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Abstract. This paper deals with a particular family of singularly per-

turbed two-point boundary value problems characterized by the pertur-
bation parameter 0 < ε� 1, and it introduces a new numerical technique

to approximate its solution. As the perturbation parameter ε decreases,
the majority of classic numerical methods that utilize uniform grids ne-

cessitate significantly reduced step sizes. Consequently, we employ a non-

equidistant mesh. After discretizing the problem and constructed some
high order compact methods, the original problem is transformed into a

linear algebraic system. Also, it is demonstrated that the present method

converges with order 4 in L∞ norm. Finally, numerical simulations will
demonstrate the efficacy of the proposed method and confirm the theo-

retical results.
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1. Introduction

In recent years, singularly perturbed boundary value problems (SPBVPs)
have been extensively studied. As we know, the behavior of this problem is
overshadowed by a small positive value denoted as ε, which is referred to as the
perturbation parameter. If the perturbation parameter ε→ 0, the solution has
a thin layer(s) (interior and/or boundary layer(s)) with a very steep gradient.
Because the small perturbation parameter ε affects on changing the width of the
layer(s), these kinds of problems appear in the mathematical modeling of sev-
eral problems in physics and engineering, like solid mechanics, mechanical and
electrical systems, celestial mechanics, electromagnetic field problems in mov-
ing media, aerodynamics, chemical reactions, financial mathematics, quantum
physics, reaction-diffusion processes, biochemical reactions and evolutionary
biology (red cell system) [35], epidemics and population dynamics [11], the os-
cillations and chaos in physiological control systems [17], tumor growth [31]
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etc. Since, the exact solution of the SPBVPs inside the layer(s) changes very
fast, and outside the layer(s) the solution has regular behavior and slow vari-
ation, these problems are difficult to solve numerically. As the perturbation
parameter approaches zero, the smoothness of the solutions reduces. On one
hand, the exact solutions of the SPBVPs are not generally available, so we are
forced to employ numerical methods. On the other hand, due to the layers in
these solutions, the numerical behavior of such problems face some difficulties.
Practically, when ε → 0, classical numerical methods on uniform meshes like
finite element or finite difference methods to solve these kinds of problems do
not attain satisfactory and accurate results and may fail to yield a stable so-
lution. Numerous numerical techniques have been extended by researchers
to solve SPBVPs, like as parameter uniform numerical methods [12,18,25,28],
finite difference method [32], priori mesh approach [33], exponentially fitted
finite difference schemes [26,27], second order numerical schemes [3,7], a semi-
analytic method [4], absolutely stable difference scheme [6], discrete cubic spline
method [36], non-standard fitted operator scheme [29], upwind finite difference
method [10], fitted operator finite difference method [24], parameter-uniform
improved hybrid numerical scheme [19], etc.

Many of the methods mentioned above are effective for solving SPBVPs.
However, to the best of our knowledge, the convergence rate of the aforesaid
methods is less than or equal to two. Therefore, the main motivation of this
article is to introduce a simple and high-order numerical method for solving
a particular class of SPBVP characterized by a perturbation parameter ε. In
order to achieve this goal, we introduce some fourth-order compact techniques
for discretizing the associated SPBVP. The accuracy and performance of the
new method are analyzed, and it is inferred that the method is capable of
constructing fourth-order convergent solutions in the L∞ norm.

The outline of the rest of the paper is structured as follows. In Section 2
some properties of the exact solution of the corresponding SPBVPs and their
requirements are taken into account. In Section 3 a new numerical method
based on the proposed compact schemes is developed for solving SPBVPs.
The convergence and error estimation of the proposed method are also studied
in Section 4. In Section 5 some numerical examples are given to demonstrate
the efficiency of the presented method.

2. Properties of the exact solution and some requirements

First, we get more precise information about the exact solution’s behavior
of the SPBVPs. In this research, we consider the SPBVPs that are determined
by the second-order ordinary differential equation described as follows,

εy′′(t) + p(t)y′(t) + q(t)y(t) = f(t), t ∈ Γ = (0, 1)(1a)

y(0) = τ0, y(1) = τ1(1b)
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in which ε is the perturbation parameter, 0 < ε � 1 and it is assumed that
given functions p(t), q(t) and f(t) belong to the C4[0, 1]. It is important to
note that when p(t) is positive/negative, the exact solution of equation (1)
demonstrates the layer behavior at the left/right end of the interval of width
O(ε). For the case p(t) = 0, if q(t) > 0 then it will be seen the oscillatory
behavior of the exact solution to the corresponding problem and for the case
q(t) < 0, two layers of widthO(

√
ε) each will appear. For more details regarding

this issue, refer to [9, 23]. The solutions of SPBVPs (1) are often represented
as asymptotic expansions in powers of ε, as follows:

y(t) = y0(t) + εy1(t) + ε2y2(t) + · · · .

To clarify the characteristics of the solution, researchers examined the above-
mentioned asymptotic expansions. To study the asymptotic behavior of the
solutions, see [8, 22].

Assumption 1. Assume that there are constants λ > 0 and η > 0 so that the
relation p(t) ≥ λ as well as q(t) ≤ −η can be established.

It should be mentioned that under Assumption 1 the solution has an interior
layer of width O(ε) in the neighbourhood of the point t = ε [19, 28]. The
following lemma demonstrates that the operator Lw(t) = εw′′(t) + p(t)w′(t) +
q(t)w(t) satisfies the minimum principle.

Lemma 2.1. Assume that for the smooth function w(t) relations w(0) ≥ 0
and w(1) ≥ 0 are fulfilled, and also assumption 1 is established. If the operator
Lw(t) := εw′′(t)+p(t)w′(t)+ q(t)w(t) satisfies the condition Lw(t) ≤ 0,∀t ∈ Γ,
it can be concluded that w(t) ≥ 0,∀t ∈ Γ.

Proof. To prove of the lemma see [20]. �

A parameter bound for the solution y(t) of (1) will be determined with the
help of the above lemma.

Lemma 2.2. Let y(t) be the exact solution of the SPBVP (1), then we can
conclude from Assumption 1 that

(2) ‖y‖∞ ≤
(

1

η
‖f‖∞ + max{|τ0|, |τ1|}

)
, ∀t ∈ Γ.

Proof. See [20]. �

Remark 2.3. Even if, under Assumption 1, the sign of the constant λ is negative
and the sign of the operator Lw(t) also changes in Lemma 2.1, again, relation
(2) will be established. The details are provided in the Appendix.

In the following theorem, we will determine the bound of the derivatives of
the exact solution to the SPBVP (1), up to the fourth order.
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Theorem 2.4. If p(t), q(t), f(t) ∈ C2(Γ), then derivatives of the exact solution
y(t) of SPBVP (1) satisfies

‖y(k)‖∞ ≤
C

εk
, k = 1, 2, 3, 4,

in which the constant C is only dependent on ‖p(l)‖∞, ‖q(l)‖∞, ‖f (l)‖∞, l =
0, 1, 2, and ‖y‖∞, and not on ε.

Proof. To prove the theorem see [7]. �

3. Description of the method

A novel numerical technique for solving SPBVP (1) will be introduced in this
section. In this study, we utilize yn instead of y(tn). Additionally, Yn represents

the estimated value of yn. Taking arbitrary tk ∈ Γ
N

= {t0, t1, . . . , tN}, in which
t0 = 0, tN = 1, and then integrating (1a) over [tk, t], concludes that

ε(y′(t)− y′k) +

∫ t

tk

p(s)y′(s)ds+

∫ t

tk

q(s)y(s)ds =

∫ t

tk

f(s)ds.(3)

Same as the procedure in [2], integrating (3) over subintervals [tk−1, tk] and
[tk, tk+1], separately, and then subtracting the two obtained expressions from
one another, conclude that

ε(yk+1 − 2yk + yk−1)− ε(hk+1 − hk)y′k

+

∫ tk+1

tk

(tk+1 − t)p(t)y′(t)dt−
∫ tk

tk−1

(tk−1 − t)p(t)y′(t)dt

+

∫ tk+1

tk

(tk+1 − t)q(t)y(t)dt−
∫ tk

tk−1

(tk−1 − t)q(t)y(t)dt

=

∫ tk+1

tk

(tk+1 − t)f(t)dt−
∫ tk

tk−1

(tk−1 − t)f(t)dt, k = 1, . . . , N − 1.(4)

To estimate the integral parts of the system of Eqs. (4), we utilize the findings
from the lemma provided below.

Lemma 3.1. Let g(t) ∈ C4[0, 1]. Applying Lagrange second degree interpolat-
ing polynomial at nodes tk−1, tk, tk+1 for function g(t) yields that

∫ tk+1

tk

(tk+1 − t)g(t)dt−
∫ tk

tk−1

(tk−1 − t)g(t)dt = βkgk−1 + αkgk + γkgk+1 − ek(g),

(5)

where for k = 1, . . . , N − 1,

βk =
h4
k + 2h3

khk+1 − h4
k+1

12hk(hk + hk+1)
, αk =

h4
k + 4h3

khk+1 + 4hkh
3
k+1 + h4

k+1

12hkhk+1
, γk =

h4
k+1 + 2hkh

3
k+1 − h4

k

12hk+1(hk + hk+1)
,



An efficient numerical technique for a specific family... – JMMR Vol. 14, No. 2 (2025) 297

such that hk = tk − tk−1 and for the corresponding error term we get

(6) ek(g) = Ĥkg
(3)(ζk) +Hkg

(4)(ςk),

such that ζk ∈ (tk−1, tk), ςk ∈ (tk−1, tk+1) and


Ĥk =

2

6!

(
5hkhk+1(h3

k − h3
k+1) + 2(h5

k − h5
k+1)

)
,

Hk =
2

6!
h4
k+1(5hk + 2hk+1)(hk + hk+1)~k,

in which 0 < ~k < 1.

Proof. The proof of this lemma can be found in the Appendix. �

Now, employing Lemma 3.1 for functions p(t)y′(t), q(t)y(t) and f(t) and
then substituting in (4) yields that

ε(yk+1 − 2yk + yk−1)− ε(hk+1 − hk)y′k + βkpk−1yk−1 + αkpkyk + γkpk+1yk+1

+ βkqk−1y
′
k−1 + αkqky

′
k + γkqk+1y

′
k+1

= βkfk−1 + αkfk + γkfk+1 + ek(py′) + ek(qy)− ek(f), k = 1, . . . , N − 1,(7)

where the error terms ek(py′), ek(qy) and ek(f) can be computed in accordance
with (6). Since, there are no boundary conditions for the values of y′0 and y′N ,
we approximate them by the following formulas


y′0 = v0y0 +

v1

h1
y1 +

v2

h1 + h2
y2 +

v3

h1 + h2 + h3
y3 +

v4

h1 + h2 + h3 + h4
y4 + c̄0,

y′N = w0yN +
w1

hN
yN−1 +

w2

hN + hN−1
yN−2 +

w3

hN + hN−1 + hN−2
yN−3

+ w4

hN+hN−1+hN−2+hN−3
yN−4 + c̄N .



298 S. Amiri, M. Eshaghnezhad

Expanding y1, y2, y3, and y4, around point t0 as well as yN−1, yN−2, yN−3

and , yN−4 around point tN yields that

v0 = − 1

h1
− 1

h1 + h2
− 1

h1 + h2 + h3
− 1

h1 + h2 + h3 + h4
,

v1 =
(h1 + h2)(h1 + h2 + h3)(h1 + h2 + h3 + h4)

h2(h2 + h3)(h2 + h3 + h4)
,

v2 = −h1(h1 + h2 + h3)(h1 + h2 + h3 + h4)

h2h3(h3 + h4)
,

v3 =
h1(h1 + h2)(h1 + h2 + h3 + h4)

h3h4(h2 + h3)
, v4 = −h1(h1 + h2)(h1 + h2 + h3)

h4(h3 + h4)(h2 + h3 + h4)
,

w0 =
1

hN
+

1

hN + hN−1
+

1

hN + hN−1 + hN−2
+

1

hN + hN−1 + hN−2 + hN−3
,

w1 = − (hN + hN−1)(hN + hN−1 + hN−2)(hN + hN−1 + hN−2 + hN−3)

hN−1(hN−1 + hN−2)(hN−1 + hN−2 + hN−3)
,

w2 =
hN (hN + hN−1 + hN−2)(hN + hN−1 + hN−2 + hN−3)

hN−1hN−2(hN−2 + hN−3)
,

w3 = −hN (hN + hN−1)(hN + hN−1 + hN−2 + hN−3)

hN−2hN−3(hN−1 + hN−2)
,

w4 =
hN (hN + hN−1)(hN + hN−1 + hN−2)

hN−3(hN−2 + hN−3)(hN−1 + hN−2 + hN−3)
,

and
c̄0 =

1

5!

(
h4

1v1y(ζ0,1) + (h1 + h2)4v2y(ζ0,2) + (h1 + h2 + h3)4v3y(ζ0,3) + (h1 + h2 + h3 + h4)4v4y(ζ0,4)
)
,

c̄N = − 1

5!

(
h4
Nw1y(ς0,1) + (hN + hN−1)4w2y(ς0,2) + (hN + hN−1 + hN−2)4w3y(ς0,3)

)
− 1

5!

(
(hN + hN−1 + hN−2 + hN−3)4w4y(ς0,4)

)
,

in which ζ0,k ∈ (t0, t4), ς0,k ∈ (tN−4, tN ), for k = 1, 2, 3, 4.
The system of equations (7) can be summarized in the following matrix

equation,(
εA + CDp + Ā

)
y + (CDq − εDh) y′ = Cf + r + Ẽ +DĤ Ê +DH E,(8)

where A = tridiag(1,−2, 1) and C are (N−1)-dimensional tridiagonal matrices,
with

C(l, k) =


αk, l = k, 1 ≤ k ≤ N − 1,

βk+1, l = k + 1, 1 ≤ k ≤ N − 2,

γk−1, l = k − 1, 2 ≤ k ≤ N − 1,

0 o.w,
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and also

Ā(l, k) =



β1q0vk∑k
j=1 hj

, l = 1, k = 1, . . . , 4,

γN−1qNwN−k∑N−k−1
j=0 hN−j

, l = N − 1, k = N − 4, . . . , N − 1,

0 o.w,

and Dh, Dp, Dq, DĤ , DH are (N − 1)-dimensional diagonal matrices, with

Dh(k, k) = hk+1−hk, Dp(k, k) = p(tk), Dq(k, k) = q(tk), DĤ(k, k) = Ĥk, DH(k, k) = Hk,

and y = [y1, y2, . . . , yN−1]>,y′ = [y′1, y
′
2, . . . , y

′
N−1]>, f = [f1, f2, . . . , fN−1]>, r =

[r1, 0, . . . , 0, rN−1]>, and Ẽ = [Ẽ1, 0, . . . , 0, ẼN−1]>, Ê = [Ê1, Ê2, . . . , ÊN−1]>,E =
[E1,E2, . . . ,EN−1]>, in which,

r1 = β1f0 − (ε+ β1p0 + β1q0v0)y0, rN−1 = γN−1fN − (ε+ γN−1pN + γN−1qNw0)yN ,

Ẽ1 = −β1q0c̄0, ẼN−1 = −γN−1qN c̄N ,

Êk =
d3

dt3
(p(t)y′(t))|t=ζk,1

+
d3

dt3
(q(t)y(t))|t=ζk,2

− d3

dt3
(f(t))|t=ζk,3

, k = 1, 2, . . . , N − 1,

Ek =
d4

dt4
(p(t)y′(t))|t=ςk,1

+
d4

dt4
(q(t)y(t))|t=ςk,2

− d4

dt4
(f(t))|t=ςk,3

, k = 1, 2, . . . , N − 1,

where ζk,j , ςk,j ∈ (tk−1, tk+1), k = 1, . . . , N − 1, j = 1, 2, 3. As we can observe,
y and y′ are the two sets of unknowns in the system of equations (7). So, in
the subsequent stage, an attempt is made to approximate the unknowns y′ by
representing them in the form of y. To achieve this, we propose a compact
method that demonstrates high-order accuracy as follows:
At first, expanding y′2, y0, y2, and y3, around point t1 leads to

y′(t2) = y′(t1 + h2) = y′(t1) + h2y
′′(t1) + 1

2h
2
2y

(3)(t1) + 1
6h

3
2y

(4)(t1) + 1
4!h

4
2y

(5)(ζ1,4),

y(t0) = y(t1 − h1) = y(t1)− h1y
′(t1) + 1

2h
2
1y
′′(t1)− 1

6h
3
1y

(3)(t1) + 1
4!h

4
1y

(4)(t1)− 1
5!h

5
1y

(5)(ς1,4),

y (t2) = y (t1 + h2) = y (t1) + h2y
′ (t1) + 1

2h
2
2y
′′ (t1) + 1

6h
3
2y

(3) (t1) + 1
4!h

4
2y

(4)(t1) + 1
5!h

5
2y

(5)(ς̄1,4),

y (t3) = y(t1 + (h2 + h3)) = y(t1) + (h2 + h3)y′(t1) + 1
2 (h2 + h3)2y′′(t1) + 1

6 (h2 + h3)3y(3)(t1)

+ 1
4! (h2 + h3)4y(4)(t1) + 1

5! (h2 + h3)5y(5)(ς1,5),

such that ς̄1,4, ζ1,4, ς1,4, ς1,5 ∈ (t0, t3). Therefore, taking

(9) y′1 + µ1y
′
2 = a1y0 + b1y1 + c1y2 + d1y3 + c̄1,

yields that
µ1 =

h1 (h2 + h3)

h3 (h1 + h2)
, a1 = − h2

2 (h2 + h3)

h1 (h1 + h2) 2 (h1 + h2 + h3)
, b1 =

1

h1
− 2

h2
− 1

h2 + h3
,

c1 = −h1 (h2 + h3) (h1 (h2 − 2h3) + h2 (h2 − 3h3))

h2 (h1 + h2) 2h2
3

, d1 =
h1h

2
2

h2
3 (h2 + h3) (h1 + h2 + h3)

,

c̄1 =
1

5!

(
(c1h2y

(5)(ς̄1,4)− 5µ1y
(5)(ζ1,4))h4

2 − a1h
5
1y

(5)(ς1,4) + d1(h2 + h3)5y(5)(ς1,5)
)
.
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In the next step, through the expansion of the y′k−1, y
′
k+1, yk−1, and yk+1,

around point tk, k = 2, 3, . . . , N − 2, it is deduced that,
y′(tk−1) = y′(tk − hk) = y′(tk)− hky′′(tk) + 1

2h
2
ky

(3)(tk)− 1
6h

3
ky

(4)(tk) + 1
4!h

4
ky

(5)(ζk,4),

y′(tk+1) = y′(tk + hk+1) = y′(tk) + hk+1y
′′(tk) + 1

2h
2
k+1y

(3)(tk) + 1
6h

3
k+1y

(4)(tk) + 1
4!h

4
k+1y

(5)(ζ̄k,4),

y(tk−1) = y(tk − hk) = y(tk)− hky′(tk) + 1
2h

2
ky
′′(tk)− 1

6h
3
ky

(3)(tk) + 1
4!h

4
ky

(4)(tk)− 1
5!h

5
ky

(5)(ςk,4),

y(tk+1) = y(tk + hk+1) = y(tk) + hk+1y
′(tk) +

h2
k+1

2 y′′(tk) +
h3
k+1

6 y(3)(tk) +
h4
k+1

4! y(4)(tk) +
h5
k+1

5! y(5)(ς̄k,4).

where ζk,4, ςk,4, ς̄k,4, ζ̄k,4 ∈ (tk−1, tk+1), k = 2, . . . , N − 2. The difference equa-
tions below can be taken into consideration in this case

(10) δky
′
k−1 + y′k + µky

′
k+1 = akyk−1 + bkyk + ckyk+1 + c̄k, k = 2, . . . , N − 2,

such that

δk =
h2
k+1

(hk + hk+1)
2 , µk =

h2
k

(hk + hk+1) 2
,

ak = −
2h2

k+1 (2hk + hk+1)

hk (hk + hk+1)
3 , bk = 2

(
1

hk
− 1

hk+1

)
, ck =

2h2
k (hk + 2hk+1)

hk+1 (hk + hk+1)
3 ,

c̄k =
1

5!

(
−(5δky

(5)(ζk,4) + akhky
(5)(ςk,4))h4

k + (ckhk+1y
(5)(ς̄k,4)− 5µky

(5)(ζ̄k,4))h4
k+1

)
.

Finally, by expanding y′N−2, yN−3, yN−2, and yN , around point tN−1 we con-
clude that there exist
ζN−1,4, ςN−1,5, ς̄N−1,4, ςN−1,4 ∈ (tN−3, tN ) such that



y′(tN−2) = y′(tN−1 − hN−1) = y′(tN−1)− hN−1y
′′(tN−1) +

h2
N−1

2 y(3)(tN−1)− h3
N−1

6 y(4)(tN−1)

+
h4
N−1

4! y(5)(ζN−1,4),

y(tN−3) = y(tN−1 − (hN−1 + hN−2)) = y(tN−1)− (hN−1 + hN−2)y′(tN−1) + (hN−1+hN−2)2

2 y′′(tN−1)

− (hN−1+hN−2)3

6 y(3)(tN−1) + (hN−1+hN−2)4

4! y(4)(tN−1)− (hN−1+hN−2)5

5! y(5)(ςN−1,5),

y(tN−2) = y(tN−1 − hN−1) = y(tN−1)− hN−1y
′(tN−1) +

h2
N−1

2 y′′(tN−1)− h3
N−1

6 y(3)(tN−1)

+
h4
N−1

4! y(4)(tN−1)− h5
N−1

5! y(5)(ς̄N−1,4),

y(tN ) = y(tN−1 + hN ) = y(tN−1) + hNy
′(tN−1) +

h2
N

2 y′′(tN−1) +
h3
N

6 y(3)(tN−1) +
h4
N

4! y
(4)(tN−1)

+
h5
N

5! y
(5)(ςN−1,4).

So, we can obtain the following difference equation
(11)
δN−1y

′
N−2 + y′N−1 = cN−1yN−3 + aN−1yN−2 + bN−1yN−1 + dN−1yN + c̄N−1,
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such that

δN−1 =
(hN−2 + hN−1)hN
hN−2 (hN−1 + hN )

, cN−1 = −
h2
N−1hN

h2
N−2 (hN−2 + hN−1) (hN−2 + hN−1 + hN )

,

aN−1 = −hN (hN−2 + hN−1) (hN−2 (3hN−1 + 2hN )− hN−1 (hN−1 + hN ))

h2
N−2hN−1 (hN−1 + hN ) 2

,

bN−1 =
1

hN−2 + hN−1
− 1

hN
+

2

hN−1
, dN−1 =

h2
N−1 (hN−2 + hN−1)

hN (hN−1 + hN ) 2 (hN−2 + hN−1 + hN )
,

c̄N−1 = − 1

5!

(
5δN−1y

(5)(ζN−1,4)− aN−1hN−1y
(5)(ς̄N−1,4)

)
h4
N−1

+
1

5!

(
−cN−1(hN−1 + hN−2)5y(5)(ςN−1,5) + dN−1h

5
Ny

(5)(ςN−1,4)
)
.

Consequently, the proposed compact finite difference scheme (9), (10) and (11)
can be represented as the following matrix form

(12) My′ = By + r0 + c̄,

where M and C are tri/penta-diagonal matrices, respectively, with

M(l, k) =


1, l = k, 1 ≤ k ≤ N − 1,

δk+1, l = k + 1, 1 ≤ k ≤ N − 2,

µk, l = k − 1, 2 ≤ k ≤ N − 1,

0 o.w,

B(l, k) =



d1, l = 1, k = 3,

bk, l = k, 1 ≤ k ≤ N − 1,

ak, l = k + 1, 1 ≤ k ≤ N − 2,

ck, l = k − 1, 2 ≤ k ≤ N − 1,

cN−1, l = N − 1, k = N − 3,

0 o.w,

and r0 = [a1y0, 0, . . . , 0, dN−1yN ]>, c̄ = [c̄1, . . . , c̄N−1]>.
It should be mentioned that an irreducible matrix is nonsingular [30]. Also,

according to the results of the [5], all we need for irreducibility of the tridiagonal
matrix (Lij) is LijLji 6= 0 for all j = i, i+ 1. Since, δk, µk are nonzero and all
diagonal elements of the matrix M are equal to 1 then we conclude that this
matrix is irreducible and accordingly is nonsingular. So, from (12) y′ can be
represented in terms of y as follows

(13) y′ = B̄y + r̄0 + Ě,

where, B̄ = M−1B, r̄0 = M−1r0 and Ě = M−1c̄. Consequently, if we put
K = εA + CDp + Ā + (CDq − εDh) B̄,

b = Cf + r− (CDq − εDh) r̄0,

E = Ẽ +DHE +DĤ Ê− (CDq − εDh) Ě,

then from (8) and (13) we can obtain

(14) Ky = b + E.

Finally, if the discrete system of equations,

(15) KY = b,
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solved, then the numerical solution of the SPBVP (1), denoted by

Y = [Y1, Y2, . . . , YN−1]>

will be determined. The system of equations (15) describes a linear system of
algebraic equations that can be solved by performing an LU factorization. It’s
worth noting that the above-mentioned matrix formulation is straightforward
to implement.

4. Error estimation

Convergence properties of the proposed method will be discussed in this
section. In this section, it will be exhibited that the numerical solution ob-
tained using our method converges with order 4 concerning to L∞ norm. As
mentioned before, for small perturbation parameter ε, the layer(s) (interior or
left/right/twin boundary) appear in the solution of the SPBVP (1). Therefore,
to find an appropriate solution when ε→ 0, it is necessary to utilize small step-
sizes when implementing an equidistant mesh for discretizing Γ. So, employ-
ing an equidistant mesh leads to an increase in computational costs. Hence,
we utilize a specialized non-equidistant mesh known as Bakhvalov-Shishkin-
type [13–15], which has particularly a high concentration within the boundary
layers. This discretization is as follows

tk =


−2ε

λ
ln

(
1− 2

(
1− 1

N

)
k

N

)
, 0 ≤ k ≤ N

2 ,

1− 2

(
1− 2ε

λ
ln(N)

)(
1− k

N

)
, N

2 + 1 ≤ k ≤ N.
(16)

In Fig. 1 the Bakhvalov-Shishkin-type mesh (16) is plotted with λ = 1, N = 16
and ε = 10−l, l = 8, . . . , 20.

Corollary 4.1. If Bakhvalov-Shishkin discretization (16) utilizes for Γ = [0, 1]
then one concludes that, for k = 1, . . . , N, there exist k−1

N ≤ θk ≤ k
N , such that,

hk = tk − tk−1 =


2ε

λ
×

2(1− 1
N )

1− 2(1− 1
N )θk

× 1

N
, 0 ≤ k ≤ N

2 ,

2

(
1− 2ε

λ
ln(N)

)
× 1

N
, N

2 + 1 ≤ k ≤ N.

Hence, if we consider EY (N) = y −Y, then from (14) and (15) we have

(17) K EY (N) = E,

and therefore, we conclude that

(18) ‖K EY (N)‖2 = ‖E‖2 .
From Lemma 1 in [1], we can infer that

(19) ‖EY (N)‖2 6
‖E‖2

σmin (K)
,
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Figure 1. Bakhvalov-Shishkin-type mesh (16) with N = 16.

in which σmin (K) is the smallest singular value of matrix K.
Some useful results will be given for obtaining the bound of the error terms
(19).

Remark 4.2. Based on the Bakhvalov-Shishkin mesh type (16), it is possible
to conclude that, {

hk 6 hk+1, k = 1, . . . , N2 − 1,
1

N
6 hk 6

2

N
, k = N

2 + 1, . . . , N,

and ∀m ∈ N,

hmk+1 − hmk =

 O
(

1

Nm+1

)
, 1 ≤ k ≤ N

2 ,

0, N
2 + 1 < k ≤ N − 1.

and also hk = O
(

1
N

)
, 1 6 k 6 N.

Remark 4.3. Since hk = O
(

1
N

)
, 1 6 k 6 N , then we can infer that

αk = O
(

1
N2

)
, βk = O

(
1
N2

)
, γk = O

(
1
N2

)
, k = 1, . . . , N − 1,

Dh(k, k) = b N
N/2+k cO

(
1
N2

)
, DĤ(k, k) = Ĥk = b N

N/2+k cO
(

1
N6

)
,

DH(k, k) = Hk = O
(

1
N6

)
, k = 1, . . . , N − 1,

Ẽ1 = O
(

1
N6

)
, ẼN−1 = O

(
1
N6

)
,

c̄k = O
(

1
N4

)
, k = 0, . . . , N.

On account of Remark 4.3, it can be yielded that the components of matrices

C, Ā and Dh possess order O
(

1
N2

)
, while the components of matrices Ẽ, DH ,

and DĤ exhibit order O
(

1
N6

)
. Additionally, the components of matrix Ě are
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characterized by order O
(

1
N4

)
. Hence, we can infer that ‖E‖2 = O

(
1
N

)5+ 1
2 .

On the other hand, while hk → 0 (i.e N → ∞) we can easily deduce that
σmin (K) ∼ σmin (εA). Since matrix A is a nonsingular positive semidefinite
tridiagonal then σmin (εA) = ε |λmin(A)|, where λmin(A) is the smallest eigen-
value of matrix A. Now, from Lemma 3 in [2], it can be inferred that λmin(A) =

4 sin2
(
π

2N

)
= O

(
1
N2

)
. So, we conclude that ‖EY (N)‖2 = O

(
1
N

)3+ 1
2 . As we

know the relations ‖EY (N)‖∞ 6 ‖EY (N)‖2 6
√
N‖EY (N)‖∞ are established.

Consequently, based on the equivalence of all norms in the finite-dimensional
spaces we can attain

(20) ‖EY (N)‖∞ = O
(

1

N

)4

.

From Eq. (20), it should be noted that the proposed method has uniform
convergence with respect to the perturbation parameter ε.

5. Simulation results

The effectiveness of the introduced method is demonstrated through the
examination of several test examples in this section. In the numerical exam-
ples, for various values of N = 2k, k ∈ N, discrete maximum norm EY (N) =
‖Y − y‖∞ will be computed. Also, using multiple values of ε and several num-
bers of mesh intervals N , the methods’ order of convergence will be calculated

as log2

(
EY (N)
EY (2N)

)
.

Example 5.1. Take the following SPBVP into consideration as a first example

εy′′(t) + ty′(t)− 4ty(t) = f(t), t ∈ (0, 1), y(0) = 1, y(1) = e−
4
ε ,

where f(t) = − 4e−
4t
ε (t(ε+1)−4)

ε and y(t) = e−
4t
ε is the exact solution.

Since, p(t) = t and q(t) = −4t then it can be inferred that p(t) > 0,∀t ∈
(0, 1), and therefore the left boundary layer at t = 0 occurs for this problem.
We apply the proposed method (15) for several values of ε = 2−2k, k = 1, . . . , 6,
and mesh intervals N = 2k, k = 4, . . . , 10, to solve this problem, numerically.
The simulation results of this problem are presented in Table 1. Based on the
exhibited results in this table and the calculated L∞ errors, it can be concluded
that the desired fourth order of convergence in the L∞ norm has been attained.
In addition, the table indicates that the method being discussed is effective and
highly accurate when used for the SPBVP (1). Also, utilizing a mesh interval
of N = 211 and varying perturbation parameter values for ε, the numerical
solution and corresponding absolute errors derived from the present method
are depicted in Fig. 2. Although a boundary layer at t = 0 occurs for this
problem, based on the results shown in this figure, we can assert that the
current method is precise and effective.
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Table 1. Errors and convergence order of the proposed
method for Example 5.1.

ε = 2−2 ε = 2−4 ε = 2−6 ε = 2−8 ε = 2−10 ε = 2−12

N L∞ error Order L∞ error Order L∞ error Order L∞ error Order L∞ error Order L∞ error Order
16 6.5322e-03 – 9.5506e-03 – 1.1923e-02 – 1.4621e-02 – 5.0359e+00 – 1.2375e+01 –
32 4.1142e-04 4.0 5.8932e-04 4.0 7.1812e-04 4.0 8.0278e-04 4.2 8.7799e-04 1.2 2.8234e-01 5.4
64 2.6175e-05 4.0 3.7255e-05 4.0 4.5296e-05 4.0 5.0385e-05 4.0 5.3451e-05 4.0 5.5676e-05 1.2
128 1.6642e-06 4.0 2.3677e-06 4.0 2.8749e-06 4.0 3.1965e-06 4.0 3.3880e-06 4.0 3.4986e-06 4.0
256 1.0524e-07 4.0 1.4970e-07 4.0 1.8174e-07 4.0 2.0205e-07 4.0 2.1411e-07 4.0 2.2106e-07 4.0
512 6.6230e-09 4.0 9.4197e-09 4.0 1.1435e-08 4.0 1.2713e-08 4.0 1.3471e-08 4.0 1.3908e-08 4.0
1024 4.1547e-10 4.0 5.9065e-10 4.0 7.1700e-10 4.0 7.9741e-10 4.0 8.4477e-10 4.0 8.7231e-10 4.0

Example 5.2. In the second example, the following SPBVP is considered [21,
34]

εy′′(t) + y′(t)− 2y(t) = −et−1, t ∈ (0, 1), y(0) = 0, y(1) = 0,

where y(t) = es
−t(1−es

+−1)−es
+t(1−es

−−1)

(1−ε)(es+−es− )
+ et−1

1−ε , is the exact solution and s± =

−1±
√

1+8ε
2ε .

Table 2 exhibits the L∞ errors and convergence order of the present method
(15) and preconditioning methods [21,34] for N = 25, 26, . . . , 210, mesh intervals
and ε = 10−1, 10−2, 10−3, 10−4. Based on the computational results outlined
in this table, we can conclude that fourth-order convergence with respect to
the L∞ norm is reached by the numerical solution obtained from the proposed
method. Whereas the convergence rates achieved for the other methods [34]
and [21], are 1.5 and 1.6, respectively. Moreover, we can observe that when
ε = 10−4, the L∞ error associated with the present method is 9.99 × 10−10,
while for methods [34] and [21], the corresponding error is 6.59 × 10−4 and
3.15 × 10−5, respectively. As a result, the present technique demonstrates
superior accuracy compared to the methods provided by [34] and [21].

Example 5.3. Consider the following SPBVP [16]

εy′′(t) + ty′(t) = −επ2 cos(πt)− πt sin(πt), t ∈ (0, 1), y(0) = 1, y(1) = 0.

For this problem y(t) = cos(πt)+
efr
(

1√
2ε
t
)

efr
(

1√
2ε

) is the exact solution and efr refers

to the error function.

For this example, the computational results of the presented method and
Legendre neural network method [16] with ε = 10−3 and N = 102, for knots
tk = k

10 , k = 0, 1, . . . , 9, are shown in Table 3. It can be observed for the
interior points that, the maximum error obtained by the Legendre neural net-
work method [16] is of order O(10−6) while the present method is O(10−13).
Hence, the current technique demonstrates more accuracy in comparison to the
Legendre neural network method [16].
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Figure 2. Numerical results of the proposed method (15) to
solve the Example 5.1 with N = 211.

Example 5.4. As a final example, consider the following SPBVP [29]

εy′′(t) + y′(t)− y(t) = 0, t ∈ (0, 1), y(0) = 1, y(1) = 1,

where y(t) = em1t(em2−1)+em2t(1−em1 )
em2−em1

, such that m1,2 = −1±
√

1+4ε
2ε .

Here, the computational results of two techniques, the present technique
(15) and the non-standard fitted operator method [29] are exhibited in Table 4
while [0, 1] is broken up into N = 2k, k = 5, 6, . . . , 10, mesh intervals. It can be
concluded that the accuracy order of the proposed technique and the method
provided by [29] is 4 and one in the L∞ norm, respectively. Furthermore, in



An efficient numerical technique for a specific family... – JMMR Vol. 14, No. 2 (2025) 307

Table 2. Maximum norm of the errors and order of the meth-
ods for Example 5.2.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

N L∞ error Order L∞error Order L∞ error Order L∞ error Order

Method of [34]: 32 1.56e-02 – 5.30e-02 – 4.74e-02 – 4.69e-02 –
64 4.66e-03 1.7 3.01e-02 0.8 2.62e-02 0.8 2.59e-02 0.8
128 1.73e-03 1.4 1.44e-02 1.1 1.22e-02 1.1 1.20e-02 1.1
256 8.64e-04 1.0 6.06e-03 1.2 5.02e-03 1.3 4.94e-03 1.3
512 4.32e-04 1.0 2.34e-03 1.4 1.90e-03 1.4 1.86e-03 1.4
1024 2.16e-04 1.0 8.53e-04 1.4 6.73e-04 1.5 6.59e-04 1.5

Method of [21]: 32 6.88e-03 – 5.01e-03 – 4.95e-03 – 4.94e-03 –
64 3.45e-03 1.0 2.22e-03 1.2 2.19e-03 1.2 2.18e-03 1.2
128 1.73e-03 1.0 8.65e-04 1.3 8.49e-04 1.4 8.47e-04 1.4
256 8.64e-04 1.0 3.07e-04 1.5 3.00e-04 1.5 3.00e-04 1.5
512 4.32e-04 1.0 1.09e-04 1.5 9.96e-05 1.6 9.94e-05 1.6
1024 2.16e-04 1.0 5.19e-05 1.1 3.16e-05 1.6 3.15e-05 1.6

Present method: 32 1.13e-04 – 6.78e-04 – 1.00e-03 – 1.5e-03 –
64 1.87e-05 2.6 4.62e-05 3.9 1.09e-05 6.5 4.68e-05 5.0
128 1.33e-06 3.8 3.25e-06 3.8 7.89e-07 3.9 3.58e-06 3.7
256 7.98e-08 4.0 2.04e-07 4.0 5.08e-08 4.0 2.42e-07 3.9
512 5.01e-09 4.0 1.27e-08 4.0 3.46e-09 3.9 1.57e-08 4.0
1024 3.02e-10 4.0 7.95e-10 4.0 2.16e-10 4.0 9.99e-10 4.0

Table 3. Maximum norm of the errors of the methods for
Example 5.3.

t Method [16] (ε = 0.001 and N = 100 nodes) Present method (ε = 0.001 and N = 100 nodes)
0 8.4657e-07 0

0.1 1.9697e-06 4.5063e-08
0.2 6.6230e-06 1.4615e-09
0.3 5.6222e-06 1.3941e-09
0.4 6.9552e-06 1.1928e-09
0.5 7.8209e-06 7.1508e-10
0.6 4.5348e-06 2.598e-10
0.7 2.4616e-06 6.5609e-11
0.8 9.2330e-06 8.7768e-12
0.9 9.0752e-06 2.8193e-13

the case N = 210 mesh intervals and ε = 2−10, the L∞ errors of the proposed
method and non-standard fitted operator method [29] are of order O(10−8) and
O(10−3), respectively. So, the present technique is much more accurate than
method [29].

6. Conclusions

In this article, some numerical techniques were used to approximate the so-
lution of the SPBVPs. Because of the small perturbation parameter 0 < ε� 1
and boundary layers we utilize a non-equidistant partition named Bakhvalov-
Shishkin-type. We employed some appropriate techniques such as Lagrange
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Table 4. Maximum norm of the errors and order of the meth-
ods for Example 5.4.

ε = 2−5 ε = 2−6 ε = 2−7 ε = 2−8 ε = 2−9 ε = 2−10

N L∞ error Order L∞error Order L∞ error Order L∞ error Order L∞ error Order L∞ error Order

Method of [29]: 25 4.72e-02 – 3.48e-02 – 3.06e-02 – 2.99e-02 – 2.99e-02 2.98e-02
26 3.83e-02 0.30 2.42e-02 0.52 1.77e-02 0.79 1.56e-02 0.94 1.53e-02 0.97 1.53e-02 0.97
27 3.42e-02 0.16 1.95e-02 0.31 1.22e-02 0.54 8.95e-03 0.80 7.88e-03 0.96 7.73e-03 0.98
28 3.22e-02 0.09 1.74e-02 0.17 9.84e-03 0.31 6.14e-03 0.54 4.50e-03 0.81 3.96e-03 0.96
29 3.13e-02 0.04 1.64e-02 0.09 8.76e-03 0.17 4.94e-03 0.31 3.08e-03 0.54 2.25e-03 0.81
210 3.08e-02 0.02 1.59e-02 0.04 8.24e-03 0.09 4.40e-03 0.17 2.48e-03 0.31 1.54e-03 0.55

Present method: 25 3.76e-04 – 7.36e-04 – 1.48e-03 – 2.91e-03 – 5.81e-03 – 3.99e-02 –
26 2.35e-05 4.0 4.64e-05 4.0 9.27e-05 4.0 1.86e-04 4.0 3.73e-04 4.0 7.46e-04 5.7
27 1.47e-06 4.0 2.90e-06 4.0 5.81e-06 4.0 1.16e-05 4.0 2.33e-05 4.0 4.68e-05 4.0
28 9.18e-08 4.0 1.81e-07 4.0 3.63e-07 4.0 7.29e-07 4.0 1.46e-06 4.0 2.93e-06 4.0
29 5.74e-09 4.0 1.13e-08 4.0 2.27e-08 4.0 4.56e-08 4.0 9.14e-08 4.0 1.83e-07 4.0
210 3.59e-10 4.0 7.11e-10 4.0 1.42e-09 4.0 2.85e-09 4.0 5.71e-09 4.0 1.14e-08 4.0

second-degree interpolating, and then constructed some fourth-order compact
approaches to discretize the corresponding SPBVP. Subsequently, discretiz-
ing the original SPBVP leads to a linear algebraic system. By determining
the truncation errors and using certain matrix calculations, it is proven that
the current method has fourth-order accuracy in the L∞ norm when applied
to SPBVP (1). The performance of the suggested approach is demonstrated
through comparative test examples that have been recently examined using
other methods.

Appendix

Proof of Remark 2.3
Assume that there are constants λ < 0 and η > 0 such that the relations
p(t) ≤ λ and q(t) ≤ −η are fulfilled. Also, assume that for the smooth function
w(t) we have w(0) ≤ 0 and w(1) ≤ 0, and Lw(t) ≥ 0,∀t ∈ Γ. Then we want to
prove that

‖y‖∞ ≤
(

1

η
‖f‖∞ + max{|τ0|, |τ1|}

)
, ∀t ∈ Γ.

Initially, we demonstrate that w(t) ≤ 0,∀t ∈ Γ. In the same way as Lemma
2.1, it is sufficient to assume that w(s) = max

t∈[0,1]
w(t) > 0 in which s ∈ [0, 1].

Therefore, we infer that s /∈ {0, 1}, w′(s) = 0, w′′(s) ≤ 0 and then

Lw(s) = εw′′(s) + p(s)w′(s) + q(s)w(s) = εw′′(s) + q(s)w(s) < 0,

that contradicts assumptions. So, we can attain w(t) ≥ 0,∀t ∈ Γ. Now, it is
enough to define

w±(t) = −1

η
‖f‖∞ −max{|τ0|, |τ1|} ± y(t),
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and then apply Lemma 2.2 under consideration Remark 2.3.

Proof of Lemma 3.1
Taking L2(t) as Lagrange second degree interpolating polynomial at nodes
tk−1, tk, tk+1 for function g(t) ∈ C4[0, 1] yields that
g(t) =

2∑
i=0

Li(t)g(tk−1+i) + l2(t)
g
′′′

(ξ)

6
, ξ ∈ (tk−1, tk+1),

l2(t) =

2∏
i=0

(t− tk−1+i), Li(t) =

2∏
j=0
j 6=i

(
t− tk−1+j

tk−1+i − tk−1+j

)
, i = 0, 1, 2.

Putting the above relationships on the left-hand side of the equation (5) results
in: 

∫ tk+1

tk

(tk+1 − t)g(t)dt =

2∑
i=0

(
g(tk−1+i)

∫ tk+1

tk

(tk+1 − t)Li(t)dt
)

+

∫ tk+1

tk

(
(tk+1 − t)l2(t)

g
′′′

(ξ)

6

)
dt∫ tk

tk−1

(tk−1 − t)g(t)dt =

2∑
i=0

(
g(tk−1+i)

∫ tk

tk−1

(tk−1 − t)Li(t)

)
dt

+

∫ tk

tk−1

(
(tk−1 − t)l2(t)

g
′′′

(ξ)

6

)
dt.

Since, the functions (tk+1 − t)l2(t) and (tk−1 − t)l2(t) have no change of sign
in intervals (tk, tk+1) and (tk−1, tk), respectively, then we conclude there exist
ζ̄k ∈ (tk, tk+1), ς̄k ∈ (tk−1, tk) such that∫ tk+1

tk

(tk+1 − t)g(t)dt−
∫ tk

tk−1

(tk−1 − t)g(t)dt = βkgk−1 + αkgk + γkgk+1

− 1

360

(
g
′′′

(ζ̄k)h4
k(2hk + 5hk+1)− g

′′′
(ς̄k)h4

k+1(2hk+1 + 5hk)
)
,

where the coefficients βk, αk and γk are given in Lemma 3.1. It should be

pointed out that ς̄k < ζ̄k, so, taking ~k = ζ̄k−ς̄k
hk+hk+1

yields that 0 < ~k < 1 and

g
′′′

(ζ̄k) − g′′′(ς̄k) = ~k(hk + hk+1)g(4)(ςk) in which ςk ∈ (tk−1, tk+1). Utilizing
the last relation, Eq. (6) will be obtained.
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