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Abstract. Let Sn be the symmetric group of degree n. In this paper,

we classify non-isomorphic Cayley graphs of S4 of valency 3. Moreover,
we verify that there are exactly 10 non-isomorphic Cayley graphs of S4

with valency 3. Also, we classify the valency 3 CI-graphs of Cayley graphs

of S4 and we prove that S4 is not a CI-group and does not possess the
3-CI-property. We show that there are at least 10 non-isomorphic Cayley

graphs of the symmetric group Sn with valency 3.
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1. Introduction

Arthur Cayley introduced Cayley graphs in 1878. Cayley graphs serve as
a bridge between group theory in abstract algebra and graph theory in com-
binatorics. These graphs elegantly encode group elements and their interac-
tions [7, 12]. We focus on symmetric groups, denoted by Sn, for a natural
number n. The symmetric groups are key objects in group theory and are
fundamental in various areas of mathematics, such as combinatorics and cryp-
tography. The Cayley graphs of the symmetric group Sn and the alternating
group An have been studied in several papers.

In [11] Gu and Li showed that there are exactly 22 non-isomorphic Cayley
graphs of A4. The number of undirected Cayley graphs of Sn and An has
been determined by Adiga and Ariamanesh in [1]. They also showed that there
are only 8 Cayley graphs of S3 and 4 Cayley graphs of S4 of valency 2, up to
isomorphism. Recently, Fadzil, Sarmin and Erfanian [5] studied the eigenvalues
and the energy of the Cayley graphs of S4 with valency up to 2. Moreover, in [6]
they examined the Cayley graphs of alternating groups with valency up to 2,
computing their eigenvalues and energy. The classification of finite CI-groups
is an interesting problem related to CI-graphs. In [11] it has been shown that
the group A4 is a CI-graph, and all disconnected Cayley graphs of A5 are also
CI-graphs.
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In this paper, we investigate the Cayley graphs of symmetric groups, focusing
particularly on the valency 3 Cayley graphs of S4. We also study the CI-
graphs of the Cayley graphs of S4 with valency 3. Additionally, we establish a
relationship between the Cayley graph of Sn+1 and the Cayley graph of Sn for
a fixed subset S.

2. Preliminaries

Here we introduce some definitions and preliminary results from graph the-
ory and group theory. Readers can refer to the book [9], for terminology and
notations which have not been defined in this paper.

Let Γ = (V,E) be a graph with vertex set V and edge set E. Suppose that
x, y ∈ V . The vertices x and y are adjacent if xy ∈ E. For a vertex x ∈ V
the set of all neighbors of x is defined as NΓ(x) = N(x) = {y ∈ V : xy ∈ E}.
The degree of x in the graph Γ is defined as d(x) = |NΓ(x)|. The graph Γ is
an m-regular graph if, for each x ∈ V , d(x) = m. A graph Γ is said to be
connected if, for each x, y ∈ V , there is a walk between x and y in Γ. Let Kn

be a complete graph on n vertices and Cn be an undirected cycle on n vertices.
The disjoint union of the graphs Γ = (V,E) and Λ = (U,F ), for V ∩U = ∅,

is a graph with the vertex set V ∪U and edge set E ∪F ; we denote it by Γ∪Λ.
The Cartesian product of the graphs Γ = (V,E) and Λ = (U,F ) is a graph

with vertex set V × U where two vertices (v1, u1) and (v2, u2) are adjacent if
and only if [v1 = v2 and u1u2 ∈ F ] or [u1 = u2 and v1v2 ∈ E]; we denote it by
Γ�Λ.

Moreover, if there exists a bijection g : V → U such that xy ∈ E if and only
if xgyg ∈ F , where xg = g(x), then the graphs Γ and Λ are called isomorphic.
Such a bijection between Γ and Λ is referred as an isomorphism.

Suppose that G is a finite group with the identity 1G. Let S be a subset
of the group G such that 1G /∈ S and S is an inverse-closed subset, meaning
S = S−1, where S−1 := {s−1|s ∈ S}. The associated Cayley graph, denoted
by Cay(G,S), is a graph where the vertices are the elements of G, and two
distinct vertices g, h ∈ G are adjacent if and only if gh−1 ∈ S. The number |S|
is called the valency of the Cayley graph. Since S is an inverse-closed subset
of G, Cay(G,S) is an undirected graph.

Proposition 2.1. [2] Suppose that S is a subset of the group G such that
1G /∈ S, S = S−1, and |S| = m. Then Cay(G,S) is an m-regular graph.

Thus, any Cayley graph of valency m is an m-regular graph. It is easy
to see that a Cayley graph Cay(G,S) is connected if and only if G = 〈S〉,
meaning S is a generating set of the group G. Therefore, if G 6= 〈S〉, then
Cay(G,S) is disconnected. In this case, studying its connected components
becomes important.
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Proposition 2.2. [2] Suppose that S is a subset of the group G such that
1G /∈ S and S = S−1. Then all components of Cay(G,S) are isomorphic to
Cay(〈S〉, S).

Thus, for a disconnected Cayley graph, all of its connected components are
isomorphic to each other.

Here, we explain the definition of CI-graphs [11]. Let S and S′ be two
subsets of the group G such that 1G /∈ S, 1G /∈ S′, S = S−1, and S′ = S′−1.
Suppose that σ ∈ Aut(G); then σ acts naturally on G. If S′ = Sσ, then
σ induces an isomorphism from Cay(G;S) to Cay(G;S′), which is called a
Cayley isomorphism. The graph Cay(G,S) is called a CI-graph (where CI
represents Cayley isomorphic) of the group G if Cay(G,S) is isomorphic to
Cay(G,S′) implies that there exists a permutation σ ∈ Aut(G) such that S′ =
Sσ. Moreover, for a natural number k, the group G has the k-CI-property, if
all of the Cayley graphs of G of valency k are CI-graphs. A group G is called
a CI-group if every Cayley graph of G is a CI-graph.

Let n be a natural number. Consider the group of all permutations on the
set {1, ..., n} with function composition as its group operation. This group is
called the symmetric group, denoted Sn. The group Sn has n! elements and
it is not abelian for n ≥ 3. The subgroup of all even permutations in Sn is
denoted by An and it is called the alternating group. In this paper, we focus
on the symmetric group S4. The elements of S4 with their cycle types are:

{(1), (12), (13), (14), (23), (24), (34), (123), (132), (124), (142), (134),(143),
(234), (243), (1234), (1432), (1243), (1342), (1324), (1423), (12)(34), (13)(24),
(14)(23)}.

3. Main Results

Our purpose here is to classify Cayley graphs of the group S4 of valency
3. For different subsets S of the group S4 of valency 3 such that (1) /∈ S
and S = S−1, we consider the graph Cay(S4, S). Thus, we first determine the
different classes of the subset S that satisfy these necessary conditions.

Lemma 3.1. Let S be a subset of S4 such that |S| = 3, (1) /∈ S and S = S−1.
Then, all possible subsets S up to isomorphism are in Table 1, where i, j, l and
k are distinct elements in {1, 2, 3, 4}.
Proof. Since for each distinct element i, j, l, and k in {1, 2, 3, 4}, we have
(ij)−1 = (ij), (ij)(lk)−1 = (ij)(lk), (ijl)−1 = (ilj) and (ijlk)−1 = (iklj).
Thus, it is clear that each subset S in Table 1 has the required properties.
Moreover, it is straightforward to check that every subset of Sn with the de-
sired conditions is isomorphic to one of the cases mentioned in Table 1.

�
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Table 1. Possible subsets S for S4.

No. The subset S up to isomorphism

1 {(ij), (il), (jl)}
2 {(12)(34), (14)(23), (13)(24)}
3 {(ij), (lk), (ij)(lk)}
4 {(ij)(lk), (iljk), (ikjl)}
5 {(ij), (il)(kj), (ik)(lj)}
6 {(ij), (iljk), (ikjl)}
7 {(ij)(lk), (ijlk), (iklj)}
8 {(ij), (ijl), (ilj)}
9 {(ij), (ij)(lk), (il)(jk)}
10 {(ij)(lk), (ijl), (ilj)}
11 {(ij), (il), (jk)}
12 {(ij), (ijlk), (iklj)}
13 {(ij), (ilk), (ikl)}
14 {(ij), (il), (il)(jk)}
15 {(ij), (jl), (ij)(lk)}
16 {(ij), (il), (ik)}

In the next part of this section, we will determine the graph Cay(S4, S) up
to isomorphism for each type of the set S listed in Table 1.

Proposition 3.2. Let S be a subset of S4 such that S = {(ij), (il), (jl)}, where
i, j, and l are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) is isomorphic
to ∪4

t=1K3,3.

Proof. Since S = {(ij), (il), (jl)}, we have:

〈S〉 = {(1), (ilj), (ijl), (jl), (il), (ij)}.

The graph Cay(〈S〉, S) is shown in Figure 1, which is isomorphic to the graph
K3,3.

Figure 1. The Graph Cay(〈S〉, S) ' K3,3
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By Proposition 2.2, all components of the graph Cay(S4, S) are isomorphic
to Cay(〈S〉, S). Since 〈S〉 has 4 cosets in S4, thus Cay(S4, S) is isomorphic to
the disjoint union of 4 copies of Cay(〈S〉, S). So,

Cay(S4, S) ' ∪4
t=1K3,3.

�

Proposition 3.3. Let S, S′ and S′′ be subsets of S4, such that:

S = {(12)(34), (14)(23), (13)(24)},

S′ = {(ij), (lk), (ij)(lk)},
and

S′′ = {(ij)(lk), (iljk), (ikjl)},
where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S),
Cay(S4, S

′) and Cay(S4, S
′′) are isomorphic to the graph ∪6

t=1K4.

Proof. Since S = {(12)(34), (14)(23), (13)(24)}, we have:

〈S〉 = {(1), (12)(34), (14)(23), (13)(24)}.

The graph Cay(〈S〉, S) is shown in Figure 2A, which is isomorphic to the graph
K4.

Figure 2. The Graphs Cay(〈S〉, S),Cay(〈S′〉, S′),Cay(〈S′′〉, S′′)

By Proposition 2.2, all components of the graph Cay(S4, S) are isomorphic
to Cay(〈S〉, S). Thus, Cay(S4, S) is isomorphic to the disjoint union of 6 copies
of Cay(〈S〉, S),

Cay(S4, S) ' ∪6
t=1K4.

Now consider the subset S′. Since S′ = {(ij), (lk), (ij)(lk)}, we have:

〈S′〉 = {(1), (ij), (lk), (ij)(lk)}.

The graph Cay(〈S′〉, S′) is shown in Figure 2B, which is also isomorphic to the
graph K4.
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Again, by Proposition 2.2, all components of the graph Cay(S4, S
′) is iso-

morphic to Cay(〈S′〉, S′). Thus,

Cay(S4, S
′) ' ∪6

t=1K4.

For the third case, we have S′′ = {(ij)(lk), (iljk), (ikjl)}, so

〈S′′〉 = {(1), (ij)(lk), (iljk), (ikjl)}.
The graph Cay(〈S′′〉, S′′) is shown in Figure 2C, and it is isomorphic to the
graph K4.

Similar to the previous case, we have

Cay(S4, S
′′) ' ∪6

t=1K4.

�

Proposition 3.4. Let S, S′ and S′′ be subsets of S4 such that:

S = {(ij), (il)(kj), (ik)(lj)},

S′ = {(ij), (iljk), (ikjl)},
and

S′′ = {(ij)(lk), (ijlk), (iklj)},
where i, j, l and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S), Cay(S4, S

′)
and Cay(S4, S

′′) are isomorphic to the graph ∪3
t=1C4�K2.

Proof. Since S = {(ij), (il)(kj), (ik)(lj)}, we have

〈S〉 = {(1), (ij), (il)(kj), (ik)(lj), (ij)(lk), (lk), (iljk), (ikjl)}.
The graph Cay(〈S〉, S) is shown in Figure 3A, which is isomorphic to the graph
C4�K2.

Figure 3. The Graphs Cay(〈S〉, S),Cay(〈S′〉, S′),Cay(〈S′′〉, S′′)

Now, by Proposition 2.2, all components of the graph Cay(S4, S) are iso-
morphic to Cay(〈S〉, S). Thus, Cay(S4, S) is isomorphic to the disjoint union
of 3 copies of Cay(〈S〉, S):

Cay(S4, S) ' ∪3
t=1C4�K2.
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For the subset S′, since S′ = {(ij), (iljk), (ikjl)}, we have

〈S′〉 = {(1), (ij), (lk), (il)(kj), (ik)(lj), (ij)(lk), (iljk), (ikjl)}.
The graph Cay(〈S′〉, S′) is shown in Figure 3B, and it is isomorphic to the
graph C4�K2.

Again, by Proposition 2.2, we have

Cay(S4, S
′) ' ∪3

t=1C4�K2.

For the third case, we have S′′ = {(ij)(lk), (ijlk), (iklj)}, so

〈S′′〉 = {(1), (ij), (lk), (il)(kj), (ik)(lj), (ij)(lk), (iljk), (ikjl)}.
The graph Cay(〈S′′〉, S′′) is shown in Figure 3C, which is isomorphic to the
graph K4. Similar to the previous case, we have

Cay(S4, S
′′) ' ∪3

t=1C4�K2.

�

Proposition 3.5. Let S be a subset of S4, such that

S = {(ij), (ijl), (ilj)},
where i, j, and l are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) is iso-
morphic to the graph ∪4

t=1C3�K2.

Proof. Since S = {(ij), (ijl), (ilj)}, we have

〈S〉 = {(1), (ij), (il), (jl), (ijl), (ilj)}.
The graph Cay(〈S〉, S) is shown in Figure 4, which is isomorphic to the graph
C3�K2.

Figure 4. The Graph Cay(〈S〉, S) ' C3�K2

Now, by Proposition 2.2, we have 4 components of the graph Cay(S4, S)
which are all isomorphic to C3�K2. Thus,

Cay(S4, S) ' ∪4
t=1C3�K2.

�
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Proposition 3.6. Let S be a subset of S4, such that

S = {(ij), (ij)(lk), (il)(jk)},

where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) is
isomorphic to ∪3

t=1Γ1, where Γ1 is isomorphic to the graph in Figure 5A.

Figure 5. A:The Graph Γ1 B:The Graph Cay(〈S〉, S)

Proof. Since S = {(ij), (ij)(lk), (il)(jk)}, we have

〈S〉 = {(1), (ij)(lk), (il)(jk), (ij), (lk), (ik)(jl), (iljk), (ikjl)}.

The graph Cay(〈S〉, S) is shown in Figure 5B.
Now, by Proposition 2.2, we have 3 components of the graph Cay(S4, S)

which are all isomorphic to Γ1. Thus,

Cay(S4, S) ' ∪3
t=1Γ1.

�

Proposition 3.7. Let S be a subset of S4, such that

S = {(ij)(lk), (ijl), (ilj)},

where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) is
isomorphic to ∪2

t=1Γ2, where Γ2 is isomorphic to the graph in Figure 6A.

Proof. Since S = {(ij)(lk), (ijl), (ilj)}, we have

〈S〉 = {(1), (ij)(lk), (ijl), (ilj), (ikl), (ikj), (ik)(jl), (il)(jk), (ilk), (jlk), (ijk), (jkl)}.

The graph Cay(〈S〉, S) is shown in Figure 6B. Now, by Proposition 2.2, we have
2 components of the graph Cay(S4, S) which are all isomorphic to Γ2. Thus,

Cay(S4, S) ' ∪2
t=1Γ2.

�
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Figure 6. A:The Graph Γ2 B:The Graph Cay(〈S〉, S)

Proposition 3.8. Let S and S′ be subsets of S4, such that

S = {(ij), (il), (jk)}
and

S′ = {(ij), (ijlk), (iklj)},
where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) and
Cay(S4, S

′) are isomorphic to Γ3, where Γ3 is the graph in Figure 7A.

Figure 7. A:The Graph Γ3 B:The Graph Cay(Sn, S)

Proof. Since S = {(ij), (il), (jk)}, we have

〈S〉 = S4.
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The graph Cay(S4, S) is shown in Figure 7B. Thus, it is isomorphic to Γ3 in
Figure 7A.

For the subset S′, since S′ = {(ij), (ijlk), (iklj)}, we have

〈S′〉 = S4.

Now, define a bijection g : Sn → Sn such that:

(jlk)g = (ilj), (ilj)g = (jlk), (ikl)g = (ijk), (ijk)g = (ikl),

(jkl)g = (ijl), (ilk)g = (ikl), (ikj)g = (ilk), (ijl)g = (jkl),

(jl)g = (ijkl), (ilkj)g = (ik), (ik)g = (ilkj), (ijkl)g = (jl),

(jk)g = (iklj), (il)g = (ijlk), (iklj)g = (jk), (ijlk)g = (il).

Any other elements of Sn are mapped to themselves by g. It is easy to see
that g is an isomorphism between Cay(S4, S) and Cay(S4, S

′). Thus, the graph
Cay(S4, S

′) is isomorphic to Γ3 in Figure 7A. �

Proposition 3.9. Let S be a subset of S4, such that

S = {(ij), (ilk), (ikl)},
where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) is
isomorphic to Γ4, where Γ4 is the graph in Figure 8A.

Figure 8. A:The Graph Γ4 B:The Graph Cay(Sn, S)

Proof. Since S = {(ij), (ilk), (ikl)}, we have

〈S〉 = S4.

The graph Cay(S4, S) is shown in Figure 8B. Thus, it is isomorphic to Γ4 in
Figure 8A. �
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Proposition 3.10. Let S and S′ be subsets of S4, such that

S = {(ij), (il), (il)(jk)}

and

S′ = {(ij), (jl), (ij)(lk)},
where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) and
Cay(S4, S

′) are isomorphic to Γ5, where Γ5 is the graph in Figure 9A.

Figure 9. A:The Graph Γ5 B:The Graph Cay(Sn, S)

Proof. Since S = {(ij), (il), (il)(jk)}, we have

〈S〉 = S4.

The graph Cay(S4, S) is shown in Figure 9B. Thus, it is isomorphic to Γ5 in
Figure 9A.

For the subset S′, since S′ = {(ij), (jl), (ij)(lk)}, we have

〈S′〉 = S4.

Now, define a bijection g : Sn → Sn such that

(il)(jk)g = (ij)(lk), (ik)(jl)g = (il)(jk), (ij)(lk)g = (ik)(jl), (jlk)g = (ikl),

(ikl)g = (ijk), (ijk)g = (jlk), (jkl)g = (ilk), (ilk)g = (ikj),

(ikj)g = (jkl), (lk)g = (ik), (ikjl)g = (ijkl), (iljk)g = (ilkj),

(ij)g = (jl), (jl)g = (il), (ilkj)g = (iklj), (ik)g = (jk), (jk)g = (lk),

(ijkl)g = (ijlk), (il)g = (ij), (iklj)g = (iljk), (ijlk)g = (ikjl).
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Any other elements of Sn are mapped to themselves by g. It is easy to see
that g is an isomorphism between Cay(S4, S) and Cay(S4, S

′). Thus, the graph
Cay(S4, S

′) is isomorphic to Γ5 in Figure 9A.
�

Proposition 3.11. Let S be a subset of S4, such that

S = {(ij), (il), (ik)},
where i, j, l, and k are distinct elements in {1, 2, 3, 4}. Then, Cay(S4, S) is
isomorphic to Γ6, where Γ6 is the graph in Figure 10A.

Figure 10. A:The Graph Γ6 B:The Graph Cay(Sn, S)

Proof. Since S = {(ij), (il), (ik)}, we have

〈S〉 = S4.

The graph Cay(S4, S) is shown in Figure 10B. Thus, it is isomorphic to Γ6 in
Figure 10.

�

In the next theorem, we classify non-isomorphic Cayley graphs of symmetric
group S4 of valency 3, by using Propositions 3.2 to 3.11.

Theorem 3.12. Up to isomorphism, there are exactly 10 Cayley graphs of the
symmetric group S4 of valency 3, and they are given in Table 2.

Remember that, the graph Cay(G,S) is called a CI-graph of the group G,
if Cay(G,S) is isomorphic to Cay(G,S′) implies that there is a permutation
σ ∈ Aut(G) such that S′ = Sσ. So, we have the following corollaries.
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Table 2. Cayley graphs of S4 of valency 3.

No. S Cay(S4, S)

1 {(ij), (il), (jl)} ∪4
t=1K3,3

{(12)(34), (14)(23), (13)(24)}
2 {(ij), (lk), (ij)(lk)} ∪6

t=1K4

{(ij)(lk), (iljk), (ikjl)}
{(ij), (il)(kj), (ik)(lj)}

3 {(ij), (iljk), (ikjl)} ∪3
t=1C4�K2

{(ij)(lk), (ijlk), (iklj)}
4 {(ij), (ijl), (ilj)} ∪4

t=1C3�K2

5 {(ij), (ij)(lk), (il)(jk)} ∪3
t=1Γ1

6 {(ij)(lk), (ijl), (ilj)} ∪2
t=1Γ2

7 {(ij), (il), (jk)} Γ3

{(ij), (ijlk), (iklj)}
8 {(ij), (ilk), (ikl)} Γ4

9 {(ij), (il), (il)(jk)} Γ5

{(ij), (jl), (ij)(lk)}
10 {(ij), (il), (ik)} Γ6

Corollary 3.13. The graphs ∪4
t=1K3,3, ∪4

t=1C3�K2, ∪3
t=1Γ1, ∪2

t=1Γ2, Γ4 and
Γ6 are the CI-graphs for the group S4.

Corollary 3.14. The graphs ∪6
t=1K4, ∪3

t=1C4�K2, Γ3 and Γ5 are not CI-
graphs for the group S4.

Corollary 3.15. S4 is not a CI-group. Moreover, it does not have the 3-CI-
property.

Proof. By Corollary 3.14. �

In the final part of this section, we investigate the relation between the
Cayley graph of Sn+1 and the Cayley graph of Sn for a set S, such that S is a
subset of Sn and we can consider it as a subset of Sn+1.

Theorem 3.16. Suppose that S is a subset of the group Sn, such that 1G /∈ S
and S = S−1. Then Cay(Sn+1, S) is the disjoint union of n + 1 copies of
Cay(Sn, S).

Proof. By Proposition 2.2, all components of Cay(Sn, S) are isomorphic to
Cay(〈S〉, S). Thus, the graph Cay(Sn, S) is isomorphic to the disjoint union of
n!/k copies of Cay(〈S〉, S), where |〈S〉| = k.

We consider Sn as a subgroup of Sn+1, such that for each ρ ∈ Sn we have
(n + 1)ρ = n + 1 and so ρ ∈ Sn+1. As well, suppose that S is a subset of
Sn+1. Since, Sn ≤ Sn+1 and |Sn| = n! we have [Sn+1 : Sn] = n + 1. Thus,
[Sn+1 : 〈S〉] = k(n+ 1). Again by Proposition 2.2, Cay(Sn+1, S) is isomorphic
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to the disjoint union of (n + 1)!/k copies of Cay(〈S〉, S). So, Cay(Sn+1, S) is
isomorphic to the disjoint union of n+ 1 copies of Cay(Sn, S).

�

Now, we have the following corollary.

Corollary 3.17. Up to isomorphism, there are at least 10 Cayley graphs of
the symmetric group Sn of valency 3.

Proof. By Theorem 3.16, we have

Cay(Sn, S) =

n!/4!⋃
x=1

(Cay(S4, S)).

Therefore, each isomorphic class of Cay(S4, S) creates an isomorphic class of
the graph Cay(Sn, S), and we are down. �

4. GAP Code for Computing Cayley Graphs

In this section, we explore the computation of Cayley graphs for permutation
groups, specifically the symmetric group S4. Using a programmatic approach,
we can generate these graphs in various computational algebra systems. For
instance, the following GAP code, (GAP: a system for computational discrete
algebra) snippet demonstrates how to construct the Cayley graph of the sym-
metric group S4 using specific generators. The GAP programming language
provides tools for working with groups and can efficiently compute Cayley
graphs [8].

Below is a GAP program that constructs the Cayley graph for the symmetric
group S4 using the GRAPH package [10] and for specified generators:



On the Cayley graphs of symmetric group S4 – JMMR Vol. 14, No. 2 (2025) 327

This GAP code initializes the symmetric group S4, defines the desired gen-
erators, constructs the Cayley graph, and finally displays it. By running this
code, researchers can visualize the structure of the group and its relationships
as represented by the Cayley graph.
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