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Abstract. In the present paper, we introduce and investigate a new re-

sult connected to subclasses of normalized and univalent functions in the
open unit disk. Some majorization results and geometric properties such

as radii of starlikeness, convexity, pre-Schwarzian norm and coefficient

estimates are obtained.
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1. Introduction and Preliminaries

The geometric function theory is one of the important research subjects of
complex analysis. Let A be the class of analytic and normalized functions
f(0) = 0 = f ′(0)− 1) of the

f(z) = z +

∞∑
n=2

anz
n,(1)

in the open unit disk ∆ = {z ∈ C : |z| < 1}, and S be the class of all functions
in A that are univalent (one-to-one) in ∆. Roberson [2] introduced the classes
S∗(γ) and K(γ) of starlike and convex functions of order γ ≤ 1, which are
defined by

S∗(γ) :=

{
f ∈ A : Re

{
zf ′(z)

f(z)

}
> γ, z ∈ ∆

}
,(2)

K(γ) :=

{
f ∈ A : Re

{
1 +

zf ′′(z)

f ′(z)

}
> γ, z ∈ ∆

}
,(3)

respectively. If γ ∈ [0, 1), then a function in either of these classes is univalent.
If γ < 0, it may fail to be univalent. Indeed S∗(0) = S and K(0) = K are the
well-known starlike and convex functions respectively.

We also recall the well-known Alexander’s Theorem f ∈ K if and only if
zf ′(z) ∈ S∗ [7].
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The function f(z) is said to be subordinate to g(z) and write f ≺ g if
there exists a Schwarz analytic function w(z), with condition w(0) = 0 and
|w(z)| < 1, such that

f(z) = g(w(z)).(4)

Ma and Minda [17] introduced the family S∗(ϕ) as follows:

S∗(ϕ) =

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
,(5)

where ϕ is analytic and univalent in ∆ and satisfies the following conditions:
a) ϕ(∆) ⊂ {ξ : Re ξ > 0}.
b) ϕ is starlike with respect to ϕ(0) = 1.
c) ϕ(∆) is symmetric with respect to real axis.
d) ϕ′(0) > 0.

Recently, several researchers in [9, 10, 13–15, 21] have defined a non-Ma-Minda
class of functions as follows:

S∗c (φ) =

{
f :

(
zf ′(z)

f(z)
− 1

)
≺ φ(z)

}
,(6)

where one or more of the condition (a)-(d) are not true by φ(z).
Furthermore many special cases of the class S∗(ϕ) were studied by many

authors, see [3, 6, 8, 11,22–26].
For α ∈ (0, 1], we consider the function

ψα(z) :=
1

α
log(1 + αz), (z ∈ ∆),(7)

with series expansion:

ψα(z) = z +

∞∑
n=2

(−1)n−1α
n−1

n
zn.(8)

If α→ 0+, then ψα maps ∆ onto itself while if α→ 1, then ψα(∆) is an ellipse.
See Figure 1.

Definition 1.1. For α ∈ (0, 1] and ψα(z) defined by (8), f ∈ A belongs to
S∗ψ(α), if and only if(

zf ′(z)

f(z)
− 1

)
≺ ψα(z), (z ∈ ∆).(9)

In relation (5), if ϕ(z) = (1 + (1− 2δ)z) /(1−z), we get the classM(δ), (δ > 1)
which was introduced in [26] as follows:

M(δ) :=

{
f ∈ A : Re

{
zf ′(z)

f(z)

}
< δ, δ > 1, z ∈ ∆

}
.(10)
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Figure 1. (a): The image of the unit disk under ψ0.01, (b):
The image of the unit disk under ψ0.9.

It is an easy exercise to get

1

α
ln(1− α) ≤ Re

{
ψα(eiθ)

}
≤ 1

α
ln(1 + α),(11)

− 1

α
arctan(α) ≤ Im

{
ψα(eiθ)

}
≤ 1

α
arctan(α).(12)

For our main results, we need the following lemmas.

Lemma 1.2. [16] Let f ∈ A and 0 < α ≤ 1. Then f ∈ S∗ψ(α) if and only if

there exists an analytic function q with q(z) ≺ ψα(z), q(0) = ψα(0), such that

f(z) = z exp

∫ z

0

q(t)

t
dt, (z ∈ ∆).

Lemma 1.3. [5] For 0 < α < 1, the function ψα(z) is convex univalent in
|z| < rc(α), where rc(α) ∈ (0, 1/2α).

Example 1.4. If q(t) = ψα(t) in Lemma 1.2, then

Fα(z) = z exp

∫ αz

0

ln(1− t)
t

dt 0 < α ≤ 1

= z − αz2 +
α2

4
z3 − α3

36
z4 − α4

288
z5 − 23α5

7200
z6 +O(z7),

belongs to S∗ψ.

The aim of this paper is to study the class S∗ψ(α). We obtain the radii of
starlikenees and convexity. Also, the radius connected to the majorization is in-
vestigated. Furthermore, we estimate the Pre-Schwarzian norm and coefficient
bounds. For more details about such classes one may refer to [1, 4, 12,18–20].

2. A Set of Main Results

The first result of this section is as follows, which shows that S∗ψ(α) 6⊂ S∗.
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Theorem 2.1. Let f ∈ S∗ψ(α). Then the function f is not a starlike univalent
function in the unit disk ∆.

Proof. Let f ∈ A belong to the class S∗ψ(α), where α ∈ (0, 1). Then by Defini-

tion 1.1 and subordination, there exists a Schwarz function w(z) such that

(13)
zf ′(z)

f(z)
= 1 +

1

α
log(1 + αw(z)), (z ∈ ∆).

It is well-known that for |z| ≥ 1, the following inequality holds true:

(14) | log z| ≤
√
|z − 1|2 + π2

Now, it follows from |w(z)| ≤ |z|, (13) and (14) that

Re

{
zf ′(z)

f(z)

}
= Re

{
1 +

1

α
log(1 + αw(z))

}
≥ 1− 1

α
|log(1 + αw(z))|

≥ 1− 1

α

√
α2|z|2 + π2 = 1− 1

α

√
α2r2 + π2 =: h(α, r),

where |z| = r. It can easily be seen that h(α, r) < 0 for all α ∈ (0, 1) and
r ∈ (0, 1). Therefore,

Re

{
zf ′(z)

f(z)

}
6> 0

for all z ∈ ∆. It means that f does not belong to the class of starlike univalent
functions. The proof is now completed. �

As a corollary of Definition 1.1, we have the following:

Corollary 2.2. If a function f ∈ A belongs to the class S∗ψ(α), then by (11)
and Definition 1.1, we get

Re

{
zf ′(z)

f(z)

}
= Re {1 + ψα(w(z))} ≥ 1 +

1

α
ln(1− α) =: t(α).

It is easy to see that t(α) < 0 for all α ∈ (0, 1), which shows that f is not a
starlike function.

Remark 2.3. It follows from K ⊂ S∗ and Theorem 2.1 that if a function f
belongs to the class S∗ψ(α), then it is not a convex univalent function, too.

Theorem 2.4. If a function f ∈ A belongs to the class S∗ψ(α), then it belongs

to the class M(δ(α)), where

δ(α) := 1 +
1

α

√
α2 + π2.

Proof. By (13) and (14) we have:

Re

{
zf ′(z)

f(z)

}
= Re

{
1 +

1

α
log(1 + αw(z))

}
≤ 1 +

1

α
|log(1 + αw(z))|

≤ 1 +
1

α

√
α2|z|2 + π2 = 1 +

1

α

√
α2r2 + π2 =: g(α, r), (|z| = r).
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It is easy to check that g(α, r) gets its maximum at r = 1, thus g(α, r) <

1 +
√
α2 + π2/α which completes the proof. �

In order to find the radius of convexity, we need the following lemma which
was verified by Nehari, see Ref. [19].

Lemma 2.5. Let `(z) be analytic in ∆ and satisfying |`(z)| ≤ 1 for all z ∈ ∆.
Then

(15) |`′(z)| ≤ 1− |`(z)|2

1− |z|2
.

Theorem 2.6. Let the function f ∈ A belong to the class S∗ψ(α), where 0 <

α ≤ 1. Then f is a convex univalent function in |z| > rc(α), where rc(α) < 1
is the smallest positive root of the equation

1− 1

α

√
α2r2 + π2 −

(
1

(1− αr)
(
1− 1

α

√
α2r2 + π2

)) r

1− r2
.

On another hand, S∗ψ(α) ⊂ K in |z| > rc(α). The result is sharp.

Proof. Let the function f ∈ A belong to the class S∗ψ(α). Then, by (13) we
obtain

1+
zf ′′(z)

f ′(z)
= 1+

1

α
log(1+αw(z))+

(
1

(1 + αw(z))
(
1 + 1

α log(1 + αw(z))
)) zw′(z).

If we calculate the real part of both sides of the last equality above and use the
above Lemma ??, then we get

Re

{
1 +

zf ′′(z)

f ′(z)

}
= Re

{
1 +

1

α
log(1 + αw(z)) +

(
1

(1 + αw(z))
(
1 + 1

α log(1 + αw(z))
)) zw′(z)}

≥ 1−

∣∣∣∣∣ 1α log(1 + αw(z)) +

(
1

(1 + αw(z))
(
1 + 1

α log(1 + αw(z))
)) zw′(z)∣∣∣∣∣

≥ 1− 1

α
| log(1 + αw(z))| − 1

(1− α|w(z)|)
(
1− 1

α | log(1 + αw(z))|
) |zw′(z)|

≥ 1− 1

α

√
α2r2 + π2 −

(
1

(1− αr)
(
1− 1

α

√
α2r2 + π2

)) r

1− r2
=: λ(α, r).

It is an exercise that λ(α, r) has a root depending on α, denoted by rc(α), which
is less than one. It is easy to see that for |z| > rc(α), the function λ(α, r) is
positive. Figure 2 gives more details. �
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Figure 2. (a): The 3D plot of λ(α, r), where 0.085 < α, r <
1, (b): The plot of λ(0.9, r), where 0 < r < 1.

The next result gives the majorization radius. It should be remarked that if
f(z) is majorized by g(z) in ∆ and g(0) = 0, then

max
|z|=r

|f ′(z)| ≤ max
|z|=r

|g′(z)|

for each number r in the interval [0,
√

2− 1] (see [16]).
It is easy to see that g(z) = z satisfies the last inequality. Therefore we have

the following (see [5]):
Lemma A. Let f be an analytic function in ∆ with |f(z)| ≤ 1 and f(0) = 0.

Then |f ′(z)| ≤ 1 for |z| ≤
√

2− 1.
Motivated by the above, we obtain the radius of majorization for the class

S∗ψ(α).

Theorem 2.7. Let the function g ∈ A belong to the class S∗ψ(α), where 0 <
α ≤ 1. Also, let f be an analytic function in ∆. If f is majorized by g in ∆,
then

max
|z|=rm

|f ′(z)| ≤ max
|z|=rm

|g′(z)|

for each rm, where rm is the smallest positive root of the equation

(1− r2)
√
α2r2 + π2 − 2αr − αr2 = 0, (0 < r < 1).

The result is sharp.

Proof. Let the function g ∈ A be given by (1). Also, let g belong to the class
S∗ψ(α) (0 < α ≤ 1). Then there exists a Schwarz function w(z) such that

zg′(z)

g(z)
=
α+ log(1 + αw(z))

α
, (z ∈ ∆),

or equivalently

(16)
g(z)

g′(z)
=

αz

α+ log(1 + αw(z))
, (z ∈ ∆).
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By (14), and since |w(z)| ≤ |z| for all z ∈ ∆, the relation (16) implies

(17)

∣∣∣∣ g(z)

g′(z)

∣∣∣∣ ≤ αr

α+
√
α2r2 + π2

, (|z| = r < 1).

By using the definition of majorization, there exists an analytic function η in
∆ with |η(z)| ≤ 1 such that

(18) f(z) = η(z)g(z), (z ∈ ∆).

Taking the differentiation of (18) gives

(19) f ′(z) = η(z)g′(z) + η′(z)g(z) =

(
η(z) + η′(z)

g(z)

g′(z)

)
g′(z).

It follows from Lemma ??, inequality (17), and (19) that

|f ′(z)| ≤
(
|η(z)|+ 1− |η(z)|2

1− r2
· αr

α+
√
α2r2 + π2

)
|g′(z)|

=

(
ξ +

1− ξ2

1− r2
· αr

α+
√
α2r2 + π2

)
|g′(z)|,

where |η(z)| =: ξ ∈ [0, 1]. We define the function ` as follows:

`(ξ, r, α) := ξ +
1− ξ2

1− r2
· αr

α+
√
α2r2 + π2

, (0 ≤ ξ ≤ 1, 0 < r < 1).

We are aiming to find the radius r such that

rm := max{r ∈ [0, 1) : `(ξ, r, α) ≤ 1 for all ξ ∈ [0, 1]}.

Because (1 − r2)(α +
√
α2r2 + π2) is positive for all 0 < α ≤ 1 and for all

r ∈ (0, 1) we obtain

`(ξ, r, α) ≤ 1

⇔ ξ +
1− ξ2

1− r2
· αr

α+
√
α2r2 + π2

≤ 1

⇔ ξ(1− r2)
(
α+

√
α2r2 + π2

)
+ (1− ξ2)(αr) ≤ (1− r2)

(
α+

√
α2r2 + π2

)
⇔ (1− ξ)

(
(1− r2)

√
α2r2 + π2 − αr(1 + ξ)− αr2

)
≥ 0

⇔ (1− ξ)L(α, ξ, r) ≥ 0,

where

L(α, ξ, r) := (1− r2)
√
α2r2 + π2 − αr(1 + ξ)− αr2.

Since 1− ξ ≥ 0 so, we are looking for those r ∈ (0, 1) such that L(α, ξ, r) ≥ 0.
It is easy to see that

∂

∂ξ
L(α, ξ, r) = −αr < 0.
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Thus, L(α, ξ, r) is a decreasing function with respect to ξ. Moreover, L gets its
minimum at ξ = 1. Namely,

min{L(α, ξ, r) : ξ ∈ [0, 1]} = L(α, 1, r) =: l(α, r),

where
l(α, r) := (1− r2)

√
α2r2 + π2 − 2αr − αr2.

A simple check gives limr→0+ l(α, r) = π > 0 and limr→1− l(α, r) = −3α < 0.
We conclude that there exists at least one root, denoted by r0, in the interval
(0, 1) such that l(α, r) ≥ 0 for all r ≤ r0. Figure 3 gives more details about r0.
Therefore, the proof is complete. �

Figure 3. (a): The 3D plot of l(α, r), where 0 < α, r < 1,
(b): The plot of l(0.8, r), where 0 < r < 1.

In both the realms of Teichmuller spaces and locally univalent functions, the
pre-Schwarzian derivative, denoted as, Tf (z) = f ′′(z)/f ′(z), plays a pivotal role
with numerous applications. For a locally univalent holomorphic function, we
define the norm of Tf as follows:

‖f‖ = sup
z∈∆

(1− |z|2)|Tf |.

Furthermore, if f is univalent within the domain ∆, then it follows that ‖f‖ ≤ 6.
In the context of functions belonging to the class A, we can assert that ‖f‖ ≤ 1
implies that f belongs to the class S. It’s worth noting that these bounds are
proven to be sharp [3]. Moving forward, we will delve into this problem for
functions that are part of the class S∗ψ(α).

Theorem 2.8. Let α ∈ (0, 1]. If a function f ∈ A belongs to the class S∗ψ(α),

then an upper bound for ‖f‖ does not exist.

Proof. Let α ∈ (0, 1], and the function f ∈ A be given by (1) belong to the
class S∗ψ(α). Then it satisfies (13). The logarithmic derivative of equation (13)
can be derived by taking the derivative of both sides and simplifying the result,
therefore
(20)
f ′′(z)

f ′(z)
=

1

αz
log(1 + αw(z)) +

αw′(z)

(1 + αw(z))(α+ log(1 + αw(z)))
, (z ∈ ∆).



A certain subclass of starlike functions defined... – JMMR Vol. 14, No. 2 (2025) 275

By utilizing equation (20), applying the triangle inequality, and considering
Lemma ??, it can be inferred that∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ =
1

α|z|
| log(1 + αw(z))|+ α|w′(z)|

(1− α|w(z)|)(α− | log(1 + αw(z))|)
, (z ∈ ∆)

≤
√
α2|w(z)|2 + π2

α|z|
+

(
α

(1− α|z|)(α−
√
α2|w(z)|2 + π2)

)
1− |w(z)|2

1− |z|2

≤
√
α2|z|2 + π2

α|z|
+

(
α

(1− α|z|)(α−
√
α2|z|2 + π2)

)
1

1− |z|2
.

(21)

By multiplying equation (21) by (1− |z|2), we obtain

(22) ‖f‖ ≤
√
α2|z|2 + π2

(
1− |z|2

)
α|z|

+

(
α

(1− α|z|)(α−
√
α2|z|2 + π2)

)
.

If we allow |z| to approach 1 from the left, then equation (22) results in

‖f‖ ≤ α

(1− α)(α−
√
α2 + π2)

.

It is easy to see that α−
√
α2 + π2 < 0, and therefore there is no upper bound

for ‖f‖. The proof now is complete. �

In the following, we will be dedicated to exploring certain coefficient-related
inquiries concerning the function f within the class S∗ψ(α). The following
lemma will be useful in our investigation.

Lemma 2.9. [?, p. 172] Assume that w is a Schwarz function so that w(z) =∑∞
n=1 wnz

n. Then

|w1| ≤ 1 and |wn| ≤ 1− |w1|2, (n = 2, 3, . . .).

Lemma 2.10. [2, Lemma 1] If w(z) = w1z+w2z
2+· · · is a Schwarz function,

then

|w2 − tw2
1| ≤


−t, t ≤ −1;

1 −1 ≤ t ≤ 1;

t, t ≥ 1.

All inequalities are sharp.

The first result of this section is as follows:

Theorem 2.11. Consider a function f in the class A, which is expressed in
the form (1), and assume that it belongs to the class S∗ψ(α) for all α in the

interval (0, 1]. Then

(23) |a2| ≤ 1 and |a3| ≤
1

2

(
1 +

α

2

)
.
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All inequalities are sharp.

Proof. Let α ∈ (0, 1]. If a function f belonging to the class A also falls within
the class S∗ψ(α), then, as per the definition of subordination, there exists a

Schwarz function w(z) = w1z+w2z
2 + · · · such that equation (13) is satisfied.

Upon substituting the Taylor series expansions of both f and w into equation
(13), we derive the following:

a2z+ (2a3− a2
2)z2 + (3a4− 3a2a3 + a3

2)z3 + · · · = w1z+
(
w2 −

α

2
w2

1

)
z2 + · · · .

Setting the coefficients of the respective terms in the last relation equal to each
other results in

(24) a2 = w1, and 2a3 − a2
2 = w2 −

α

2
w2

1.

From the initial equality in (24) and, by referencing Lemma 2.9, we can con-
clude that |a2| = |w1| ≤ 1. By utilizing Lemma (2.10), we obtain

a3 =
1

2

(
w2 −

(
1 +

α

2

)
w2

1

)
=⇒ |a3| ≤

1

2

(
1 +

α

2

)
,

which gives the second inequality of (23). �

Based on the following series expansion, the logarithmic coefficients γn of
f ∈ S can be calculated:

(25) log
f(z)

z
=

∞∑
n=1

γn(f)zn, (z ∈ ∆).

In the theory of univalent functions, these coefficients are crucial for various
estimates, and note that we utilize γn instead of γn(f). Calculations give us

(26)


2γ1 = a2,

2γ2 = a3 − 1
2a

2
2,

2γ3 = a4 − a2a3 + 1
3a

3
2.

For the first two logarithmic coefficients, we have sharp estimates:

|γ1| ≤ 1 and |γ2| ≤
1

2
(1 + 2e−2) ≈ 0.635.

Despite this, the sharp estimate of |γn| when n ≥ 3 for f ∈ S is still open.
Following, we estimate the initial logarithmic coefficients of f ∈ S∗ψ(α), where
α > 1.

Theorem 2.12. Let the function f be of the form (1) and belong to the class
S∗ψ(α), where α > 1. Then the logarithmic coefficients of f satisfy

|γ1| ≤
1

2
and |γ2| ≤

1

4

(
2 +

α

2

)
.

Both inequalities are sharp.
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Proof. The first inequality follows from Theorem 2.11. With a simple calcula-
tion, we obtain,

γ2 =
1

4

(
w2 −

(
2 +

α

2

)
w2

1

)
.

The desired inequality follows now from Lemma 2.10. �

3. Conclusion

Here, in our present investigation, we have introduced and investigated var-
ious interesting properties of some new subclasses of analytic and univalent
functions associated with Ma-Minda class functions defined in the open unit
disk. We have settled the radii properties and majorization structure. Studies
of continue to motivate researchers in Geometric Function Theory on various
subclasses as well as the ongoing usages of the operators in the study of other
meromorphic or multivalent functions classes.
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