2,...,im∈[n]
δii2...im=0

|aii2...im | |xi2 | . . . |xim | .(2)

Let |xt| ≥ |xs| ≥ max
k∈[n]
k 6=s,k 6=t

|xk|. Then from the t-th inequality of (2), we can get

(|λ| − |at···t|) |xm−1
t | ≤

∑
i2,...,im∈[n]
δti2...im=0

|ati2...im | |xi2 | . . . |xim |

≤
∑

i2,...,im∈[n]
δti2...im=0

|ati2...im | |xt|m−2 |xs|

≤ Rt (A) |xt|m−2 |xs| .(3)

We analyze Equation (3) by considering two distinct cases.
Case 1. Let xs = 0. Then from Equation (3), we derive

(|λ| − |at···t|) |xm−1
t | = 0,

which leads to the conclusion |λ| = |at···t|. Thus, it follows that λ ∈ B(A).
Case 2. Now consider the case where xs 6= 0. From Equation (3), we obtain

(|λ| − |at···t|) |xm−1
t | ≤ Rt(A) |xt|m−2 |xs| .

Since |λ| > |at···t| , it follows that(
(|λ| − |at···t|) |xm−1

t |
)m−1 ≤

(
Rt(A) |xt|m−2 |xs|

)m−1

.(4)

Similar to (3), we obtain

(|λ| − |as···s|) |xm−1
s | ≤ Rs(A) |xt|m−2 |xs| .(5)

Since xTx = 1, and 0 ≤ |xi|m−1 ≤ |xi| ≤ 1, by (4) and (5), we have

(|λ| − |at···t|)m−1
(|λ| − |as···s|) ≤ (Rt(A))

m−1
Rs(A).

If |λ| < |ai···i| for some i ∈ [n], it follows that λ ∈ B2(A). Therefore, we
conclude that λ ∈ B(A), which establishes the desired result and thereby
completes the proof. �
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In [3], Brualdi presented the eigenvalue inclusion set for matrices. Drawing
upon this concept, we formulate a corresponding Brualdi Z-eigenvalue inclusion
set for tensors, expressed as follows.

Theorem 2.4. Let A = (ai1i2...im) be a tensor of m-order n-dimensional and
assume that Ri(A) > 0 for i ∈ [n]. Then

σ (A) ⊆ Z(A) := Z1(A) ∪ Z2(A),

where

Z1(A) =
⋃

ai1i2···im 6=0,

δi1i2...im=0

z ∈ R :

m∏
j=1

(
|z| −

∣∣aij ...ij ∣∣) ≤ m∏
j=1

Rij (A), |z| >
∣∣aij ...ij ∣∣

 ,

Z2(A) =
⋃
i∈[n]

{z ∈ R : |z| < |ai...i|} .

Proof. Let λ be a Z-eigenvalue with a corresponding Z-eigenvector x. Following
a similar reasoning as in Theorem 2.3, we consider three distinct cases. Under
the assumption that Ri(A) > 0, it can be concluded that λ ∈ Z(A) when
|λ| = |ai···i| for some i ∈ [n]. Next, consider the case where |λ| > |ai···i| for
all i ∈ [n]. Let |xβ | = max{|xi1 | |xi2 | · · · |xim | : ai1i2···im 6= 0, (i2, . . . , im) 6=
(i1, . . . , i1) , i1, . . . , im ∈ [n]}. Similar to (2) for all i ∈ [n], we have

(|λ| − |ai···i|) |xmi | ≤
∑

i2,...,im∈[n]
δii2...im=0

|aii2...im | |xi| |xi2 | . . . |xim |

≤
∑

i2,...,im∈[n]
δii2...im=0

|aii2...im | |xβ |

= Ri(A) |xβ | .(6)

We analyze Equation (6) by considering two distinct cases.
Case 1. Let |xβ | = 0. Given that x 6= 0, we assume xp 6= 0 for some

p ∈ [n]. From Rp(A) > 0, then there exists app2···pm 6= 0, where δpp2...pm = 0,
i.e., (p2, . . . , pm) 6= (p, . . . , p). Thus, we have |xpxp2 · · ·xpm | = |xβ | = 0. From
Equation (6), it follows that

(|λ| − |app...p|)
∣∣xmp ∣∣ = 0,

which implies |λ| = |ap...p|. Therefore, it is evident that λ ∈ Z(A).
Case 2. Now consider the case where |xβ | 6= 0. Suppose that |xβ | =

|xj1 | |xj2 | · · · |xjm |. From Equation (6), we obtain

(|λ| − |aj1j1···j1 |)
∣∣xmj1∣∣ ≤ Rj1(A) |xβ | ,

...

(|λ| − |ajmjm···jm |)
∣∣xmjm∣∣ ≤ Rjm(A) |xβ | .
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Given that |λ| > |ai···i| for all i ∈ [n], it follows that

m∏
l=1

(|λ| − |ajljl···jl |)
∣∣xmjl ∣∣ ≤ |xβ |m m∏

l=1

Rjl(A).

If |λ| < |ai···i| for some i ∈ [n], it follows that λ ∈ Z2(A). Consequently, we
deduce that λ ∈ Z(A), thereby establishing the desired result and completing
the proof. �

The following describes the relationships between Z(A) and B(A).

Theorem 2.5. Let A = (ai1i2...im) be a tensor of m-order n-dimensional.
Assume that Ri(A) > 0 for i ∈ [n]. Then

(7) Z(A) ⊆ B(A) ⊆ L(A) ⊆ K(A).

Proof. The inclusion L(A) ⊆ K(A) was established in [33, Corollary 3.1]. Next,
consider the inclusion B(A) ⊆ L(A) from Equation (7). For z ∈ B(A), if
z /∈ L(A), then for every i ∈ [n], there exists j ∈ [n] such that j 6= i and
z /∈ Li,j(A), by the definition of Li,j(A) presented in Theorem 2.2.

If aij···j 6= 0, then
|z| − (ri(A)− |aij···j |)

|aij···j |
> 1

or
|z|

rj(A)
> 1,

and thus, we have

|z| > ri(A) = |ai···i|+Ri(A), ∀i ∈ [n].(8)

When aij···j = 0, we still have the result in (8). Thus, for all i, j ∈ [n], where
i 6= j, one obtains

(|z| − |ai···i|)m−1
(|z| − |aj···j |) > (Ri(A))

m−1
Rj(A).

This contradicts the assumption that z ∈ B1(A). Furthermore, by inequality
(8), for all i ∈ [n], we have |z| − |ai···i| > Ri(A) > 0, which contradicts the
assumption that z ∈ B2(A). Therefore, we conclude that z ∈ L(A).

Next, we prove the validity of the left-hand inclusion in (7). Let z ∈ Z(A),
meaning z ∈ Z1(A) or z ∈ Z2(A). If z ∈ Z2(A), then z ∈ B2(A). Let z be
any point in Z1(A), which satisfies the following inequality

m∏
j=1

(
|z| −

∣∣aijij ...ij ∣∣) ≤ m∏
j=1

Rij (A).(9)

By raising both sides of the inequality (9) to the power of m, we obtain

m∏
j=1

(
|z| −

∣∣aijij ...ij ∣∣)m ≤ m∏
j=1

(Rij (A))m.(10)
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Since Rij (A) > 0 for j = 1, 2, . . . ,m, we can equivalently express the inequality
(10) in the following form
(
|z| − |ai1...i1 |

m−1
)

(|z| − |ai2...i2 |)

(Ri1(A))m−1(Ri2(A))

 .


(
|z| − |ai2...i2 |

m−1
)

(|z| − |ai3...i3 |)

(Ri2(A))m−1(Ri3(A))



...


(
|z| − |aim...im |

m−1
)

(|z| − |ai1...i1 |)

(Rim(A))m−1(Ri1(A))

 ≤ 1.

(11)

Given that the factors on the left side of (11) cannot all exceed unity, it follows
that at least one of these factors must equal unity at most. Specifically, we
have 

(
|z| − |ai1...i1 |

m−1
)

(|z| − |ai2...i2 |)

(Ri1(A))m−1(Ri2(A))

 ≤ 1

or 
(
|z| − |ai2...i2 |

m−1
)

(|z| − |ai3...i3 |)

(Ri2(A))m−1(Ri3(A))

 ≤ 1

or

...

or 
(
|z| − |aim...im |

m−1
)

(|z| − |ai1...i1 |)

(Rim(A))m−1(Ri1(A))

 ≤ 1.

Therefore, there exists an α such that 1 < α < m, satisfying the condition

(|z| − |aiα...iα |)
m−1 (|z| − ∣∣aiα+1...iα+1

∣∣) ≤ (Riα(A))m−1(Riα+1
(A)).

This means that z ∈ B1(A). Hence, we have Z(A) ⊆ B(A). Therefore, the
proof is concluded. �

The following example from [16] illustrates the enhancements in the bounds
achieved in this section.

Example 2.6. [16, Example 2.8] Consider the symmetric tensor A = (aijkl) ∈
R[4,2], with entries defined as follows

a111 = 2, a222 = 1, a112 = a122 = a211 =
−4

3
, and other aijk = 0.
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From Theorem 2.3, we get

B(A) =

{
z ∈ R : (|z| − 2)

2
(|z| − 1) ≤

(
8

3

)2(
4

3

)}
∪{

z ∈ R : (|z| − 1)
2

(|z| − 2) ≤
(

8

3

)(
4

3

)2
}
.

Table 1 shows some Z-eigenvalue inclusion sets for tensor A.

Table 1. Various Z-eigenvalue inclusion sets for Example 2.6

K(A) of [33, Theorem 3.1]
{
z ∈ R : |z| ≤ 14

3

}
L(A) of [33, Theorem 3.2] {z ∈ R : |z| ≤ 4.0934}
F(A) of [16, Theorem 2.5]

{
z ∈ R : |z| ≤ 14

3

}
B(A) of [16, Theorem 2.1] {z ∈ R : |z| ≤ 3.9384}

B(A) of Theorem 2.3 {z ∈ R : |z| ≤ 3.8303}
Z(A) of Theorem 2.4 {z ∈ R : |z| ≤ 3.8303}

3. A novel Brualdi-type Z-eigenvalue inclusion set for tensors
of even order

In this section, we propose novel Brualdi-type Z-eigenvalue localization sets
by classifying the index set, and we show that these localization sets provide
tighter bounds than existing ones.

The concept of a Z-identity tensor was introduced in [18,26].

Definition 3.1. A tensor IZ = (ei1i2...im) of m-order n-dimensional, where m
is even, is defined as a Z-identity tensor if, for any vector x ∈ Rn with xTx = 1,
the following condition holds

IZxm−1 = x.

In general, Z-identity tensors are not uniquely defined (see, e.g., [18,27,28]).
Several constructions can serve as Z-identity tensors; for example, the following
cases provide valid forms of Z-identity tensors:
Case I. Let I1 = (ei1 i2···im) ∈ R[m,n], where

ei1 i2···im =

{
1 i1 = i2, i3 = i4, . . ., im−1 = im
0 otherwise

(12)

Case II. Let I2 = (ei1 i2···im) ∈ R[m,n], where

ei1 i2···im =
1

m!

∑
π∈

∏
m

δiπ(1) iπ(2)
δiπ(3) iπ(4)

. . . δiπ(m−1) iπ(m)
(13)
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For i1, i2, . . . , im ∈ [n], let δ represent the Kronecker delta, where δij = 1 if
i = j and δij = 0 if i 6= j.

We will adopt the following notation, organized by partitioning the index
set.

Λi :=
{

(i2, . . . , im) : (I1)ii2 ...im = 1, i2, . . . , im ∈ [n]
}
,

Λi :=
{

(i2, . . . , im) : (I1)ii2 ...im = 0, i2, . . . , im ∈ [n]
}
.

∆ := {(i2, . . . , im) : i2, . . . , im are either distinct or exactly two are equal } ,
∆ := {(i2, . . . , im) : (i2, . . . , im) /∈ ∆, i2, . . . , im ∈ [n]} .

Ωj := {(i2, . . . , im) : ik = j for some k ∈ {2, . . . ,m}, where j, i2,..., im ∈ [n]} ,
Ωj := {(i2, . . . , im) : ik 6= j for any k ∈ {2, . . . ,m}, where j, i2,..., im ∈ [n]} .

For a tensor A = (ai1i2...im) of m-order n-dimensional with i 6= j, and for
K ∈ {Λi,∆,Ωj}, we consistently employ the following notation throughout our
proofs.

rKi (A) =
∑

i2,...,im∈K

|aii2...im |, rKi (A) =
∑

i2,...,im∈K

|aii2...im |,

Mi(A) = βi +
1

(m− 2)
m−2

2

rΛi∩∆
i (A) + rΛi∩∆

i (A), βi = max
i2,...,im∈Λi

{|aii2 ...im |} ,

MΩi
i (A) = βi +

1

(m− 2)
m−2

2

rΛi∩∆∩Ωi
i (A) + rΛi∩∆∩Ωi

i (A).

It is evident that for any i ∈ [n], the relation ri(A) = rKi (A) + rKi (A) holds.
If the Z-identifying tensor I is designated as I1, then according to Definition

3.1, we can state the following lemma.

Lemma 3.2. For any x ∈ R, if x2
1 + · · ·+ x2

n = 1, Then∑
i2,i3,...,im∈Λi

xi2 xi3 . . . xim = xi ∀i ∈ [n].

In the subsequent discussion, we provide a lemma from [27, Lemma 2.2],
which is essential for several of our results.

Lemma 3.3. Consider x2
1 + · · · + x2

n = 1, where xi ∈ R for i ∈ [n]. Let
y1, . . . , yk denote any k entries selected from x1, . . . , xn. Then, it follows that

|y1||y2| · · · |yk| ≤
1

k
k
2

.

Using the above notations and results, we can rewrite Equation (1) as follows.
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Remark 3.4. Let A = (ai1i2...im) be an m-order, n-dimensional tensor, with m
assumed to be even. Consider λ ∈ σ(A) and let x = (x1, . . . , xn)T ∈ Rn be an
eigenvector associated with λ. This implies that the following equation holds

Axm−1 = λx, with xTx = 1.(14)

Let |xt| = max
i∈[n]
|xi| . Then, from the t-th equation in (14), we obtain the fol-

lowing

λxt =
(
Axm−1

)
t

=
∑

i2,...,im∈Λt

ati2...im xi2 . . . xim

+
∑

i2,...,im∈Λt∩∆

ati2...im xi2 . . . xim

+
∑

i2,...,im∈Λt∩∆

ati2...im xi2 . . . xim .(15)

Since xTx = 1, and given that 0 ≤ |xi|m−1 ≤ |xi| ≤ 1, we can take the modulus
of the equation and apply the triangle inequality to derive the following result
for (15)

|λ| |xt| ≤ βt
∑

i2,...,im∈Λt

xi2 . . . xim

+
∑

i2,...,im∈Λt∩∆

|ati2...im | |y1| . . . |ym−2| |xt|

+
∑

i2,...,im∈Λt∩∆

|ati2...im | |xt|
m−1

,

where |y1|, . . . , |ym−2| are derived using the following approaches:
Case I. If i2, . . . , im are distinct, we can substitute any one of |xi2 |, . . . , |xim |

with |xt|, while preserving the values of the others (which we can designate as
|y1|, . . . , |ym−2|).

Case II. If exactly two of i2, . . . , im are equal, we can replace one of
the repeated elements with |xt|, while the remaining elements (denoted as
|y1|, . . . , |ym−2|) remain unchanged.

Utilizing Lemmas 3.2 and 3.3, we obtain

|λ||xt| ≤ |xt|

(
βt +

1

(m− 2)
m−2

2

rΛt∩∆
t (A) + rΛt∩∆

t (A)

)
.(16)

Let |xt| ≥ |xs| ≥ {max |xk| : k ∈ [n], k 6= s, k 6= t} , then |xt| > 0. Again by
(14), we have

|λ| |xt| ≤
∑

i2,...,im∈Ωt

|ati2...im | |xi2 | . . . |xim |+
∑

i2,...,im∈Ωt

|ati2...im | |xi2 | . . . |xim | .
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For t 6= s, similar to the characterization of (16) for the second summation in
the above inequality, yields that

|λ| |xt| ≤

(
βt +

1

(m− 2)
m−2

2

rΛt∩∆∩Ωt
t (A) + rΛt∩∆∩Ωt

t (A)

)
|xt|+

rt (A)
Ωt |xs|m−1

.

Thus, (
|λ| −MΩt

t (A)
)
|xt| ≤ rΩt

t (A) |xs|m−1 ≤ rΩt
t (A) |xs| .(17)

Let Γ be a directed graph with a vertex set V and an arc set E. A circuit in
Γ is characterized by a sequence υi1 , . . . , υip , υip+1

= υi1 , where p ≥ 2 and the
vertices υi1 , . . . , υip are distinct. Additionally, the arcs (υi1 , υi2), (υi2 , υi3), . . . ,
(υip , υi1) must belong to the set E. The directed graph Γ is termed weakly
connected if, for every vertex υi ∈ V , there exists at least one circuit that
includes υi.

Define
Γ+
υi = {υj ∈ V : (υi, υj) ∈ E, υi ∈ V } .

A pre-order established on the set V fulfills the following criteria:
1. vi 6 vi;
2. If vi 6 vj and vj 6 vk, then vi 6 vk;
3. vi 6 vj and vj 6 vi do not imply vi = vj ,
where vi, vj , vk ∈ V (see, e.g., [3]).

Lemma 3.5. [3] Let Γ be a directed graph in which a pre-order is defined on
its vertex set. Assume that Γ+

v is nonempty for every vertex v. Then, there
exists a circuit of the form vi1 , . . . , vik , vik+1

= vi1 , such that vij+1
is a maximal

element of Γ+
vij

for each j ∈ [k].

Consider an m-order, n-dimensional tensor A = (ai1···im). We define a
directed graph ΓA in the following manner: the vertex set of ΓA is specified as
V (A) = {1, . . . , n}, and the arc set is defined as

E(A) = {(i, j) | aii2···im 6= 0, j ∈ {i2, . . . , im} 6= {i, . . . , i}}.
Let C(A) represent the collection of all circuits in Γ(A). We will now introduce
the optimal Brualdi-type Z-eigenvalue inclusion set.

Theorem 3.6. Let A = (ai1i2···im) be an m-order, n-dimensional tensor, where

m is even, and suppose that rΩi
i (A) 6= 0 for i ∈ [n]. If Γ(A) is weakly connected,

then
σ(A) ⊆ D (A) = D1 (A) ∪ D2 (A) ,

where D1 (A) =
⋃
γ∈C(A){z ∈ R :

∏
i∈γ

(
|z| −MΩi

i (A)
)
6
∏
i∈γ rΩi

i (A),

|z| > MΩi
i (A) , ∀i ∈ γ}, and D2 (A) =

⋃
i∈[n]

{
z ∈ R : |z| < MΩi

i (A)
}
, and

|γ| denotes the length of circuit γ.
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Proof. Let λ denote a Z-eigenvalue of A. Given that Γ(A) is weakly connected,

it follows that λ ∈ D(A) if |λ| = MΩi
i (A) for some i ∈ [n]. Now, suppose

|λ| > MΩi
i (A) for all i ∈ [n]. Let x = (x1, . . . , xn)T ∈ Rn be a Z-eigenvector

corresponding to λ, and let Γ0 denote the subgraph of ΓA induced by those
vertices i for which xi 6= 0. We define a pre-order on the vertex set of Γ0

such that i ≤ j if and only if |xi| ≤ |xj |. According to Lemma 3.5, there
exists a circuit γ = {i1, . . . , ip, ip+1 = i1} within Γ0 that satisfies the condition
|xij+1 | > |xk| for any k ∈ Γ+

0 (ij) (where j = 1, . . . , p). Consequently, from
inequality (17), we obtain(

|λ| −M
Ωij+1

ij+1
(A)
) ∣∣xij+1

∣∣ ≤ rΩij+1

ij+1
(A)

∣∣xij ∣∣ .
and hence,

p∏
j=1

(
|λ| −M

Ωij+1

ij+1
(A)
) p∏
k=1

|xik+1
| ≤

p∏
j=1

r
Ωij+1

ij+1
(A)

p∏
k=1

|xik |.

Given that ip+1 = i1 and xij 6= 0 for j = 1, . . . , p, it follows that

p∏
j=1

(
|λ| −M

Ωij+1

ij+1
(A)
)
≤

p∏
j=1

r
Ωij+1

ij+1
(A) ,

that is, ∏
i∈γ

(
|λ| −MΩi

i (A)
)
≤
∏
i∈γ

rΩi
i (A) .

If |λ| < MΩi
i (A) for some i ∈ [n], it follows that λ ∈ D2(A). Consequently, we

conclude that λ ∈ D(A), thereby completing the proof. �

In [35], an alternative Brauer-type Z-eigenvalue localization set for tensors
of even order was established.

Theorem 3.7. [35, Theorem 2.12] Let A = (ai1i2···im) be an m-order, n-
dimensional tensor, where m is even, then

σ(A) ⊆ P (A) =
⋃
i∈[n]

⋂
j∈[n],i6=j

Pi,j (A),

where

Pi,j (A) =
{
z ∈ R :

(
|z| −MΩi

i (A)
)
|z| ≤ rΩi

i (A)Mj (A)
}
.

Similar to Theorem 2.5, we indicate that the localization set D(A) is more
precise than the localization set P(A).

Theorem 3.8. Let A = (ai1i2···im) be an m-order, n-dimensional tensor, where

m is even, and suppose that rΩi
i (A) 6= 0 for i ∈ [n]. If Γ(A) is weakly connected,

then

(18) D(A) ⊆ P(A) ⊆ K(A).
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Proof. Inclusion P(A) ⊆ K(A) was proved in [35, Corollary 3]. For z ∈ D(A), if
z /∈ P(A), then for all i ∈ [n], there exists j ∈ [n], j 6= i, such that z /∈ Pi,j(A),
according to the definition of Pi,j(A) in Theorem 3.7.

If Mj(A) 6= 0, then

|z| −MΩi
i (A)

rΩi
i (A)

> 1

or
|z|

Mj(A)
> 1,

and thus, we have

|z| > Mi(A) = MΩi
i (A) + rΩi

i (A) , ∀i ∈ [n].(19)

When Mj(A) = 0, we also have (19). Thus, z /∈ D2(A).
Since Γ(A) is weakly connected, there exists a circuit γ ∈ C(A) such that∏

t∈γ

(
|λ| −MΩi

i (A)
)
>
∏
t∈γ

rΩi
i (A) .

Thus, we conclude that λ /∈ D1(A), implying λ /∈ D(A), which leads to a
contradiction. Therefore, we have D(A) ⊆ P(A). �

Below, we present an example that illustrates how the localization set defined
in Theorem 3.6 is more accurate than the other localization sets.

Example 3.9. ( [5, 13, 14, 16, 19, 21, 33]) Consider the symmetric tensor A =
(aijkl) ∈ R[4,2], with entries defined as follows:

a1111 =
1

2
, a2222 = 3, and aijkl =

1

3
elsewhere.

When i1 = 1, we have

Λ1 = {(i2, i3, i4) : (1, 1, 1) , (1, 2, 2)} ,
Λ1 ∩∆ = {(i2, i3, i4) : (2, 1, 2) , (2, 2, 1) , (1, 1, 2) , (2, 1, 1) , (1, 2, 1)} = Λ1 ∩∆ ∩ Ω1,

Λ1 ∩∆ = {(i2, i3, i4) : (2, 2, 2)} , Λ1 ∩∆ ∩ Ω1 = ∅,

which implies β1 = 1
2 , M1 (A) = 10

6 , M
Ω1
1 (A) = 8

6 and rΩ1
1 (A) = 1

3 .
When i1 = 2, we have

Λ2 = {(i2, i3, i4) : (2, 2, 2) , (2, 1, 1)} ,
Λ2 ∩∆ = {(i2, i3, i4) : (1, 1, 2) , (1, 2, 1) , (1, 2, 2) , (2, 1, 2) , (2, 2, 1)} = Λ2 ∩∆ ∩ Ω2,

Λ2 ∩∆ = {(i2, i3, i4) : (1, 1, 1)} , Λ2 ∩∆ ∩ Ω2 = ∅,

which implies β2 = 3, M2 (A) = 25
6 , M

Ω2
2 (A) = 23

6 and rΩ1
1 (A) = 1

3 .

We calculate the bounds for ρ(A) in Table 2. This table shows that the
bound provided in Theorem 3.6 outperforms the other bounds available in the
literature.
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Table 2. Upper bounds for ρ(A) in Example 3.9

Proposition 3.3 of [5] ρ(A) ≤ 7.5432
Corollary 4.5 of [29] ρ(A) ≤ 5.3333
Theorem 2.7 of [13] ρ(A) ≤ 5.2846
Theorem 3.3 of [19] ρ(A) ≤ 5.1935
Theorem 4.6 of [33] ρ(A) ≤ 5.1822
Theorem 4.7 of [33] ρ(A) ≤ 5.1822
Theorem 4.2 of [16] ρ(A) ≤ 5.1667
Theorem 2.4 of [21] ρ(A) ≤ 4.5147
Theorem 3.1 of [14] ρ(A) ≤ 4.0000
Theorem 2.12 of [35] ρ(A) ≤ 3.9732

Theorem 3.6 ρ(A) ≤ 3.8770

4. Application in Best Rank-One Approximation

In this section, we derive bounds for the best rank-one approximation ratio
App(V ) by applying the results from prior sections.

Let A = (ai1i2···im) be an m-order, n-dimensional tensor. The rank-one
tensor κxm = (κxi1xi2 · · ·xim) ∈ R1 is considered the best rank-one approxi-
mation of A if it minimizes the expression{

‖A − κxm‖F : κ ∈ R, x ∈ Rn, xTx = 1
}
,

where ‖A‖F :=
√∑n

i1,i2,...,im=1 a
2
i1i2···im is the Frobenius norm of the tensor

A.
Numerous theoretical results have been developed, along with various nu-

merical methods, to investigate tensor rank-one approximation [6, 11, 17]. Un-
fortunately, finding the best rank-one approximation for tensors and spectral
norms is NP-hard [15], which means that these methods only yield approximate
solutions. Additionally, Qi [25] has shown that the rank-one tensor κxm is the
optimal symmetric approximation of A if κ corresponds to the Z-eigenvalue of
A with the largest absolute value, and x is the associated eigenvector of κ.

The best rank-one approximation ratio [24] within the tensor space V is
defined as

App(V ) = max

{
µ : µ ≤ ρ(A)

‖A‖F
, ∀A ∈ V, A 6= O

}
= min
A6=O

ρ(A)

‖A‖F
= min
‖A‖F=1

ρ(A).

The maximum positive lower bound for the quotient of the best rank-one
approximation of any tensor within the tensor space V relative to the norm of
that tensor is always less than one.

Consequently, when A is a weakly symmetric tensor, the expression ρ(A)xm∗
represents the best rank-one approximation of A. Here, x∗ refers to the Z-
eigenvector of A associated with ρ(A), indicating that
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min
κ∈R,x∈Rn,xT x=1

‖A − κxm‖F = ‖A − ρ(A)xm∗ ‖F =

√
‖A‖2F − (ρ(A))

2
.

If we obtain a bound for ρ(A), we can derive bounds for min
κ∈R,x∈Rn,xT x=1

‖A−

κxm‖F , the approximation ratio App(V ), and
‖A−ρ(A)xm∗ ‖F

‖A‖F . Consequently,

building on the prior results, we derive new bounds for App(V ).
The ratio of the residual of the best rank-one approximation of A to the

Frobenius norm of the tensor can be represented as follows

‖A − ρ(A)xm∗ ‖F
‖A‖F

=

√
1− (ρ(A))2

‖A‖2F
=
√

1−App(V )2.

This provides a rate of convergence for the greedy rank-one update algo-
rithms [1, 32].

In a practical application, the author in [30] illustrated that estimating
App(V ) is crucial for understanding the convergence of rank-truncated steepest
descent methods in low-rank matrix and tensor optimization problems. He also
pointed out that the alternating least squares (ALS) method [11, 31] achieves
local linear convergence under specific conditions related to the rank of the Hes-
sian matrix of the objective function, stemming from a modified minimization
formulation of power method or the ALS approach.

There are several results regarding the bounds of App(V ) for tensors. For
tensors of order 3, these findings have been established previously. Cobos et
al. in [8] provided the following estimates

1

n
≤ App3(R;n, n, n) ≤ 3

√
π

n
.

Furthermore, they note that

Appd(R;n, . . . , n) = O

(
1√
nd−1

)
,

specifically,

Appd(R;n, . . . , n) ≤ d
√
π
√

2√
nd−1

.

In the context of finite-dimensional symmetric tensor space, the following
bounds are provided in [24,37]

1

n
≤ App

(
Sym3(Rn)

)
≤
√

6

n+ 5
.

Moreover, we aim to derive estimates for bounds within a finite-dimensional
space V̂ consisting of weakly symmetric nonnegative tensors. Based on earlier
findings, we present the following bounds.
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Theorem 4.1. Let V̂ be a finite-dimensional space comprised of weakly sym-
metric nonnegative tensors, and consider A ∈ V̂ . Then

L
‖A‖F

≤ AppA(V̂ ) ≤ U
‖A‖F

,

where L and U denote the lower and upper bounds of ρ(A), respectively.

Proof. SinceA is a weakly symmetric tensor, it follows that ρ (A) represents the
largest Z-eigenvalue of A (refer to Theorem 3.11 in [5]). Thus, the conclusion

directly follows from the definition of App(V̂ ) for the tensor A. �

We demonstrate that the bounds presented in Theorem 4.1 are better than
the existing results, using Example 3.9 as a reference.

Let A = (aijkl) ∈ R[4,2] be the symmetric tensor, with its elements defined
as follows

a1111 =
1

2
, a2222 = 3, and aijkl =

1

3
elsewhere.

Calculating with the MATLAB toolbox ”TenEig,” we obtain the following
values

‖A‖F = 3.2872, ρ(A) = 3.1092, App(A) = 0.9459.

According to [19, Theorem 3.3] (as shown in Example 4.1 of [21]), we obtain

0.7330 ≤ ρ(A) ≤ 5.1935.

From these bounds, we can derive the corresponding estimates for the best
rank-one approximation ratio.

0.2229 ≤ App
(
Sym4(Rn)

)
≤ 1.5799.

Additionally, from [21, Theorem 2.4], we find

0.7663 ≤ ρ(A) ≤ 4.5147,

which results

0.2331 ≤ App
(
Sym4(Rn)

)
≤ 1.3734.

Applying Theorem 3.6 gives us the bounds

1.2897 ≤ ρ(A) ≤ 3.8770,

leading to

0.3923 ≤ App
(
Sym4(Rn)

)
≤ 1.1794.

These results indicate that the lower and upper bounds in Theorem 4.1 are
tighter than the existing bounds.

Furthermore, the bounds for minκ∈R,x∈Rn,xT x=1 ‖A−κxm‖F and
‖A−ρ(A)xm∗ ‖F

‖A‖F
can be obtained similarly.
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5. Conclusions

In this work, we introduced novel Brauer-type and Brualdi-type Z-eigenvalue
inclusion sets, labeled as B(A) and Z(A), which extend classical results from
matrix theory to tensors. By categorizing the tensor index set, we also derived
an optimal inclusion set D(A) for tensors of even order, providing sharper
bounds.

One significant application of these findings is to evaluate the best rank-one
approximation for weakly symmetric tensors. The proposed inclusion sets es-
tablish a robust framework for bounding Z-eigenvalues, which are crucial in
determining the accuracy and computational efficiency of best rank-one ap-
proximation techniques. To demonstrate the effectiveness of our approach, we
presented numerical examples illustrating that our inclusion sets outperform
existing methods by delivering tighter bounds and improved approximations.

For future work, we aim to extend the inclusion sets to tensors of arbitrary
order, including odd-order tensors, thereby providing a more comprehensive
framework for tensor spectral analysis. Additionally, we intend to explore ap-
plications in areas such as the geometric measure of entanglement in multipar-
tite quantum states and the sufficient condition for the positive definiteness of a
homogeneous polynomial form, which is used to judge the asymptotic stability
of time-invariant polynomial systems.
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