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ABSTRACT 

In this study, an orthogonal signal correction (OSC)-based partial least 

squares (PLS) model and ensemble-based machine learning classifiers, 

combined with visible/near-infrared (Vis/NIR) spectroscopy, were 

proposed for non-destructive nitrate prediction in spinach leaves and 

sample safety evaluation. The OSC method was applied before 

developing the PLS model to enhance prediction accuracy. Spinach 

safety assessment was based on the maximum permissible nitrate 

accumulation level. Various ensemble classifiers, including 

subspace/discriminate, subspace/k-nearest neighbor, boosted trees, 

bagged trees, and random under-sampling boosted trees, were evaluated 

for distinguishing safe and unsafe samples. The best classification results 

were obtained using the subspace/discriminate ensemble classifier, 

achieving sensitivity, specificity, and accuracy of 95.24%, 98.73%, and 

98.45% for the calibration dataset and 100%, 91.8%, and 92.31% for 

external validation. The receiver operating characteristic (ROC) curve 

indicated superior discrimination ability, with an area under the curve 

(AUC) of 0.95. Additionally, the best model demonstrated a high 

prediction speed of approximately 280 observations per second. These 

findings highlight that combining Vis/NIR spectroscopy with the 

subspace/discriminate ensemble classifier provides an effective, rapid, 

and non-invasive method for detecting nitrate contamination in spinach 

leaves, making it a promising approach for food safety monitoring. 
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INTRODUCTION 

Excessive consumption of nitrogen fertilizers 

in the soil increases nitrogen in the soil solution 

and consequently increases the uptake of nitrate 

in vegetables. However, nitrate reduction does 

not increase as much and accumulates in plant 

tissue. Many vegetables store nitrates that have 

absorbed more than their metabolic needs, and 

the concentration of nitrates in them increases. 

Vegetables with high nitrate accumulation are 

toxic to humans and cause methemoglobinemia 

disease and some types of cancer. Therefore, the 

maximum amount of nitrate, maximum allowable 

level of nitrate, is the most important safety index 

of vegetables. If the amount of nitrate is below the 

index, the vegetable is safe. Vegetables with the 

nitrate concentration above the index are unsafe. 

To ensure vegetable safety, there is a need to 

assess its nitrate concentration. Currently, nitrate 

concentration of the product is measured by 

laboratory methods which are difficult, 

destructive, costly, and very time-consuming. In 

recent decades, optical near-infrared (NIR) 

spectroscopy has been used for quality and safety 

assessment of various vegetables (Bachir et al., 

2024; de Brito et al., 2022; Ito, 2014; Jamshidi, 

2017; Jamshidi et al., 2016; Jamshidi et al., 2015; 

Li et al., 2024; Rahi et al., 2020). There is some 

research on some vegetables such as cucumber 

(Jamshidi & Yazdanfar, 2022), Japanese radish 

(Ito et al., 2003), komatsuna leaves (Itoh et al., 

2011), and lettuce ( Itoh et al., 2015) which 

confirms the ability of this non-destructive 

technology for rapid determination of nitrate 

concentration in the product.  

For spinach leaves, Itoh et al. investigated the 

utilizing NIR spectroscopy for the measurement 

of nitrate concentration. They collected Vis/NIR 

spectra of small areas on the leaves in the range 

of 610–1050 nm and in transmittance mode (Itoh 

et al., 2011). Then, they cut away the measured 

areas from the leaves to measure their nitrate 

concentrations using a liquid chromatography 

analyzer. The spectra were pre-processed using 

mean-center and the standard normal variate 

(SNV) transformation. With an algorithm of 

wavelength selection, both partial least squares 

(PLS) and principal component regression (PCR) 

were used to predict the nitrate concentration of 

the samples. According to their results, the best 

accuracy was achieved from the PCR model after 

using mean-center method. Correlation 

coefficient of validation set was approximately 

0.8. Moreover, Torres et al. collected reflectance 

NIR spectra of spinach samples using a portable 

miniature spectrophotometer at the spectral range 

of 908–1676 nm. Nitrate content of each sample 

was also measured using an RQFlex 

reflectometer (Torres et al., 2021). They used 

modified partial least squares (MPLS) regression 

after SNV and Detrend (DT), as well as 

derivatives of the spectra to estimate nitrate 

contents in the samples. Determination 

coefficient and standard error for the prediction 

set were respectively 0.62 and 688 mg /kg. In this 

research, new approaches for both nitrate content 

prediction of spinach leaves and discrimination of 

safe from unsafe spinach samples were 

investigated based on leaf spectra in Vis/NIR 

region (450–1000 nm). To this end, orthogonal 

signal correction (OSC) as an effective pre-

processing technique was performed before 

developing the PLS models. Ensemble-based 

classifiers of subspace/discriminate, subspace/k-

nearest-neighbor (KNN), boosted/trees, 

bagged/trees, and RUS (random under sampling)-

Boosted/trees were also used and compared for 

detection of the nitrate contaminated samples. 

The basis of product safety was the maximum 

level of nitrate accumulation specified by World 

Health Organization (WHO) and Iranian National 

Standardization Organization (INSO) (2000 mg 

/kg (WHO, 1978; INSO, 2013)). 

MATERIALS AND METHODS 

Figure 1 indicates the steps of research process. 
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Figure 1. Flowchart of the steps in research process. 

Spinach samples 

Spinach samples were purchased on different 

days of the winter season (two seasons) from 

various local markets in Karaj city and west of 

Tehran city (the provinces of Alborz and Tehran, 

Iran). Each spinach sample was considered to 

contain one, two or three leaves depending on the 

leaf size. Consequently, a total of 360 spinach 

samples with different nitrate concentrations 

were used for the experiments. No preparation 

was done on the samples. Only damaged and 

yellow leaves were removed and thrown away. 

From the purchased samples on each day, one 

sample was chosen for measurement of the 

moisture content. Until the measurements which 

were done on the same day or one day after 

purchase, all the samples were kept at 3ºC in 

plastic bags. To reach ambient temperature, 

spinaches were placed in the laboratory before 

the experiments. Nitrate measurements using a 

reference method were carried out after spectral 

analysis. Before that, weight of each sample was 

determined using a digital balance. 

Spectral measurements 

Vis/NIR spectral measurements of the spinach 

leaves with different nitrate concentrations were 

done using a small portable spectrometer (GW–

VIS, StellarNet Inc., USA) equipped with an 

optical fiber probe (R600-8-VisNIR, StellarNet 

Inc, USA), and a very small light source of 

tungsten halogen with a power of 5 W (LS1–

Filter, StellarNet Inc, USA). Measurement mode 

and spectral range were interactance and 450–

1000 nm, respectively. First, the spectra of white 

reference and dark were measured.  For each 

spinach leaf, the spectra were then collected from 

various positions on the leaf blade, the petiole, 

and the stem (at least 20 positions for each leaf 

with 3 spectroscopic replicates per position). For 

spectra acquisition, the software of SpectraWiz 

(StellarNet Inc, USA) was used. If the sample 

contained two or three leaves, the spectra of each 

leaf was also collected. After that, the mean 

spectrum of the different positions on leaf or 

leaves was considered as the indicator spectrum 

for the sample and was transformed to 
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absorbance value (log 1/R). Vis/NIR spectrum 

measurement method and the view of all 

absorption spectra of spinach samples are shown 

on Figure 2. 

 

Figure 2. Measurement of Vis/NIR spectra from different positions on the spinach leaf blade (a), petiole (b), and stem 

(c). All absorbance spectra of the samples (d). 

Nitrate measurements 

Immediately after the spectroscopy, nitrate 

determination of the spinach samples was done 

based on the international standard No. 6635 

(ISO, 1984) at Chemical Analysis Center (CAC) 

in Iranian Institute of Research and Development 

in Chemical Industries. The samples were then 

categorized into two groups of “safe′′ and 

“unsafe′′ based on their nitrate concentration 

measured in mg NO3 /kg. In accord with WHO 

and INSO, the samples with no or with nitrate 

concentrations below 2000 mg /kg were assigned 

as “safe”. The remained spinach samples with 

nitrate concentration above 2000 mg /kg were 

assigned as “unsafe” (WHO, 1978; INSO, 2013).  

 

 

Data analysis and machine learning 

First, the samples with abnormal spectra were 

excluded (37 samples). The spectra of the 

remained 323 samples were transformed to 

absorbance and the baseline was corrected. To 

neutralize the effect of hidden factors, the spectra 

were normalized by using mean normalization 

(MN) technique. The normalized spectra were 

then used for developing nitrate prediction and 

safety classification learner models. Data analysis 

and machine learning techniques were done by 

using Unscrambler X10.4 (CAMO Software AS, 

Norway) and MATLAB R2017a 

(Mathworks, Natick, MA, USA). 

Development of nitrate prediction model 

The spinach samples were divided to 

calibration and external validation sets, 

(a) 

(c) 

(b) (d) 
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randomly. Therefore, approximately 80 percent 

of the samples (258 spinach samples including 

237 “safe” and 21 “unsafe”) were used for 

constructing the calibration model. The remained 

20 percent of the samples (65 spinach samples 

including 61 “safe” and 4 “unsafe”) were also 

selected for external validation (prediction) of the 

model. 

PLS regression was used for development of 

nitrate prediction models in spinach samples. 

Before that, OSC as an effective pre-processing 

technique  was performed to remove spectral 

features that are not related to the measured 

response, nitrate level (Biney et al., 2021). OSC 

derives and removes one or more background 

components that are orthogonal to the nitrate 

content, mathematically. Therefore, it removes 

less information about nitrate contents in the 

samples and makes a PLS model more accurate 

(Wold et al., 1998). 

In this research, Thomas Fearn’s OSC method 

(Fearn, 2000) was used before building PLS 

calibration model. The results were then 

compared with those achieved by the model 

developed based on first derivative (D1) and 

second derivative (D2) of the samples’ spectra. To 

this end, the algorithm of Savitzky–Golay (SG) 

was used while the points of smoothing and the 

order of polynomial were 5 and 2, respectively.  

Considering the 15 latent variables (LVs), PLS 

calibration models were built with 20 segments 

random cross validation method. To evaluate the 

calibration models, correlation coefficient of 

calibration (rc) and standard error of calibration 

(SEC), as well as correlation coefficient of cross 

validation (rcv) and standard error of cross 

validation (SECV) were considered. The 

performance of the calibration models for 

prediction of nitrate level in unknown samples 

were then assessed based on the correlation 

coefficient of prediction (rp), standard error of 

prediction (SEP), and the ratio of performance to 

deviation (RPD).  

Development of safety classification models 

Development of hybrid architectures, known as 

ensemble methods, is an important research field 

in artificial intelligence (AI). These techniques 

use multiple learning algorithms for 

improvement of the performance. In ensemble 

classification, a collection of classifiers is used to 

classify unknown samples instead of just a single-

classifier. All the classification models in the 

ensemble predict the class of each unknown 

sample. Then, the predictions of the classifiers 

are combined using a kind of voting system. 

Therefore, ensemble-based classifiers combine 

the predictive power of multiple individual 

classifiers and reduce the possibility of poor 

selection compared to the single-classifiers 

(Mienye & Sun, 2022; Mounce et al., 2017). 

Ensemble-based classifiers have several 

procedures such as random subspace, bagging 

(bootstrap aggregation), and boosting. Random 

subspace randomizes the algorithm of learning by 

randomly choosing a subset of attributes before 

the algorithm training. The predictions are then 

combined with the majority vote. In bagging 

approach, a set of trained models on random data 

is built. The outputs of the models are finally 

aggregated or combined by averaging. Boosting 

method works based on the voting or averaging 

of the multiple models so that the developed 

models are weighted based on the performance 

(Ashour et al., 2018; Mienye & Sun, 2022). 

In this research, ensemble classifiers were 

utilized to develop the classification models for 

discrimination of safe and unsafe spinach 

samples. Different ensembles of 

subspace/discriminate, subspace/KNN, the 

boosted/trees, bagged/trees, and the RUS-

Boosted/trees were performed and compared.  

Discriminant analysis (DA) and KNN are two 

powerful classifier models in machine learning 

which their accuracies can be improved by using 

within a random subspace ensemble. Moreover, 

subspace ensembles have the merit of using less 

memory than ensembles with all predictors so 

that they can handle missing values. In this 

research, both subspace/discriminate ensemble 

and subspace/KNN ensemble were used for 

distinguishing safe from unsafe spinach samples. 

On the other hand, decision trees are popular 

classifier models in machine learning that learn 

https://en.wikipedia.org/wiki/Decision_tree_learning
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from an existing dataset and a tree-like structure 

can be achieved. It shows the relationships 

between the input predictors of the dataset and the 

desired class. Decision trees are fast and unstable. 

Therefore, they are suitable for ensembles 

because by using them within an ensemble the 

problem of instability is reduced (Mounce et al., 

2017). Boosting, bagging (bootstrap aggregation) 

and random under sampling boosting (RUS-

Boost) are three common methods for creating of 

decision trees ensembles. Therefore, the 

ensembles of boosted/trees, bagged/trees, and the 

RUS-Boosted/trees were also used for safety 

assessment of the spinach samples in this 

research. RUS-Boost sampling is particularly 

effective in classifying unbalanced data, meaning 

that some classes have significantly fewer 

members in the training dataset than others 

(Mounce et al., 2017).  

Confusion matrix for all the ensemble 

classifiers was assessed to evaluate the 

performance of each classification model on both 

calibration and prediction sets. In the confusion 

matrix (Figure 3), positive data (unsafe samples) 

that were placed in the predicted class of positive 

are known as True Positive (TP), and negative 

data (safe samples) that were placed in the 

predicted class of negative are known as True 

Negative (TN). Moreover, negative data that 

were placed in the predicted class of positive are 

known as False Positive (FP), and positive data 

that were placed in the predicted class of negative 

are known as False Negative (FN).  

FP TN Negative 

T
ru

e 

cl
as

s 

TP FN Positive 

Positive Negative   

Predicted class   

   

Figure 3. A confusion matrix with True Positive 

(TP), True Negative (TN), False Positive (FP), and 

False Negative (FN). Positive data are ‘unsafe’ samples 

and negative data are ‘safe’ samples. 

The classifier models were evaluated based on 

three parameters of sensitivity (Eq. 1), specificity 

(Eq. 2), and accuracy (Eq. 3) for calibration and 

prediction sets to distinguish the unsafe from the 

safe spinach samples. The optimal model should 

have the maximum values of sensitivity, 

specificity and accuracy. Compared to specificity 

and accuracy values, higher sensitivity in 

detection of unsafe spinach, nitrate-contaminated 

sample, is preferred to ensure the product safety. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (3) 

To evaluate the performance of the ensemble 

classifiers, the results were also analyzed using 

receiver operating characteristic (ROC) curve, a 

graphical representation of the model 

performance. ROC indicates the trade-off 

between TP rates (TPR) or sensitivity and FP rate 

(FPR) or 1 – specificity. Classification models 

with the curves closer to the upper left corner of 

the ROC space have better performance. The 

closer the curves come to the 45º line, the less 

powerful are the classifier models. The area under 

the ROC curve (AUC) is a global measure of the 

model’s ability for discrimination of the classes. 

An AUC of 1.0 demonstrates that the model has 

perfect ability for discriminating. While an AUC 

of 0.5 demonstrates a model with no 

discrimination ability (de Hond et al., 2022).  

RESULTS AND DISCUSSION 

Samples’ statistics  

The mean of weight for all spinach samples and 

the mean of moisture content of the selected 

samples were 6.08 (g) and 92.43%, respectively.  

Figure 4 shows the histogram plot for nitrate 

concentrations in the spinach samples. As it can 

be seen, there was a great variation in nitrate 

concentration of the samples from 0 to 5215 mg 

/kg with the mean and standard deviation (SD) of 

673.97 and 1039.22 mg /kg, respectively. The 

mean of nitrate accumulation in the spinach 

samples was lower than the maximum level of 

nitrate concentration in accord with WHO and 

INSO (2000 mg /kg). Table 1 shows the status of 
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‘safe’ and ‘unsafe’ samples in terms of nitrate 

accumulation. Most of the samples were safe 

without or with nitrate concentration below 2000 

mg /kg ranged from 0 to 1995 mg /kg. Unsafe 

samples had nitrate concentration above 2000 mg 

/kg ranged from 2008 to 5215 mg /kg. The 

variation in nitrate concentrations of unsafe 

samples was more than that for safe samples. 

 

Figure 4. Histogram plot for nitrate contents in spinaches 

Table 1. The status of nitrate concentration in both safe and unsafe spinach samples. 

 Safe samples (N = 298)  Unsafe samples (N = 25) 

 Range Mean SD  Range Mean SD 

Nitrate (mg /kg) 0–1995 415.32 489.86  2008–5215 3757.00 887.93 

N = number of the samples 

Vis/NIR spectra  

As it can be seen in Figure 2d, the absorbance 

was related to the color compounds of spinach in 

the visible region of the samples’ spectra. In all 

spectra, a strong absorption peak at 675 nm due 

to the content of chlorophyll a in the spinach 

samples was found. Itoh et al. reported a similar 

peak around the wavelength of 650 nm, the 

absorption region of chlorophyll b and total 

chlorophyll (Itoh et al., 2011). Furthermore, Kara 

and Dasgan, reported that there is a strong 

correlation between nitrate concentration and 

total chlorophyll in vegetables. In the NIR region 

(Kara & Dasgan, 2018), there was an increasing 

trend similar to the achievements reported by Itoh 

et al. which could be caused by the second 

overtones of functional groups of N–H and O–H 

(Itoh et al., 2011). 

Nitrate prediction results  

Table 2 presents the nitrate concentration 

estimation results in the spinaches by using PLS 

models constructed after performing D1, D2, and 

OSC on the spectra. Although the results of PLS 

model developed with D2 for calibration set as 

well as cross validation and external validation 

(prediction) were better than those achieved by 

using the model constructed based on D1, the best 

results were obtained when PLS performed after 

OSC. It was noted that using OSC before building 

PLS calibration model is an effective approach 



66 

 

for estimation of nitrate content in spinach 

samples based on the spectra of the leaves in 

Vis/NIR region. The RPD of the OSC-based PLS 

model was close to 2 where the model could be 

adequate for screening (Wiedemair et al., 2019).  

Table 2. The results of the PLS models developed for prediction of nitrate concentration in the spinach samples.  

  Calibration  Cross Validation  External Validation   

Pre-processing LVs 
rc 

SEC 

(mg /kg) 
 rcv 

SECV 

(mg/kg) 

 
rp 

SEP 

(mg/kg) 

 RPD 

D1 15 0.78 655.81  0.62 831.03  0.71 708.95  1.46 

D2 15 0.93 386.19  0.80 628.41  0.75 685.45  1.52 

OSC 15 0.94 347.66  0.85 557.01  0.81 590.02  1.76 

Bold values indicate the best prediction model. 

The estimation results of nitrate accumulation 

in spinach leaves for the best calibration model in 

this research were better than the results reported 

by Itoh et al. in terms of SEC and rc (347.66 mg 

/kg and 0.94 compared to 542 mg /kg and 0.86, 

respectively) (Itoh et al., 2011). The prediction 

results of the model for the external validation set 

were slightly weaker than the results achieved by 

Itoh et al. in terms of SEP and rp (590.02 mg /kg 

and 0.81 compared to 403.6 mg /kg and 0.84, 

respectively) (Itoh et al., 2011). However, they 

measured nitrate concentrations only in the small 

areas of the leaves where the spectra were 

collected and the number of samples examined in 

the mentioned research was totally 48 samples 

and not included large amounts of nitrate 

concentration (e.i. more than 3800 mg /kg).  

The best model in this research had much better 

results in comparison with the results reported by 

Torres et al. (2020) (SECV = 557.01 mg /kg 

against SECV = 766 mg /kg) for prediction of 

nitrate content in spinach leaves. They used NIR 

spectra in the range of 908–1676 nm (without 

visible region) and analyzed the spectra based on 

linear variable filter (LVF) technology. 

On the other hand, the best results of this 

research were better compared to the results 

obtained by Torres et al. (2021) for estimation of 

nitrate content in spinach leaves in terms of SEC, 

coefficient of determination for calibration set 

(𝑅𝑐
2), SECV, coefficient of determination for 

cross validation set (𝑅𝑐𝑣
2 ), SEP, coefficient of 

determination for prediction set (𝑅𝑝
2), and RPD 

(347.66 mg /kg, 0.90, 557.01 mg /kg, 0.72, 

590.02 mg /kg, 0.66, and 1.76 compared to 675 

mg /kg, 0.57, 708 mg /kg, 0.53, 688 mg /kg, 0.62, 

and 1.53, respectively). Meanwhile, they did not 

consider very low and high nitrates (less than 70 

and more than 3900 mg /kg). 

Correlation between the estimated and the 

measured nitrate accumulation in the spinach 

samples for the prediction set by using the 

developed OSC-based PLS model is illustrated in 

Figure 5. 
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Figure 5. Correlation between the measured and the predicted nitrate contents in the spinach leaves for prediction set 

using the OSC-based PLS model. 

Classification results 

Figure 6 shows the classification results by 

different ensemble classifiers for discrimination 

of safe and unsafe spinach samples. The 

calculated parameters of sensitivity, specificity, 

and accuracy for the ensemble classifiers are also 

reported in Table 3.  

All the calibration models except the RUS-

Boosted/trees ensemble, had accuracy above 91% 

for classifying the unsafe and safe samples. The 

best accuracy was obtained by 

subspace/discriminate ensemble (98.45%). 

Although the classifier models of boosted/trees 

ensemble and bagged/trees ensemble had slightly 

better specificities than the subspace/discriminate 

ensemble classifier (100% and 99.58% against 

98.73%), their sensitivities were extremely low 

and unacceptable (0% and 14.28%, respectively). 

In contrast, the subspace/discriminate ensemble 

classifier had excellent sensitivity (95.24%). Due 

to the fact that the sensitivity of the models is 

more important than their specificities for 

detection of the unsafe samples, the 

subspace/discriminate ensemble classifier was 

chosen as the best classification model to 

distinguish unsafe from safe spinach samples. 

The sensitivity of the best model for external 

validation was 100%. Moreover, the specificity 

and accuracy of this model were respectively 

91.8% and 92.31% for external validation set. 

These results indicate that the developed model is 

very appropriate for sample screening and final 

confirmation of spinach leaf contamination. It 

was concluded that ensemble classifiers with 

random subspace are better than those with 

bagging or boosting approaches for 

distinguishing the unsafe from the safe samples 

based on Vis/NIR spectra of the spinach leaves. 

It was also noted that RUS-Boosted/trees 

ensemble is more sensitive than boosted/trees and 

bagged/trees ensemble models for detecting the 

unsafe spinach samples because one class 

(unsafe) had fewer members than the other class 

(safe).  
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Figure 6. Confusion matrix for subspace/discriminate ensemble (a), subspace/KNN ensemble (b), boosted/trees 

ensemble (c), bagged/trees ensemble (d), and RUS-Boosted/trees ensemble (e) classifiers for discrimination of safe and 

unsafe spinach samples 
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Table 3. Results of the ensemble classifiers for discrimination of “unsafe” from “safe” spinach samples. 

 Calibration  External Validation 

Classifier model Sensitivity (%) 
Specificity 

(%) 

Accuracy 

(%) 
 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

subspace/discriminate 

ensemble 
95.24 98.73 98.45  100 91.8 92.31 

subspace/KNN 

ensemble 
42.86 96.62 92.25  75 100 98.46 

boosted/trees 

ensemble 
0 100 91.86  0 100 93.85 

bagged/trees ensemble 14.28 99.58 92.63  25 100 95.38 

RUS-Boosted/trees 

ensemble 
66.67 82.28 81.01  100 93.44 93.85 

Bold values indicate the best ensemble classifier. 

The ROC curves of the calibration models of 

different five ensemble classifiers for 

distinguishing unsafe from safe spinach samples 

are illustrated in figure 7a to figure 7e. As it can 

be seen, the subspace/discriminate ensemble 

classifier gave curve closer to the upper left 

corner of the ROC space with an AUC of 0.95. 

Therefore, this classifier model had the best 

performance and discriminating ability than other 

ensemble classifiers. The weakest classifier was 

boosted/trees ensemble model with AUC of 0.51. 

Compared to boosted/trees and bagged/trees 

ensemble classifiers, RUS-Boosted/trees 

ensemble had better ROC curve for detection of 

unsafe samples with AUC of 0.86. These 

achievements confirmed the obtained results 

from the confusion matrix. 

On the other hand, the boosted/trees ensemble 

model took the longest computation time with a 

prediction speed of approximately 770 

observations per second (~770 obs/s). The 

shortest computation time was related to the 

subspace/KNN ensemble classifier with 

prediction speed of ~120 obs/s. The prediction 

speeds in the ensembles of bagged/trees and 

RUS-Boosted/trees were ~370 and ~530 obs/s, 

respectively. However, a reasonable time of 

computation in the subspace/discriminate 

ensemble model with prediction speed of ~280 

obs/s indicated that this random subspace-based 

model can be suitable for rapid classification of 

the samples. Overall, the subspace/discriminate 

ensemble classifier was suggested as an effective 

model in distinguishing unsafe from safe spinach 

samples based on Vis/NIR spectra of the leaves 

with a training time of 11.175 seconds. 
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(d) 
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Figure 7. The ROC curves for ensembles of subspace/discriminate (a), subspace/KNN (b), boosted/trees (c), 

bagged/trees (d), and RUS-Boosted/trees (e) for discrimination of safe and unsafe spinach samples 
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This research offers significant contribution for 

rapid and non-destructive safety evaluation of 

spinach samples in terms of nitrate concentrations 

based on optical spectroscopy in Vis/NIR region 

of the electromagnetic spectrum (450–1000 nm) 

by purposing new approaches of signal pre-

processing and machine learning techniques. 

Based on the results, utilizing the OSC before 

developing the PLS model is proposed as an 

effective procedure for prediction of nitrate 

concentration in spinach leaves. The ability of 

OSC-based PLS model was acceptable so that it 

can be used for initial screening of the spinach 

samples in terms of the nitrate concentrations. 

Employing the ensemble-based classifiers with 

three approaches of random subspace, bagging, 

and boosting proved that the combination of 

Vis/NIR spectroscopy and the 

subspace/discriminate ensemble classifier 

realizes the best accuracy and the performance 

compared to the other classifiers. Therefore, this 

novel approach is very suitable for non-invasive 

and fast discrimination of the unsafe from the safe 

samples based on the maximum level of nitrate 

contents in accord with WHO and INSO. The 

proposed ensemble-based machine learning 

algorithm can be useful for developing an expert 

screening system for the spinach leaves. For 

further researches, it is recommended to 

investigate other ensemble-based classifiers and 

to strengthen the classification models by 

increasing the dataset size.  
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