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Abstract. Let R be a commutative Noetherian ring, M an R-module
and d a non-negative integer. Let Σ denote the set of ideals I of R such

that dim(R/I)≤ d. For an ideal b of R, we define the (d, ıb)-transform

Dd,ııb(M) and study its properties. Then a criterion for Dd,b(R) =⋂
p/∈W (d,b) Rp will be given, where W (d, b) contains all ideals a of R such

that I ⊆ a + b for some I ∈ Σ. For each i ≥ 0, let Di
d,b(−) denote the

i-th right derived functor of Dd,b(M). We study the localization of the

module Di
d,b(M) and prove that Di

d,b(M)p ∼= Di
d−dim(R/(p+b)),bp

(Mp)

for all p ∈ Spec(R) and all i ≥ 0. Finally, we establish vanishing theorems
for Di

d,b(M).

Keywords: local cohomology, ideal transforms, finitely generated, local-

ization, associated prime.
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1. Introduction

In this paper, we assume that R is a commutative Noetherian ring with
identity and d is a non-negative integer. Let I(R) be the set of all ideals of R,
and let b ∈ I(R). The study of vanishing and localization is a significant topic
in local cohomology, as discussed in [2]. In [1], the authors introduced a specific
type of local cohomology and examined its vanishing and localization under
certain conditions. Further extensive investigations into this concept can be
found in [6] and [7]. Here, I introduce a generalization of these specific modules
and explore their key properties, including vanishing and localization aspects.
Put Σ := {I ∈ I(R)|dim(R/I) ≤ d}, W̃ (d, b) := {a ∈ I(R) : ∃I ∈ Σ, I ⊆ a+b}
and W (d, b) := W̃ (d, b) ∩ Spec(R). Then, with the reverse inclusion, both Σ

and W̃ (d, b) are systems of ideals in R in the sense of [2, p. 21]. For an
R-module M , Ld(M) = {x ∈ M |∃I ∈ Σ; Ix = 0} and Hi

d(−) is the i-th
right derived functor of Ld(−) which was introduced in [1]. Also, we denote
by Γd,b(M) the set of elements x ∈ M such that ax ⊆ bx for some a ∈ Σ.
Then, Γd,b(M) is a submodule of M and Γd,b(−) constitutes an additive left
exact functor on the category of R-modules. Moreover, x ∈ Γd,b(M) if and
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only if I ⊆ (0 :R x) + b for some I ∈ Σ. Also, Ld(M) = Γd,0(M). Clearly,
Γd,b(M) is a submodule of M , called the (d, b)-torsion submodule of M and
we say that M is (d, b)-torsion (resp. (d, b)-torsion-free) if Γd,b(M) = M (resp.
Γd,b(M) = 0). For a homomorphism f : M → N of R-modules, we have
f(Γd,b(M)) ⊆ Γd,b(N), and Γd,b(−) is an additive left exact functor on the
category of R-modules. Now, for an integer i, the i-th right derived functor
of Γd,b(−) is denoted by Hi

d,b(−), and for an R-module M , Hi
d,b(M) is the

i-th local cohomology module of M with respect to (d, b). Analogous to these
objects are the i-th (d, b)-transforms Di

d,b(−), so that for each i ≥ 0, Di
d,b(−)

is the i-th right derived functor of Dd,b(−) = lim−→a∈W̃ (d,b)
HomR(a,−). After

collecting some elementary results in the next section and in Section 3, we
present some properties of the right derived functors of Γd,b(−) and Dd,b(−),
denoted by Hi

d,b(−) and Di
d,b(−), respectively, where the special case (b =

0 and M is a finitely generated module) was examined in [7]. Also, we prove
that Dd,b(R) = ∩p/∈W (d,b)Rp, where R is a domain.
In Section 4, we continue our study and see that when R is a catenary and
biequidimensional ring and M is a finitely generated R-module, then for each
prime ideal p and each i ≥ 0, we have Hi

d,b(M)p ∼= Hi
d−dim(R/(p+b)),bp

(Mp) and

Di
d,b(M)p ∼= Di

d−dim(R/(p+b)),bp
(Mp). In Section 5, we present some conditions

for the vanishing of Di
d,b(M) for all i ≥ 0.

2. Preliminaries

Definition 2.1. For any R-module M , we define

Dd,b(M) = lim−→
a∈W̃ (d,b)

Hom(a,M).

The functor Dd,b(−) is an additive, covariant, R-linear functor, and it is also
left exact.

Using a similar argument as in [2, Theorem 2.2.6], one can prove the following
lemma.

Lemma 2.2. Let M be an R-module. Then the sequence

0→ Γd,b(M)→M → Dd,b(M)→ H1
d,b(M)→ 0

is exact. Moreover, Di
d,b(M) ∼= Hi+1

d,b (M) for all i ≥ 1.

Theorem 2.3. If E is an injective R-module, then Γd,b(E) is also an injective
R-module.

Proof. Similar to [6, Lemma 2.1(6)], it is easy to see that Γd,b(E) ∼=
lim−→a∈W̃ (d,b)

Γa(E). On the other hand, by [2, Proposition 2.1.4], the mod-

ule Γa(E) is injective for each a ∈ I(R). Now, since R is Noetherian, the result
follows from [4, Exercise 5.23 (p.255)]. �
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Corollary 2.4. If E is an injective R-module, then Dd,b(E) is also an injective
R-module.

Proof. Since E is an injective module, H1
d,b(E) = lim−→a∈W̃ (d,b)

Ext1
R(R/a, E) =

0. Now, the exact sequence

0 Γd,b(E) E Dd,b(E) 0

implies that Dd,b(E) is also an injective module. �

Corollary 2.5. Let M be an R-module. If Γd,b(M) = M , then Hi
d,b(M) = 0

for all i ≥ 1.

Proof. Using Theorem 2.3, we construct an injective resolution

0 M E0 E1 E2 · · ·

of M such that Γd,b(Ei) = Ei for all i ≥ 0. We have

Hi
d,b(M) =

ker(Ei → Ei+1)

Im(Ei−1 → Ei)
= 0,

for all i ≥ 1. �

Proposition 2.6. Let M be an R-module. Then the following statements hold:
(1) If Γd,b(M) = M , then Di

d,b(M) = 0 for all i ≥ 0. Moreover, for any

R-module X, Di
d,b(Hj

d,b(X)) = 0 for all i ≥ 0 and all j ≥ 0.

(2) Dd,b(M) ∼= Dd,b(M/Γd,b(M)).
(3) Dd,b(M) ∼= Dd,b(Dd,b(M)).
(4) Hi

d,b(Dd,b(M)) = 0 for i = 0, 1.

(5) For each i ≥ 2, Hi
d,b(M) ∼= Hi

d,b(Dd,b(M)).

(6) Dd,b(M) ∼= lim−→a∈W̃ (d,b)
Da(M). Moreover,

Di
d,b(M) ∼= lim−→

a∈W̃ (d,b)

Di
a(M) ∼= lim−→

a∈W̃ (d,b)

Hi+1
a (M)

for all i ≥ 1.
(7) Dd,b(M) ∼= lim−→a∈Σ

Da,b(M), where Da,b(M) = lim−→c∈W̃ (a,b)
Dc(M). More-

over,

Di
d,b(M) ∼= lim−→

a∈Σ

lim−→
c∈W̃ (a,b)

Di
c(M) ∼= lim−→

a∈Σ

lim−→
c∈W̃ (a,b)

Hi+1
c (M)

for all i ≥ 1. Note that W̃ (a, b) = {p ∈ Spec(R) : ∃n ∈ N; an ⊆ p + b}, where
a, b ∈ I(R) (see [5, p. 582]).
(8) If Ld(M) = M , then Di

d,b(M) = 0 for all i ≥ 0. Moreover, for any R-module

X, Di
d,b(Hj

d(X)) = 0 for all i ≥ 0 and all j ≥ 0.

(9) If M is a b-torsion module, then Di
d,b(M) = 0 for all i ≥ 0. Moreover, for

any R-module X, Di
d,b(Hj

a(X)) = 0 for all i ≥ 0 and all a ∈ I(R).

(10) If Γd,b(M) ⊆ Γb(M), then Di
d,b(M) = Di

d(M) for all i ≥ 0.
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(11) If a ∈ W̃ (d, b), then HomR(R/a, Dd,b(M)) = 0.

Proof. (1) By Corollary 2.5, H1
d,b(M) = 0. By Lemma 2.2, we obtainDd,b(M) =

0. By Lemma 2.2 and Corollary 2.5, we have Di
d,b(M) ∼= Hi+1

d,b (M) = 0 for all

i ≥ 1. The second statement follows because Γd,b(Hi
d,b(M)) = Hi

d,b(M) for all
i ≥ 0.
(2) From the short exact sequence

0 Γd,b(M) M M/Γd,b(M) 0 (])

we conclude that the sequence

0 Dd,b(Γd,b(M)) Dd,b(M) Dd,b(M/Γd,b(M)) D1
d,b(Γd,b(M))

is exact. Since by part (1), Dd,b(Γd,b(M)) = D1
d,b(Γd,b(M)) = 0, it follows

that Dd,b(M) ∼= Dd,b(M/Γd,b(M)).
(3) By Lemma 2.2,

0→M/Γd,b(M)→ Dd,b(M)→ H1
d,b(M)→ 0

is a short exact sequence. This gives rise to the following exact sequence

0 Dd,b(M/Γd,b(M)) Dd,b(Dd,b(M)) Dd,b(H1
d,b(M)).

By parts (1) and (2), we obtain

Dd,b(Dd,b(M)) ∼= Dd,b(M/Γd,b(M)) ∼= Dd,b(M).

(4) By Lemma 2.2, we obtain the exact sequence

0 Γd,b(Dd,b(M)) Dd,b(M) Dd,b(Dd,b(M)) H1
d,b(Dd,b(M)) 0.

Thus, by part (3), the claim follows.
(5) Applying Hi

d,b to exact sequence (]), we obtain the exact sequence

Hi
d,b(Γd,b(M)) Hi

d,b(M) Hi
d,b(M/Γd,b(M)) Hi+1

d,b (Γd,b(M))

for all i ≥ 0. Hence, by Corollary 2.5, Hi
d,b(M) ∼= Hi

d,b(M/Γd,b(M)) for all

i ≥ 1. Now, applying Hi
d,b to the short exact sequence

0→M/Γd,b(M)→ Dd,b(M)→ H1
d,b(M)→ 0

the proof is complete, since by Corollary 2.5, we have Hi
d,b(H1

d,b(M)) = 0 for
all i ≥ 1.
(6) Similar to [6, Lemma 2.1(6)], we have Hi

d,b(M) ∼= lim−→a∈W̃ (d,b)
Hi

a(M) for
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all i ≥ 0. Now, consider the commutative diagram with exact rows

0 Γd,b(M) M Dd,b(M) H1
d,b(M) 0

0 lim−→
a∈W̃ (d,b)

Γa(M) M lim−→
a∈W̃ (d,b)

Da(M) lim−→
a∈W̃ (d,b)

H1
a(M) 0.

∼= = ∼=

By the Five lemma, the result follows. The second part is obtained from [2, The-
orem 1.3.5].
(7) First, for an R-module X, we show that Hi

d,b(X) ∼= lim−→a∈Σ
Hi

a,b(X), where

Hi
a,b(X) ∼= lim−→c∈W̃ (a,b)

Hi
c(X), which was proved in [5, Theorem 3.2]. To es-

tablish this, we begin by proving that Γd,b(X) ∼= lim−→a∈Σ
Γa,b(X). Since Σ is

a system of ideals, it is enough to show that Γd,b(X) = ∪a∈ΣΓa,b(X). Let
x ∈ Γd,b(X). Then there exists a ∈ Σ such that ax ⊆ bx. Hence x ∈ Γa,b(X),
which implies x ∈ ∪a∈ΣΓa,b(X). For the inverse inclusion, we note that for
each a ∈ Σ and each i ∈ N0, we have ai ∈ Σ. Now, since both Hi

d,b(−) and

lim−→a∈Σ
Hi

a,b(−), i ∈ N0, are strongly connected, it follows from [2, Theorem

1.3.5] that the result holds.
Again, using the commutative diagram

0 Γd,b(M) M Dd,b(M) H1
d,b(M) 0

0 lim−→
a∈Σ

Γa,b(M) M lim−→
a∈Σ

Da,b(M) lim−→
a∈Σ

H1
a,b(M) 0

∼= = ∼=

with exact rows, we apply the Five lemma to conclude the proof of the first
part. The second part then follows directly from [2, Theorem 1.3.5].
(8) Clearly, Ld(M) ⊆ Γd,b(M). Also Γd,b(M) ⊆M = Ld(M). Thus, Γd,b(M) =
M and so by part (1), the result follows. The next part follows directly from

the fact that Ld(Hj
d(M)) = Hj

d(M) for all j ≥ 0.
(9) Clearly, Ld(M) ⊆ Γd,b(M). Now, let x ∈ Γd,b(M). Hence there exists
a ∈ Σ such that ax ⊆ bx. On the other hand, since x ∈ M = Γb(M), there
exists t ∈ N0 such that btx = 0. Consequently, atx = 0, and since at ∈ Σ,
it follows that x ∈ Ld(M). Hence, we have Ld(M) = Γd,b(M) and the proof
is completed similarly to part (8). This result also follows from the fact that

Γb(Hj
b(M)) = Hj

b(M) for all j ≥ 0.
(10) It is easy to see that Γd,b(M) = Ld(M). Then by [2, Theorem 1.3.5],
Hi

d,b(M) = Hi
d(M) for all i ≥ 0. Now, consider the commutative diagram of
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R-modules and R-homomorphisms with exact rows

0 Γd,b(M) M Dd,b(M) H1
d,b(M) 0

0 Ld(M) M Td(M) H1
d(M) 0.

= = ∼=

Applying the Five Lemma, we obtain Dd,b(M) ∼= Dd(M). Finally, by reapply-
ing [2, Theorem 1.3.5], the result follows.
(11) Let E be an injective R-module. Then H1

d,b(E) = 0 and so by Lemma

2.2, E/Γd,b(E) ∼= Dd,b(E). Consequently, for all a ∈ W̃ (d, b), we have

HomR(R/a, E/Γd,b(E)) ∼= HomR(R/a, Dd,b(E)).

Now, let I ∈ Σ such that I ⊆ a+b, and let f ∈ HomR(R/a, E/Γd,b(E)). Then
f(1+a) ∈ E/Γd,b(E), and so there exists e ∈ E such that f(1+a) = e+Γd,b(E).

This implies that ae ⊆ Γd,b(E), and consequently, there exists I
′ ∈ Σ such that

I
′
ae ⊆ bae. Clearly II

′ ∈ Σ. Now, since I ⊆ a + b, we have

II
′
e ⊆ (a + b)I

′
e ⊆ aI

′
e+ bI

′
e ⊆ bae+ bI

′
e ⊆ be.

Hence II
′
e ⊆ be, which implies that e ∈ Γd,b(E), and thus f(1 + a) = 0. It fol-

lows that HomR(R/a, E/Γd,b(E)) = 0, and consequently HomR(R/a, Dd,b(E)) =
0. �

3. Bd,b(M) and its results on Dd,b(M)

Definition 3.1. Let M be an R-module, and let S = R \ ZR(M). For a ∈
W̃ (d, b), it is clear that {(M :S−1M a), ϕM

a,c}a,c∈W̃ (d,b) is a direct system of R-

modules indexed by W̃ (d, b), where c ⊆ a and the morphisms ϕM
a,c : (M :S−1M

a) → (M :S−1M c) are the natural inclusion maps. We define the R-module
Bd,b(M) as follows:

Bd,b(M) := lim−→
a∈W̃ (d,b)

(M :S−1M a).

For each a ∈ W̃ (d, b), let ϕM
a : (M :S−1M a) → Bd,b(M) denote the canonical

map.

Theorem 3.2. Let M be an R-module. Then
(1) If Γd,b(M) = 0, then Bd,b(M) ∼= Dd,b(M).
(2) Bd,b(M/Γd,b(M)) ∼= Dd,b(M).

Proof. (1) Let a ∈ W̃ (d, b). Then there exists I ∈ Σ such that I ⊆ a + b. We
show that the map ψa : (M :S−1M a)→ HomR(a,M) defined by ψa(x)(a) = ax
for all x ∈ (M :S−1M a) and a ∈ a, is an R-isomorphism. Clearly, ψa is an
R-homomorphism. Now, suppose ψa(m/s) = 0, for some m/s ∈ (M :S−1M a).
This means that a · m/s = 0 for all a ∈ a. Equivalently, am = 0 for some
m ∈ M , which implies that Im ⊆ bm. Therefore m ∈ Γd,b(M) = 0, which
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implies that m = 0. Thus a 6⊆ ZR(M). Let y ∈ a \ ZR(M). Then y ·m/s = 0
and so ym/s = 0. Hence there exists u ∈ R\ZR(M) such that uym = 0. Since
uy ∈ R \ZR(M), it follows that m = 0, and therefore m/s = 0. Thus, ψa is an
R-monomorphism. Now, it is enough to prove that ψa is an R-epimorphism.
Let f ∈ HomR(a,M). Since y ∈ a \ ZR(M), we have f(y)/y ∈ S−1M . We
show that x · f(y)/y ∈M for all x ∈ a. We have

x · f(y)/y = f(xy)/y = yf(x)/y = f(x)/1 ∈M.

This implies that a · f(y)/y ⊆ M , which leads to f(y)/y ∈ (M :S−1M a).
Therefore ψa(f(y)/y) = f . It follows that ψa is an R-epimorphism.
(2) It is straightforward to verify that Γd,b(M/Γd,b(M)) = 0. Thus, by part
(1), we haveBd,b(M/Γd,b(M)) ∼= Dd,b(M/Γd,b(M)), and by Proposition 2.6(2),
Bd,b(M/Γd,b(M)) ∼= Dd,b(M). �

Theorem 3.3. Let M be an R-module. Then Ass(Dd,b(M)) = Ass(M/Γd,b(M)).

Proof. From the short exact sequence

0→M/Γd,b(M)→ Dd,b(M)→ H1
d,b(M)→ 0,

we conclude that Ass(M/Γd,b(M)) ⊆ Ass(Dd,b(M)). For the inverse inclusion,
by Theorem 3.2(1), Bd,b(M/Γd,b(M)) ∼= Dd,b(M/Γd,b(M)) and so by Proposi-
tion 2.6(2), Bd,b(M/Γd,b(M)) ∼= Dd,b(M). Hence

Ass(Bd,b(M/Γd,b(M))) = Ass(Dd,b(M)).

Let p ∈ Ass(Dd,b(M)) and set N = M/Γd,b(M). Then p ∈ Ass(Bd,b(N)).
Thus there exists 0 6= x ∈ Bd,b(N) such that p = (0 :R x). Hence, there exist

a ∈ W̃ (d, b), ϕa ∈ HomR((N :S−1N a), Bd,b(N)), and y ∈ (N :S−1N a) such
that x = ϕa(y), where S = R \ ZR(N) and {(N :S−1N a), ϕa}a∈W̃ (d,b) forms

the desired direct system. Clearly ay ⊆ N . Since px = 0, we have p · ϕa(y) =

ϕa(py) = 0. Then there exists c ∈ W̃ (d, b) such that c ⊆ a and ϕa
c (py) = 0.

Since ϕa
c is the inclusion map, it follows that py = 0 and thus p = (0 :R y).

Moreover, we have Γd,b(S−1N) = 0, because Γd,b(N) = Γd,b(M/Γd,b(M)) = 0.

Now, if p ∈ W̃ (d, b), then there is I ∈ Σ such that I ⊆ p + b. Since py = 0,
we obtain Iy ⊆ by, which implies y ∈ Γd,b(S−1N) = 0. Therefore p = (0 :R
y) = R, which is a contradiction. Thus p 6∈ W̃ (d, b). Furthermore, a 6⊆ p,

because otherwise we would have ay = 0. On the other hand a ∈ W̃ (d, b),
then there exists d ∈ Σ such that d ⊂ a + b. This implies dy ⊆ by. Thus
y ∈ Γd,b(S−1N) = 0, which is also a contradiction. Now, let a ∈ a \ p. Then
p = (0 :R ay). Hence p ∈ Ass(N). Thus, Ass(Dd,b(M)) ⊆ Ass(N), completing
the proof. �

Corollary 3.4. Let M be an R-module. Then

Supp(Dd,b(M)) = Supp(M/Γd,b(M)).
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Proof. From the short exact sequence

0→M/Γd,b(M)→ Dd,b(M)→ H1
d,b(M)→ 0,

we conclude that Supp(Dd,b(M)) = Supp(M/Γd,b(M))∪Supp(H1
d,b(M)). Then

Supp(M/Γd,b(M)) ⊆ Supp(Dd,b(M)).

Now, let p ∈ Supp(Dd,b(M)). Then there exists q ∈ Ass(Dd,b(M)) such
that q ⊆ p. Thus, by Theorem 3.3, q ∈ Ass(M/Γd,b(M)) and so there
exists m ∈ M\Γd,b(M) such that q = (0 :R m + Γd,b(M)). Now, 0 6=
(m+ Γd,b(M))/1 ∈ (M/Γd,b(M))p and it follows that p ∈ Supp(M/Γd,b(M)).
Thus, Supp(Dd,b(M)) ⊆ Supp(M/Γd,b(M)), which completes the proof. �

Corollary 3.5. Let M be an R-module. We have

Supp(H1
d,b(M)) ⊆ Supp(M/Γd,b(M)).

Proof. Consider the short exact sequence

0→M/Γd,b(M)→ Dd,b(M)→ H1
d,b(M)→ 0.

Applying Corollary 3.4 to this sequence yields the desired result. �

Theorem 3.6. Let M be an R-module and set S = R\ZR(M). For each prime
ideal p ∈ Spec(R), define Up = Rp \ ZRp

(Mp). Let λp : S−1M → U−1
p Mp be

the canonical homomorphism at p. Then

Bd,b(M) ∼= ∩p/∈W (d,b)λ
−1
p (Mp).

Proof. Let y ∈ Bd,b(M). Then there exist a ∈ W̃ (d, b) and an element m/s ∈
(M :S−1M a) such that ϕM

a (m/s) = y, where ϕM
a : (M :S−1M a)→ Bd,b(M) is

the natural map. It is easy to see that a * p for all p ∈ Spec(R) \W (d, b). Let
a ∈ a \ p, where p ∈ Spec(R) \W (d, b). Hence am/s ∈M , and consequently

λp(m/s) = (m/1)/(s/1) = ((am/s)/a)/(1/1) ∈Mp.

Thenm/s ∈ λ−1
p (Mp).We show that the map ϕ : Bd,b(M)→ ∩p/∈W (d,b)λ

−1
p (Mp)

defined by ϕ(y) = ϕ(ϕM
a (m/s)) = m/s is an R-isomorphism. Clearly, ϕ is an

R-monomorphism. Let m/s ∈ λ−1
p (Mp) for all p ∈ Spec(R) \W (d, b). Then

there exists sp ∈ R \ p such that spm/s ∈M for all p ∈ Spec(R) \W (d, b). Put

I =
∑

p/∈W (d,b)Rsp. We claim that I ∈ W̃ (d, b). Assume that q ∈ Spec(R)

satisfies I + b ⊆ q and dim(R/(I + b)) = dim(R/q). If q /∈ W (d, b), then
Rsq ⊆ I ⊆ I + b ⊆ q, which implies sq ∈ q, contradicting the choice of
sq. Thus, we conclude that q ∈ W (d, b). Then there exists d ∈ Σ such that
d ⊆ q + b. Hence, we have

d ⊆ q + b ⊆ q + I + b ⊆ q.

This implies that dim(R/q) ≤ dim(R/d) ≤ d. Consequently, dim(R/(I+ b)) ≤
d, which shows that I + b ∈ Σ. Now, since I + b ⊆ I + b, it follows that
I ∈ W̃ (d, b). Thus m/s ∈ (M :S−1M I) and ϕ(ϕM

I (m/s)) = m/s. This proves
that ϕ is an R-epimorphism, thereby completing the proof. �
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Theorem 3.7. Let R be a domain. Then we have

Dd,b(R) = ∩p/∈W (d,b)Rp.

Proof. Under the assumptions of Theorem 3.6, it is evident that λ−1
p (Rp) = Rp

(note that R is a domain). Suppose Γd,b(R) 6= 0 and let 0 6= r ∈ R be an
element of Γd,b(R). Then there exists I ∈ Σ such that I ⊆ (0 :R r) + b. Since
(0 :R r) = 0, I ⊆ b, and so b ∈ Σ. Therefore, Γd,b(R) = R, which leads
to Dd,b(R) = 0 and Spec(R) = W (d, b). This implies that ∩p/∈W (d,b)Rp = 0,
completing the proof in this case. Now if Γd,b(R) = 0, then by Theorem 3.2(2)
and Theorem 3.6, the result follows. �

Theorem 3.8. Let M be an R-module such that Γd,b(M) = 0. Then

Ωd,b(M) := ∪s∈R−ZR(M)(W (d, b) ∩AssR(M/sM)) = ∅
if and only if M ∼= Dd,b(M).

Proof. (⇒) First, assume that Ωd,b(M) = ∅. Since Γd,b(M) = 0, it follows
from Theorem 3.2(2), Dd,b(M) ∼= Bd,b(M). Hence, we use Bd,b(M) instead of

Dd,b(M). Let Ωd,b(M) = ∅ and a ∈ W̃ (d, b). It is easy to see that ϕ : M →
Bd,b(M) defined by ϕ(m) = ϕa(m) is an R-monomorphism for all m ∈ M .
Now, we prove that ϕ is an R-epimorphism. Suppose y ∈ Bd,b(M). Then there

exist c ∈ W̃ (d, b), ϕc ∈ HomR((M :S−1M c), Bd,b(M)) and m/s ∈ (M :S−1M c)
such that ϕc(m/s) = y. It suffices to show that m/s ∈M . Since cm/s ⊆M , we
have cm ⊆ sM , which implies c(m + sM) = 0. If c ⊆ ZR(M/sM), then there
exists p ∈ Ass(M/sM) such that c ⊆ p. Consequently, p ∈ W (d, b), leading to
p ∈ Ωd,b(M), which contradicts our assumption. Then c 6⊆ ZR(M/sM), which
means that m ∈ sM , implying m/s ∈M .
(⇐) Let M ∼= Dd,b(M). Assume that p ∈ Ass(M/sM) for some s ∈ R\ZR(M).
Then there exists m ∈M \ sM such that p = (sM :R m). It follows that pm ⊆
sM and so p.m/s ⊆M , implying that m/s ∈ (M :S−1M p). If m/s ∈M , then
m ∈ sM and so p = R, which is a contradiction. Then m/s ∈ (M :S−1M p)\M .

Now, we show that p 6∈ W (d, b). Let p ∈ W (d, b). Then p ∈ W̃ (d, b). Since
m/s ∈ (M :S−1M p), ϕp(m/s) ∈ Bd,b(M), which implies ϕ−1(ϕp(m/s)) ∈ M .
Thus ϕ−1(ϕ(m)) ∈ sM and so m ∈ sM , which is a contradiction. Therefore
p 6∈W (d, b) and we conclude that Ωd,b(M) = ∅. �

Corollary 3.9. Assume that M is an R-module.
(1) If Γd,b(M) = H1

d,b(M) = 0, then Ωd,b(M) = ∅.
(2) Ωd,b(Dd,b(M)) = ∅.
(3) If M is an injective module, then Ωd,b(M/Γd,b(M)) = ∅.

Proof. (1) Since Γd,b(M) = H1
d,b(M) = 0, by Lemma 2.2, M ∼= Dd,b(M).

Thus, by Theorem 3.8, Ωd,b(M) = ∅.
(2) By Proposition 2.6(4), Γd,b(Dd,b(M)) = 0. Moreover, by Proposition
2.6(3), Dd,b(M) ∼= Dd,b(Dd,b(M)). Hence, by Theorem 3.8, Ωd,b(Dd,b(M)) =
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∅.
(3) By Theorem 2.3, Γd,b(M) is injective. Then, from the short exact sequence

0→ Γd,b(M)→M →M/Γd,b(M)→ 0,

it follows that M/Γd,b(M) is also injective. Therefore H1
d,b(M/Γd,b(M)) =

0 and so by Lemma 2.2, M/Γd,b(M) ∼= Dd,b(M/Γd,b(M)). Now, the result
follows from part (2). �

4. Localization theorem

We recall that a finite-dimensional Noetherian ring R is said to be biequidi-
mensional if:
(i) dimR/p = dimR, for all p ∈ Ass(R);
(ii) dimR/p + dimRp = dimR, for all p ∈ Spec(R).

Theorem 4.1. Let R be a catenary and biequidimensional ring and let M be
an R-module. Then for each p ∈ Spec(R) and each i ≥ 0, we have

Hi
d,b(M)p ∼= Hi

d−dim(R/(p+b)),bp
(Mp).

Proof. By the standard argument of homology theory (see [2, Exercise 1.3.4]),
it is sufficient to prove that

Γd,b(M)p ∼= Γd−dim(R/(p+b)),bp
(Mp).

First, we show that Γd,b(M)p ⊆ Γd−dim(R/(p+b)),bp
(Mp). Let m/s ∈ Γd,b(M)p.

Then we have dim(R/((0 :R m) + b)) ≤ d. Moreover, s ∈ R \ p. We show that
dim(R/((0 :R m) + b))p ≤ d − dim(R/(p + b)). Let qp be a minimal prime in
Supp(R/((0 :R m) + b)p). Hence, we have

dim(Rp/qp) = dim((R/q)p/q)

= ht(p/q) = ht(p)− ht(q)

= [dim(R)− dim(R/p)]− [dim(R)− dim(R/q)]

= dim(R/q)− dim(R/p).

Then dim(Rp/qp) ≤ d − dim(R/p) and so dim(Rp/qp) ≤ d − dim(R/(p + b)).
This implies that

dim(R/((0 :R m) + b))p ≤ d− dim(R/(p + b)).

Consequently, we obtain m/s ∈ Γd−dim(R/(p+b)),bRp
(Mp), leading to the inclu-

sion

Γd,b(M)p ⊆ Γd−dim(R/(p+b)),bp
(Mp).

Now, assume that m/s ∈ Γd−dim(R/(p+b)),bRp
(Mp). Then m ∈ M , s ∈ S, and

also

dim(R/((0 :R m) + b))p ≤ d− dim(R/(p + b)).
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We show that dim(R/((0 :R m) + b)) ≤ d. To prove this, let q be a minimal
prime in Supp(R/((0 :R m) + b)). If q ⊆ p, then qRp is a minimal prime in
Supp(R/((0 :R m) + b)p). In this case, we have

dim(Rp/qp) = dim((R/q)p/q) ≤ d− dim(R/(p + b)),

which implies

ht(p/q) ≤ d− dim(R/(p + b)).

Then ht(p)− ht(q) ≤ d− dim(R/(p + b)), which gives

dim(R/q)− dim(R/p) ≤ d− dim(R/(p + b)).

Since b ⊆ (0 :R m) + b ⊆ q ⊆ p, it follows that b ⊆ p. Thus p = b + p,
which implies dim(R/q) ≤ d. Hence dim(R/((0 :R m) +b)) ≤ d. Now, suppose
q * p. Let x ∈ q \ p. The Rq-module (R/((0 :R m) + b))q is finitely generated
and concentrated in qq, hence it is annihilated by a suitable power qnRq. In
particular, xnm = 0 in Mq. Therefore, we have Supp(R/((0 :R xnm) + b)) (
Supp(R/((0 :R m) + b)), but q /∈ Supp(R/((0 :R xnm) + b)). Let q1 be a
minimal prime in Supp(R/((0 :R xnm) + b)). If q1 ⊆ p, then by a similar
argument as above, the result follows. Otherwise, we can construct an element
t /∈ p such that Supp(R/((0 :R tm) + b)) ≤ d, completing the proof. �

Corollary 4.2. Let R be a catenary and biequidimensional ring, p ∈ Spec(R)
and let M be an R-module. Then for each i ≥ 0,

Di
d,b(M)p ∼= Di

d−dim(R/(p+b)),bp
(Mp).

Proof. First, we show that Dd,b(M)p ∼= Dd−dim(R/(p+b)),bp
(Mp). By Theorem

4.1, Hi
d,b(M)p ∼= Hi

d−dim(R/(p+b)),bp
(Mp) for all i ≥ 0. Put d1 = d−dim(R/(p+

b)). Now, using the following commutative diagram

Γd,b(M)p Mp Dd,b(M)p H1
d,b(M)p 0

Γd1,bp(Mp) Mp Dd1,bp(Mp) H1
d1,bp

(Mp) 0,

∼= = ∼= =

where both rows are exact by Lemma 2.2, this follows from the Five Lemma.
Now, assume that i ≥ 1. Hence, by Lemma 2.2, Di

d,b(M) ∼= Hi+1
d,b (M). Then

Di
d,b(M)p ∼= Hi+1

d,b (M)p

∼= Hi+1
d−dim(R/(p+b)),bp

(Mp)

∼= Di
d−dim(R/(p+b)),bp

(Mp).

This concludes the proof. �
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5. Vanishing theorems

In this section, we establish a vanishing theorem for the module Di
d,b(M)

and demonstrate that the integer n, which serves as an upper bound for the
vanishing of Di

d,b(M), is related to the dimension of a certain set of prime
ideals.

Throughout this section, let d′ be a fixed integer defined by

d′ := max{dim(R/p) | p ∈W (d, b)}.
Definition 5.1. Let M be a finitely generated R-module. For any integer
k ≥ 0, we define the singular set of M as

S∗k(M) = {p ∈ Spec(R) | depthRp
(Mp) + dim(R/p) ≤ k}

(see [1]). Additionally, assuming M 6= 0, we define the grade of M as

grade(M) = inf{i ∈ N0 | ExtiR(M,R) 6= 0}
(see [3, p. 131]). Moreover, for a local ring (R,m), we simply write depth(m,M)
as depth(M)(see [3, p. 130]).

Theorem 5.2. Let M be a finitely generated R-module and let n ≥ 2 and k
be two non-negative integers such that dim(S∗n+k(M)) ≤ k for all k < d′. Then

Dd,b(M) ∼= M and Di
d,b(M) = 0 for all 0 < i < n− 1.

Proof. By Lemma 2.2, it is sufficient to prove that Hi
d,b(M) = 0 for all i < n.

Let a ∈ W̃ (d, b). Hence there exists I ∈ Σ such that I ⊆ a + b. Assume that
p ∈ V(a). Then a ⊆ p. Consequently, we obtain I ⊆ p + b and so p ∈W (d, b).
Put k := dim(R/p) − 1. Since k < d′, the given assumption ensures that
p /∈ S∗n+k(M). Therefore, by Definition 5.1, depthRp

(Mp) + dim(R/p) > k+n.

This implies that depthRp
(Mp) + k + 1 > k + n, which further simplifies to

depthRp
(Mp) + 1 > n. Thus, we conclude that depthRp

(Mp) ≥ n. Con-

sequently, depth(a,M) ≥ n. By [3, Theorem 16.7], it follows that for each

a ∈ W̃ (d, b), we have ExtiR(R/a,M) = 0 for all i < n. Then Hi
d,b(M) = 0 for

all i < n. �

Theorem 5.3. Let (R,m) be a local ring, and let M be a finitely generated
R-module. If t ∈ N, then for all i ≥ t, the module Di

d,b(M) is finitely generated

if and only if Di
d,b(M) = 0.

Proof. (⇒) First, we assume that Di
d,b(M) is finitely generated for all i ≥ t

and show that Di
d,b(M) = 0. To establish this, we proceed by induction on

n = dim(M). For the case n = 0, then by Grothendieck’s Vanishing Theorem(
[2, Theorem 6.1.2]), together with Lemma 2.2 and Proposition 2.6(6), implies
that Di

d,b(M) = 0 for all i ≥ t. Now, assume inductively that n > 0 and that
the result has been proved for all finitely generated R-modules of dimension
n− 1. Consider the exact sequence

0→ Γd,b(M)→M →M/Γd,b(M)→ 0
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which gives rise to the following long exact sequence:

· · · → Di
d,b(Γd,b(M))→ Di

d,b(M)→ Di
d,b(M/Γd,b(M))→ Di+1

d,b (Γd,b(M))→ · · · .

Since, by Proposition 2.6(1), Di
d,b(Γd,b(M)) = 0 for all i ≥ 0, it follows that

Di
d,b(M) ∼= Di

d,b(M/Γd,b(M)) for all i ≥ 0. Thus, by replacing M with

M/Γd,b(M), we may assume that Γd,b(M) = 0. Hence m * ZR(M). Thus,
there exists an element x ∈ m \ ZR(M). The exact sequence

0→M →M →M/xM → 0

induces the long exact sequence

· · · → Di
d,b(M)→ Di

d,b(M)→ Di
d,b(M/xM)→ Di+1

d,b (M)→ · · ·

which implies that Di
d,b(M/xM) is finitely generated for all i ≥ t. Since M/xM

is finitely generated with dim(M/xM) = n−1, the inductive hypothesis implies
that Di

d,b(M/xM) = 0 for all i ≥ t. Therefore Di
d,b(M) ∼= xDi

d,b(M) for all

i ≥ t. Then, by Nakayama’s Lemma, it follows that Di
d,b(M) = 0 for all i ≥ t.

(⇐) The converse is obvious. �

6. Conclusion

In this paper, we introduced and studied the generalized local cohomology
modules Hi

d,b(M) and their derived functors Di
d,b(M) over a commutative Noe-

therian ring R. We established key properties, including vanishing conditions,
localization theorems, and structural results. Specifically, we proved that when
R is a catenary and biequidimensional ring, the localization of these modules
satisfies:

Hi
d,b(M)p ∼= Hi

d−dim(R/(p+b)),bp
(Mp).

Additionally, we provided criteria for the vanishing of Di
d,b(M) and explored

connections between these modules and torsion theories. Our results extend
and unify previous work in local cohomology, offering new insights into the
behavior of these functors in algebraic geometry and commutative algebra.

7. Data Availability Statement

Not applicable

8. Aknowledgement

The author is deeply grateful to the editors and anonymous reviewers for
their insightful comments and constructive suggestions, which significantly en-
hanced the quality of this manuscript.

9. Ethical considerations

Not applicable



292 M. Sayedsadeghi

10. Funding

Not applicable

11. Conflict of interest

The author declares no competing interests.

References

[1] Banica, C., & Soia, M. (1976). Singular sets of a module on local cohomology. Boll. Un.

Mat. Ital. B, 16, 923-934.

[2] Brodmann, M. P., & Sharp, R. Y. (1998). Local Cohomology- An Alge-
braic Introduction with Geometric Applications. Cambridge University Press.

https://doi.org/10.1017/CBO9780511629204

[3] Matsumura, H. (1986). Commutative ring theory. Cambridge University Press.
https://doi.org/10.1017/CBO9781139171762

[4] Rotman, J. (1979). Introduction to homological algebra. Academic Press.

https://doi.org/10.1007/978-0-387-68324-9
[5] R. Takahashi, R., & Yoshino, Y., & Yoshizawa, T. (2009). Local cohomology based on

a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra, 213(4), 582-600.

https://doi.org/10.1016/j.jpaa.2008.09.008
[6] Zamani, N., & Bijan-zadeh, M. H., & Sayedsadeghi, M. (2016). cohomology with sup-

ports of dimension ≤ d. Journal of Algebra and Its Applications, 15(3), 1650042(1)-
1650051(10). https://doi.org/10.1142/S0219498816500420

[7] Zamani, N., & Bijan-zadeh, M. H., & Sayedsadeghi, M. (2014). d-Transform Func-

tor and Some Finiteness and Isomorphism Results. Vie. J. Math., 42, 179-186.
https://doi.org/10.1007/s10013-013-0042-2

Mirsadegh Sayedsadeghi

Orcid number: 0000-0002-0865-037X
Department of Mathematics

Payame Noor University, P.O. Box 19395-4697

Tehran, Iran
Email address: m sayedsadeghi@pnu.ac.ir


	1. Introduction
	2. Preliminaries
	3. Bd,b(M) and its results on Dd,b(M)
	4. Localization theorem
	5. Vanishing theorems
	6. Conclusion
	7. Data Availability Statement
	8. Aknowledgement
	9. Ethical considerations
	10. Funding
	11. Conflict of interest
	References

