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ABSTRACT. Let R be a commutative Noetherian ring, M an R-module
and d a non-negative integer. Let X denote the set of ideals J of R such
that dim(R/J) <d. For an ideal b of R, we define the (d,1b)-transform
Dg (M) and study its properties. Then a criterion for Dg(R) =
MNpgw (4,6 fp Will be given, where W (d, b) contains all ideals a of R such
that 3 C a+ b for some J € X. For each i > 0, let Dé’b(f) denote the
i-th right derived functor of Dy p(M). We study the localization of the
module Dy (M) and prove that Dj (M), = Dcli—dim(R/(p+b)),bp(MP)
for all p € Spec(R) and all ¢ > 0. Finally, we establish vanishing theorems
for Dé,b (M).

Keywords: local cohomology, ideal transforms, finitely generated, local-
ization, associated prime.
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1. Introduction

In this paper, we assume that R is a commutative Noetherian ring with
identity and d is a non-negative integer. Let Z(R) be the set of all ideals of R,
and let b € Z(R). The study of vanishing and localization is a significant topic
in local cohomology, as discussed in [2]. In [1], the authors introduced a specific
type of local cohomology and examined its vanishing and localization under
certain conditions. Further extensive investigations into this concept can be
found in [6] and [7]. Here, I introduce a generalization of these specific modules
and explore their key properties, including vanishing and localization aspects.
Put ¥ :={J € Z(R)|dim(R/T) < d}, W(d,b) :={a € Z(R) : 3T € £,T C a+b}
and W(d, b) := W (d, b) N Spec(R). Then, with the reverse inclusion, both ¥
and W (d,b) are systems of ideals in R in the sense of [2, p. 21]. For an
R-module M, Ly(M) = {z € M|3J € %;Jz = 0} and H)(—) is the i-th
right derived functor of Ls(—) which was introduced in [1]. Also, we denote
by T'qe(M) the set of elements z € M such that ax C bz for some a € X.
Then, I'qp(M) is a submodule of M and I'gp(—) constitutes an additive left
exact functor on the category of R-modules. Moreover, z € T’y (M) if and
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only if 3 C (0 :g z) + b for some J € X. Also, Lqy(M) = T'yo(M). Clearly,
I'ys(M) is a submodule of M, called the (d, b)-torsion submodule of M and
we say that M is (d, b)-torsion (resp. (d, b)-torsion-free) if I'y o (M) = M (resp.
Fyo(M) = 0). For a homomorphism f : M — N of R-modules, we have
f(Tae(M)) C Tqp(N), and T'y(—) is an additive left exact functor on the
category of R-modules. Now, for an integer ¢, the i-th right derived functor
of T'4(—) is denoted by Hj ,(—), and for an R-module M, H} (M) is the
i-th local cohomology module of M with respect to (d,b). Analogous to these
objects are the i-th (d, b)-transforms D} ((—), so that for each i >0, Dj ,(—)
is the 4-th right derived functor of Dy p(—) = hﬂaeﬁ/(d,b) Homp(a, —). After
collecting some elementary results in the next section and in Section 3, we
present some properties of the right derived functors of I'ys(—) and Dgs(—),
denoted by Hl§7b(7) and D;)b(f), respectively, where the special case (b =
0 and M is a finitely generated module) was examined in [7]. Also, we prove
that Dgp(R) = Npgw (4,6)Rp, where R is a domain.

In Section 4, we continue our study and see that when R is a catenary and
biequidimensional ring and M is a finitely generated R-module, then for each
prime ideal p apd each i > 0, we have Hj (M), = Hy_ dim(R/(p+0)),06, (M) and
Dg o (M), = DZl—dim(R/(p+b)),bp (My). In Section 5, we present some conditions
for the vanishing of Dy (M) for all i > 0.

2. Preliminaries
Definition 2.1. For any R-module M, we define

Dyp(M) = lim Hom(a, M).
acW (d,b)

The functor Dgp(—) is an additive, covariant, R-linear functor, and it is also
left exact.

Using a similar argument as in [2, Theorem 2.2.6], one can prove the following
lemma.

Lemma 2.2. Let M be an R-module. Then the sequence
0 — Tap(M) = M — Dg (M) — Hj (M) =0
is ezact. Moreover, D}y (M) = H (M) for alli > 1.

Theorem 2.3. If E is an injective R-module, then T'qy(E) is also an injective
R-module.

Proof. Similar to [6, Lemma 2.1(6)], it is easy to see that I'gp(E) =
hﬂaeﬁ/(d ) I'a(E). On the other hand, by [2, Proposition 2.1.4], the mod-

ule I'q(E) is injective for each a € Z(R). Now, since R is Noetherian, the result
follows from [4, Exercise 5.23 (p.255)]. O
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Corollary 2.4. If E is an injective R-module, then D4 (E) is also an injective
R-module.

Proof. Since E is an injective module, Hj ,(E) = Hﬂaerfv(d 0) Extp(R/a, E) =
0. Now, the exact sequence

0 —=Tys(E) = E — Dgp(E) — 0
implies that Dy (E) is also an injective module. O

Corollary 2.5. Let M be an R-module. If Tqs(M) = M, then H} ,(M) =0
for alli>1.

Proof. Using Theorem 2.3, we construct an injective resolution
00— M — E°— F' - E? —
of M such that 'y (E?) = E* for all i > 0. We have
ker(E* — Bt —0
Im(E~1 — E%) ’
for all 4 > 1. O

Hy o (M) =

Proposition 2.6. Let M be an R-module. Then the following statements hold:
(1) If Ta(M) = M, then D} (M) = 0 for all i > 0. Moreover, for any
R-module X, Dbe(Hib(X)) =0 for alli >0 and all j > 0.
(2) Dajo(M) = Dg,p(M/Tap(M)).
(3) Da,p(M) = Dq,p(Da,p(M)).
(4) ddeb(M))—OforiZO,l.
(5) For eachi>2, H} (M) = Hj ,(Da(M)).
(6) Dg,p(M) = lim Wi, b)D (M). Moreover,
Di,(M)= L Dy(M)= lm  HLY(M)

acW(d,b) acW(d,b)
for alli>1.
(7) Dap(M) =lim o Dq (M), where Do (M) = l_ﬂew(a ) D.(M). More-
over,

Di(M) = lim lim  Di(M) =l Ty H* (M)
a€X ceW(a,b) a€x ceW(a,b)

for alli > 1. Note that W(a,b) = {p € Spec(R) : In € N;a” C p + b}, where
a,b € Z(R) (see [5, p. 582]).
(8) If Ly(M) = M, then Dy (M) = 0 for all i > 0. Moreover, for any R-module
X, D} o(H(X)) =0 for all i >0 and all j > 0.
(9) If M is a b-torsion module, then D} ,(M) = 0 for all 7 > 0. Moreover, for
any R-module X, D}, ,(H3(X)) =0 for all i > 0 and all a € Z(R).
(10) If Dgp (M) C T'y(M), then D (M) = Dy(M) for all i > 0.
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(11) If a € W(d, b), then Hompg(R/a, Dg(M)) = 0.

Proof. (1) By Corollary 2.5, Hj ,(M) = 0. By Lemma 2.2, we obtain Dy (M) =
0. By Lemma 2.2 and Corollary 2.5, we have D} (M) = H,'(M) = 0 for all

i > 1. The second statement follows because Fd’b(H§7b(M)) = HQb(M) for all
1> 0.
(2) From the short exact sequence

O—)Fd,b(M) —)M—)M/deb(M)%O (ﬂ)
we conclude that the sequence
0— Dd’b(Fd’b(M)) — Ddﬁb(M) — Ddyb(M/Fd’b(M)) — Dib(l—‘d,b(M))

is exact. Since by part (1), Dgp(Tqe(M)) = Dé,b(Fd,b(M)) = 0, it follows
that Dq,(M) = Dgp(M/Ta(M)).
(3) By Lemma 2.2,

0— M/Tq(M) = Dap(M) = Hjo(M) = 0
is a short exact sequence. This gives rise to the following exact sequence

0— Dd7b(M/Fd,b(M)) — Dd,b(Dd,b(M)) — Dd,b(Hib(M))-

By parts (1) and (2), we obtain
Da,p(Da,o(M)) = Dap(M/Tap(M)) = Da,p(M).
(4) By Lemma 2.2, we obtain the exact sequence

0— Fd,b(Dd,b(M)) — Ddyg,(M) — Dd,b(Dd,b(M)) — Hi[;(-Dd,b(M)) — 0.

Thus, by part (3), the claim follows.
(5) Applying Hé’b to exact sequence (1), we obtain the exact sequence

Hj o (Cap(M)) — Hjp (M) — Hyo(M/Tap(M)) — Hy'(Cae(M))
for all 4 > 0. Hence, by Corollary 2.5, Hj (M) = Hj ,(M/T4s(M)) for all
i > 1. Now, applying Hj , to the short exact sequence
0 — M/Tq(M) — Dau(M) — Hjo(M) — 0

the proof is complete, since by Corollary 2.5, we have HZ“,(H;&(M)) = 0 for
all + > 1.

(6) Similar to [6, Lemma 2.1(6)], we have H} (M) = e Hi(M) for
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all © > 0. Now, consider the commutative diagram with exact rows

0 — Tyo(M) —— M —— Dgpy(M) —— Hib(M) — 0

LooF k-

0— lim To(M)—> M — lim Do(M)— lim Hg(M)— 0.
acW(d,b) acW (d,b) aeW(d,b)

By the Five lemma, the result follows. The second part is obtained from [2, The-
orem 1.3.5].

(7) First, for an R-module X, we show that Hfl’b(X) =lim o Hﬁ,h(X), where
H (X)) = h%mceﬁ/(a,b) H{(X), which was proved in [5, Theorem 3.2]. To es-
tablish this, we begin by proving that I'y(X) = lim . Ia6(X). Since ¥ is
a system of ideals, it is enough to show that I'yp(X) = UgexTqp(X). Let
x € I'yp(X). Then there exists a € ¥ such that az C bz. Hence x € I'q p(X),
which implies € UgexTq,6(X). For the inverse inclusion, we note that for
each a € ¥ and each i € Ny, we have a’ € ¥. Now, since both H;b(—) and
1i_r>naeZ Hgﬁb(—), i € Np, are strongly connected, it follows from [2, Theorem
1.3.5] that the result holds.

Again, using the commutative diagram

0 — Lap(M) — M — Dyp(M) —— Hj (M) — 0

ool l

0 — lim Cap(M) — M — lim Dqu(M) — lim Hg o (M) — 0
agx agx agx '

with exact rows, we apply the Five lemma to conclude the proof of the first
part. The second part then follows directly from [2, Theorem 1.3.5].

(8) Clearly, Lq(M) CTyp(M). AlsoT'ys(M) C M = Ly(M). Thus, I'y (M) =
M and so by part (1), the result follows. The next part follows directly from
the fact that Lq(HJ(M)) = H}(M) for all j > 0.

(9) Clearly, Lg(M) C T'y6(M). Now, let x € T'qp(M). Hence there exists
a € ¥ such that ax C bx. On the other hand, since z € M = T'y(M), there
exists t € Ny such that btz = 0. Consequently, a’z = 0, and since a* € X,
it follows that x € Lqy(M). Hence, we have Ly(M) = I'q (M) and the proof
is completed similarly to part (8). This result also follows from the fact that
Ty (H](M)) = HJ(M) for all j > 0.

(10) It is easy to see that I'yp(M) = Lg(M). Then by [2, Theorem 1.3.5],
H(ib(M) = Hi(M) for all i > 0. Now, consider the commutative diagram of
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R-modules and R-homomorphisms with exact rows

0 — Tao(M) — M — Dgp(M) — Hj (M) — 0

S

0 — Lg(M) — M — Ty(M) — H}(M) — 0.

Applying the Five Lemma, we obtain Dy (M) = D4(M). Finally, by reapply-

ing [2, Theorem 1.3.5], the result follows.

(11) Let E be an injective R-module. Then Hj,(E) = 0 and so by Lemma

2.2, E/Ty(E) = Dy (E). Consequently, for all a € W (d,b), we have
HOInR(R/Cl, E/Fd,b(E)) = HOHIR(R/CL, Dd,b(E))-

Now, let J € ¥ such that 7 C a+b, and let f € Homg(R/a, E/T4(E)). Then

f(1+a) € E/T4(F), and so there exists e € E such that f(1+a) = e+qs(E).

This implies that ae C T'y s (E), and consequently, there exists 3 € ¥ such that

3 ae C bae. Clearly 33 ex. Now, since J C a + b, we have

33eC(a+b)TeCale+bTeCbae+bTeC be.

Hence J3 e C be, which implies that e € Ty, (E), and thus f(1+a) = 0. It fol-
lows that Homp(R/a, E/T36(E)) = 0, and consequently Homp(R/a, Dgp(EF)) =
0. O

3. Bas(M) and its results on Dq (M)

Definition 3.1. Let M be an R-module, and let S = R\ Zr(M). For a €
W(d,b), it is clear that {(M :g-15s a),¢£{c}u,cew(d7b) is a direct system of R-
modules indexed by W (d, b), where ¢ C a and the morphisms oM (M ig-1ng
a) — (M :5-1p7 ¢) are the natural inclusion maps. We define the R-module
By s(M) as follows:
Bap(M) = lim (M :g-1p ).
acW(d,b)

For each a € W(d,b), let M : (M :g-15; a) = Bg(M) denote the canonical
map.

Theorem 3.2. Let M be an R-module. Then
(1) If Tqp(M) =0, then By p(M) = Dgp(M).
(2) Bap(M/Tqp(M)) = Dgp(M).

Proof. (1) Let a € W(d,b). Then there exists J € ¥ such that J C a + b. We
show that the map ¢4 : (M :5-15; a) — Hompg(a, M) defined by 94 (z)(a) = az
for all x € (M :g-1p a) and a € a, is an R-isomorphism. Clearly, 1, is an
R-homomorphism. Now, suppose ¥,(m/s) = 0, for some m/s € (M :g-1;7 a).
This means that a - m/s = 0 for all a € a. Equivalently, am = 0 for some
m € M, which implies that Jm C bm. Therefore m € I'yp(M) = 0, which
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implies that m = 0. Thus a € Zr(M). Let y € a\ Zg(M). Then y-m/s =0
and so ym/s = 0. Hence there exists u € R\ Zr(M) such that uym = 0. Since
uy € R\ Zr(M), it follows that m = 0, and therefore m/s = 0. Thus, 1), is an
R-monomorphism. Now, it is enough to prove that 1, is an R-epimorphism.
Let f € Hompg(a, M). Since y € a\ Zgr(M), we have f(y)/y € S~1M. We
show that x - f(y)/y € M for all z € a. We have

z- f(y)/y = fley)/y =yf(x)/y = f(x)/1 € M.

This implies that a - f(y)/y € M, which leads to f(y)/y € (M :g-1p @).
Therefore ¥4 (f(y)/y) = f. It follows that 14 is an R-epimorphism.

(2) It is straightforward to verify that I'y (M /Tqs(M)) = 0. Thus, by part
(1), we have By p(M/T'g6(M)) = Dgs(M/Tqs(M)), and by Proposition 2.6(2),
Bio(M/Ty(M)) = Dgu(M). O

Theorem 3.3. Let M be an R-module. Then Ass(Dgp(M)) = Ass(M /T q5(M)).
Proof. From the short exact sequence
0 — M/T4(M) — Dgp(M) — Hjo(M) — 0,

we conclude that Ass(M/Tg(M)) C Ass(Dgp(M)). For the inverse inclusion,
by Theorem 3.2(1), By,p(M/Ty6(M)) = Dy p(M/Ty(M)) and so by Proposi-
tion 2.6(2), Bys(M/Tq6(M)) = Dy s(M). Hence

Ass(Bgp(M/Ty(M))) = Ass(Dg,p(M)).

Let p € Ass(Dqp(M)) and set N = M /Ty (M). Then p € Ass(Bgp(N)).
Thus there exists 0 # x € Bg () such that p = (0 :r x). Hence, there exist
a € W(d,b), pa € Homg((N :5-1y5 a), Bp(N)), and y € (N :g-1n5 a) such
that = pqa(y), where S = R\ Zg(N) and {(N :5-1n @), @atqerir(a,p) forms
the desired direct system. Clearly ay C N. Since pz = 0, we have p - pq(y) =
@a(py) = 0. Then there exists ¢ € W(d,b) such that ¢ C a and ¢(py) = 0.
Since ¢? is the inclusion map, it follows that py = 0 and thus p = (0 :g y).
Moreover, we have I'y p(STIN) = 0, because I'q 5 (N) = Typ(M/Tap(M)) = 0.
Now, if p € W(d, b), then there is J € ¥ such that 7 C p + b. Since py = 0,
we obtain Jy C by, which implies y € Ty p(S™'N) = 0. Therefore p = (0 :p
y) = R, which is a contradiction. Thus p ¢ W(d, b). Furthermore, a Z p,
because otherwise we would have ay = 0. On the other hand a € W (d,b),
then there exists 0 € ¥ such that @ C a + b. This implies 0y C by. Thus
y € g p(S7IN) = 0, which is also a contradiction. Now, let a € a\ p. Then
p = (0:r ay). Hence p € Ass(N). Thus, Ass(Dg,p(M)) C Ass(IV), completing
the proof. O

Corollary 3.4. Let M be an R-module. Then
Supp(Da,s(M)) = Supp(M/Ta,e(M)).
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Proof. From the short exact sequence
0 — M/Tq(M) — Dgu(M) — Hjo(M) — 0,
we conclude that Supp(Da,p(M)) = Supp(M /T 4,6(M))USupp(H} ,(M)). Then
Supp(M/Ta,6(M)) € Supp(Da,p (M)).

Now, let p € Supp(Dgs(M)). Then there exists q € Ass(Dg(M)) such
that ¢ € p. Thus, by Theorem 3.3, q € Ass(M/T4s(M)) and so there
exists m € M\I'gp(M) such that ¢ = (0 :g m + Tqp(M)). Now, 0 #
(m+Tgs(M))/1 € (M/T4,(M)), and it follows that p € Supp(M/Tq,(M)).
Thus, Supp(Dg,s(M)) C Supp(M/Tqs(M)), which completes the proof. O

Corollary 3.5. Let M be an R-module. We have
Supp(Hg,,(M)) S Supp(M/Ta,6(M)).
Proof. Consider the short exact sequence
0= M/Ta(M) — Dgu(M) = Hjo(M) — 0.
Applying Corollary 3.4 to this sequence yields the desired result. O

Theorem 3.6. Let M be an R-module and set S = R\Zr(M). For each prime
ideal p € Spec(R), define Uy = Ry \ Zg, (My). Let \p : ST'M — Uy "M, be
the canonical homomorphism at p. Then

Bao(M) = Npgw(a,o)Ay ' (My).

Proof. Let y € Bqp(M). Then there exist a € W(d,b) and an element m/s €
(M :g-1ps a) such that M (m/s) =y, where M : (M :g-15; a) — Bap(M) is
the natural map. It is easy to see that a ¢ p for all p € Spec(R) \ W(d, b). Let
a € a\ p, where p € Spec(R) \ W(d,b). Hence am/s € M, and consequently

Ap(m/s) = (m/1)/(s/1) = ((am/s)/a)/(1/1) € M.

Thenm/s € A, *(My). We show that the map ¢ : Ba,p(M) — Npgw (a0 Ap - (M)
defined by ¢(y) = p(¢X(m/s)) = m/s is an R-isomorphism. Clearly, ¢ is an
R-monomorphism. Let m/s € A\, '(M,) for all p € Spec(R) \ W(d,b). Then
there exists s, € R\ p such that s,m/s € M for all p € Spec(R)\ W(d,b). Put
J =X pew(de) Bsp- We claim that J € W(d,b). Assume that q € Spec(R)
satisfies 7+ b C q and dim(R/(J + b)) = dim(R/q). If ¢ ¢ W(d,b), then
Rsq € J C J+b C q, which implies s € ¢, contradicting the choice of
sq. Thus, we conclude that q € W(d,b). Then there exists 9 € ¥ such that
0 C g+ b. Hence, we have

0Cq+bCq+I+bCq.

This implies that dim(R/q) < dim(R/0) < d. Consequently, dim(R/(J+ b)) <
d, which shows that 3+ b € 3. Now, since J+ b C J + b, it follows that
J € W(d,b). Thus m/s € (M :g-15; J) and (3 (m/s)) = m/s. This proves
that ¢ is an R-epimorphism, thereby completing the proof. O
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Theorem 3.7. Let R be a domain. Then we have
Dgp(R) = Npgw (d,) Rp-

Proof. Under the assumptions of Theorem 3.6, it is evident that A, 1(Rp) =R,
(note that R is a domain). Suppose I'qp(R) # 0 and let 0 # r € R be an
element of I'y s (R). Then there exists J € ¥ such that 3 C (0 :g r) + b. Since
(0:g7r) =0, Cb, and so b € £. Therefore, I'yp(R) = R, which leads
to Dg,s(R) = 0 and Spec(R) = W(d,b). This implies that Npgw (4,6)Rp = 0,
completing the proof in this case. Now if I'g s (R) = 0, then by Theorem 3.2(2)
and Theorem 3.6, the result follows. O

Theorem 3.8. Let M be an R-module such that Ty s(M) = 0. Then
Q(L{,(M) = UseR—ZR(M)(W(d7 b) N ASSR(M/SM)) =10
if and only if M = Dy s (M).

Proof. (=) First, assume that Qq(M) = 0. Since I'yp(M) = 0, it follows
from Theorem 3.2(2), D4 (M) = Bq,s(M). Hence, we use Bgp(M) instead of
Dao(M). Let Qup(M) =0 and a € W(d,b). Tt is easy to see that ¢ : M —
B s(M) defined by ¢(m) = ¢q(m) is an R-monomorphism for all m € M.
Now, we prove that ¢ is an R-epimorphism. Suppose y € Bgp(M). Then there
exist ¢ € W(d, b), ¢, € Homp((M :g-1 ¢), Bas(M)) and m/s € (M :g-1; ¢)
such that ¢.(m/s) = y. It suffices to show that m/s € M. Since cm/s C M, we
have em C sM, which implies ¢(m + sM) = 0. If ¢ C Zr(M/sM), then there
exists p € Ass(M/sM) such that ¢ C p. Consequently, p € W(d, b), leading to
p € Qq,p(M), which contradicts our assumption. Then ¢ € Zr(M/sM), which
means that m € sM, implying m/s € M.

(<) Let M = Dgp(M). Assume that p € Ass(M/sM) for some s € R\Zr(M).
Then there exists m € M \ sM such that p = (sM :g m). It follows that pm C
sM and so p.m/s C M, implying that m/s € (M :g-15; p). If m/s € M, then
m € sM and so p = R, which is a contradiction. Then m/s € (M :g-15; p)\M.
Now, we show that p & W(d,b). Let p € W(d,b). Then p € W(d,b). Since
m/s € (M :s-1pr P), p(m/s) € Bqp(M), which implies ¢~ (py(m/s)) € M.
Thus ¢~ !(p(m)) € sM and so m € sM, which is a contradiction. Therefore
p € W(d,b) and we conclude that Q4(M) = 0. O

Corollary 3.9. Assume that M is an R-module.

(1) If Fd7b(M) = H(ib(M) = 0, then Qd7b(M) = @

(2) Qa,p(Dap(M)) = 0.

(3) If M is an injective module, then Q4 s(M/Typ(M)) = 0.

Proof. (1) Since Tyq(M) = Hj,(M) = 0, by Lemma 2.2, M = Dy (M).
Thus, by Theorem 3.8, Q46(M) = 0.

(2) By Proposition 2.6(4), T'qs(Dap(M)) = 0. Moreover, by Proposition
2.6(3), Dyp(M) = Dy p(Dg,(M)). Hence, by Theorem 3.8, Qg 6(Dap(M)) =
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0.
3) By Theorem 2.3, I'q 5 (M) is injective. Then, from the short exact sequence

0—>Fd7b(M) %M—)M/Fd,b(M) — 0,
it follows that M /Ty (M) is also injective. Therefore Hy (M /Tq(M)) =

0 and so by Lemma 2.2, M/T'y (M) = Dqp(M/Tqs(M)). Now, the result
follows from part (2). O

4. Localization theorem

We recall that a finite-dimensional Noetherian ring R is said to be biequidi-
mensional if:
(i) dimR/p = dimR, for all p € Ass(R);
(ii) dimR/p + dimR, = dimR, for all p € Spec(R).

Theorem 4.1. Let R be a catenary and biequidimensional ring and let M be
an R-module. Then for each p € Spec(R) and each i > 0, we have

Hyo(M)y = Hy gin(r/(o10)),0, (Mp)-
Proof. By the standard argument of homology theory (see [2, Exercise 1.3.4]),
it is sufficient to prove that

Lao(M)p = Ta—dim(r/(p+6)),6, (Mp)-

First, we show that I'q s (M)p € T'y—dim(r)(p+6)),6, (Mp). Let m/s € Tqp(M)y.
Then we have dim(R/((0 :g m) + b)) < d. Moreover, s € R\ p. We show that
dim(R/((0 :g m) + b))y, < d—dim(R/(p+b)). Let q, be a minimal prime in
Supp(R/((0 :gr m) + b),). Hence, we have
dim(Rp/qp) = dim((R/q)p/q)

= ht(p/q) = ht(p) — ht(q)

— [dim(R) — dim(R/p)] — [dim(R) — dim(R/q)]

= dim(R/q) — dim(R/p).
Then dim(R,/q,) < d — dim(R/p) and so dim(R,/q,) < d — dim(R/(p + b)).
This implies that

dim(R/((0:g m)+ b)), < d—dim(R/(p + b)).

Consequently, we obtain m/s € I'y_dim(r/(p+0)),0r, (Mp), leading to the inclu-
sion

Lao(M)p € Ti_dim(r)(p+b)),6, (Mp).-

Now, assume that m/s € I'q_qim(r/(p+0)),6R, (Mp). Then m € M, s € S, and
also

dim(R/((0 :g m) + b)), < d —dim(R/(p + b)).
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We show that dim(R/((0 :gx m) + b)) < d. To prove this, let ¢ be a minimal
prime in Supp(R/((0 :r m) +b)). If ¢ C p, then qR, is a minimal prime in
Supp(R/((0 :r m) + b),). In this case, we have

dim(Ry /qp) = dim((R/q)y/q) < d — dim(R/(p + b)),
which implies
ht(p/q) < d — dim(R/(p + b)).
Then ht(p) — ht(q) < d — dim(R/(p + b)), which gives
dim(R/q) — dim(R/p) < d — dim(R/(p + b)).

Since b C (0 :g m) +b C q C p, it follows that b C p. Thus p = b + p,
which implies dim(R/q) < d. Hence dim(R/((0 :g m)+b)) < d. Now, suppose
q ¢ p. Let z € g\ p. The Rg-module (R/((0:z m)+ b)) is finitely generated
and concentrated in ¢4, hence it is annihilated by a suitable power q" Rq. In
particular, 2”m = 0 in My. Therefore, we have Supp(R/((0 :r 2"m) + b)) C
Supp(R/((0 :g m) + b)), but q ¢ Supp(R/((0 :g 2™m) + b)). Let q; be a
minimal prime in Supp(R/((0 :gr 2™m) + b)). If q1 C p, then by a similar
argument as above, the result follows. Otherwise, we can construct an element
t ¢ p such that Supp(R/((0:r tm) + b)) < d, completing the proof. O

Corollary 4.2. Let R be a catenary and biequidimensional ring, p € Spec(R)
and let M be an R-module. Then for each i > 0,

D}y (M), = ij—dz’m(R/(erb)),bp (My).
Proof. First, we show that Dy (M )p = Da_dim(R/(p+b)),6, (Mp). By Theorem

4.1, Hy o(M)p = Hy_ iR/ (o10)),0, (Myp) foralli > 0. Put di = d—dim(R/(p+

b)). Now, using the following commutative diagram

Tao(M)y — My — Dao(M)y, — Hj (M), — 0

R

La, v, (M) —— My —— Da, b, (M) — Hél,bp(Mn) — 0,

where both rows are exact by Lemma 2.2, this follows from the Five Lemma.
Now, assume that i > 1. Hence, by Lemma 2.2, D}, (M) = H}''(M). Then
Dy (M), = Hyi (M),
o pritl
= Hi dim () (p+6),6, (Mp)
= Dzli—dim(R/(p‘i‘b)),bp (Mp)~
This concludes the proof. (]
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5. Vanishing theorems

In this section, we establish a vanishing theorem for the module Dbe(M )
and demonstrate that the integer n, which serves as an upper bound for the
vanishing of D;)b(M ), is related to the dimension of a certain set of prime
ideals.

Throughout this section, let d’ be a fixed integer defined by

d' = max{dim(R/p) | p € W(d,b)}.

Definition 5.1. Let M be a finitely generated R-module. For any integer
k > 0, we define the singular set of M as

Sp(M) = {p € Spec(R) | depthp (M) + dim(R/p) < k}
(see [1]). Additionally, assuming M # 0, we define the grade of M as
grade(M) = inf{i € Ny | Exti(M, R) # 0}

(see [3, p. 131]). Moreover, for a local ring (R, m), we simply write depth(m, M)
as depth(M)(see [3, p. 130]).

Theorem 5.2. Let M be a finitely generated R-module and let n > 2 and k
be two non-negative integers such that dim(S;, , (M)) < k for all k < d'. Then
Dgo(M)=M and Dé’b(M) =0 forall0<i<n-—1.

Proof. By Lemma 2.2, it is sufficient to prove that H§7B(M) =0 for all i < n.
Let a € W(d,b). Hence there exists J € ¥ such that 3 C a + b. Assume that
p € V(a). Then a C p. Consequently, we obtain J C p + b and so p € W(d, b).
Put k := dim(R/p) — 1. Since k < d’, the given assumption ensures that
p ¢S, (M). Therefore, by Definition 5.1, depthp (M;) +dim(R/p) > k+n.
This implies that depthp (Mp) +k + 1 > k + n, which further simplifies to
depthp (My) +1 > n. Thus, we conclude that depthp (M,) > n. Con-
sequently, depth(a, M) > n. By [3, Theorem 16.7], it follows that for each
a € W(d,b), we have Ext’(R/a, M) = 0 for all i < n. Then H} (M) =0 for
all i < n. |

Theorem 5.3. Let (R,m) be a local ring, and let M be a finitely generated
R-module. Ift € N, then for all i > t, the module Dfi’b(M) is finitely generated
if and only if D}y ,(M) = 0.

Proof. (=) First, we assume that Dbe(M ) is finitely generated for all i > ¢
and show that Dfi,b(M ) = 0. To establish this, we proceed by induction on
n = dim(M). For the case n = 0, then by Grothendieck’s Vanishing Theorem(
[2, Theorem 6.1.2]), together with Lemma 2.2 and Proposition 2.6(6), implies
that D} ,(M) = 0 for all i > t. Now, assume inductively that n > 0 and that
the result has been proved for all finitely generated R-modules of dimension
n — 1. Consider the exact sequence

0—>Tgp(M)—M— M/Tys(M)—0
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which gives rise to the following long exact sequence:
v = Dy (Cap(M)) = Dy o (M) — Dy (M/Tap(M)) = Dyl (Cap(M)) = -+

Since, by Proposition 2.6(1), ij,b(rd,b(M)) = 0 for all ¢ > 0, it follows that
D}y o(M) = D} (M/Tqp(M)) for all i > 0. Thus, by replacing M with
M/T (M), we may assume that Iy (M) = 0. Hence m ¢ Zg(M). Thus,
there exists an element z € m\ Zg(M). The exact sequence

0->M-—>M—M/zM —0
induces the long exact sequence
w = Dy (M) = Dj o (M) = Dy o (M /M) — Dyl (M) = -+

which implies that D}, ,(M/xM) is finitely generated for all i > t. Since M/xM
is finitely generated with dim(M/xM) = n—1, the inductive hypothesis implies
that D} ((M/zM) = 0 for all i > t. Therefore D} (M) = 2D} (M) for all
i > t. Then, by Nakayama’s Lemma, it follows that Dé)b(M) =0 for all i > t.
(<) The converse is obvious. O

6. Conclusion

In this paper, we introduced and studied the generalized local cohomology
modules H;,b (M) and their derived functors ij,b (M) over a commutative Noe-
therian ring R. We established key properties, including vanishing conditions,
localization theorems, and structural results. Specifically, we proved that when
R is a catenary and biequidimensional ring, the localization of these modules
satisfies:

Ho(M)p = Hy_ gim(r/(p+6)),6, (Mp)-
Additionally, we provided criteria for the vanishing of Df“](M ) and explored
connections between these modules and torsion theories. Our results extend
and unify previous work in local cohomology, offering new insights into the
behavior of these functors in algebraic geometry and commutative algebra.
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