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Abstract. In the present paper, almost poly-Norden and locally almost

poly-Norden manifolds are investigated. Ricci tensor and Riemannian
curvature of integrable poly-Norden manifolds are studied. Geometric

properties of submanifolds of these types of manifolds are studied. More-

over, slant submanifolds of almost poly-Norden manifolds are character-
ized and illustrated by non-trivial examples.
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1. Introduction

One of the important structures that has been investigated and studied on
an odd-dimensional Riemannian manifold is the almost contact structure. The
cosymplectic, Sasakian and Kenmotsu manifolds are three well-known and im-
portant classes among the almost contact manifolds. Most of these structures
have many applications in various sciences, especially in physics and in the
fields of cosmology, relativity and gravity [2, 7, 12].

Poly-Norden structures have been introduced and studied by Sahin [11] in
2018. After than, in [9], the fundamental and geometrical properties of their hy-
persurfaces and submanifolds were investigated. Poly-Norden structures have
interesting relations with almost contact metric structures. In an special case,
by using an almost contact metric structure one can obtain an induction poly-
Norden structure.

On the other hand, since the notion of slant submanifold is a generalization
of the concepts such as invariant and anti-invariant submanifolds [7–9], many
authors have studied special models of slant submanifolds in various struc-
tures. For example, hemi-slant, invariant, slant, anti-invariant and semi-slant
submanifolds of metallic manifolds have been analyzed in [1, 4, 6]. Further-
more, in [3,7] slant submanifolds of contact 3-structures, golden manifolds and
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locally conformal Kaehler manifolds have been investigated and the slant light-
like submanifolds of cosymplectic structures have been introduced in [9].

So, motivated by the above works and by using the approaches and proofing
techniques of the papers [9,11], in this paper, we investigate slant submanifolds
of almost poly-Norden manifolds. We first review the notion of an almost poly-
Norden manifold and investigate an example for that in Section 2. In Section 3,
we study ψ-invariant and ψ-anti-invariant submanifolds of almost poly-Norden
manifolds, and finally in Section 4 we consider slant submanifolds and give an
example of this type of submanifolds in a poly-Norden manifold.

2. Locally poly-Norden Riemannian manifolds

Definition 2.1. [11] On a smooth Riemannian manifold (B,G), an almost
poly-Norden structure is a (1,1)-tensor ψ which satisfies

(1) ψ2 = mψ − I,

where I is the identity tensor on B and m ∈ R − {0}. In this case (B,ψ) is
called an almost poly-Norden manifold.

The Riemannian metric G is said to be ψ-compatible if

(2) G(ψE,ψF ) = mG(ψE,F )− G(E,F ),

for any E,F ∈ T (B). From this it follows ψ has symmetric property with
respect to G, which means

(3) G(ψE,F ) = G(E,ψF ).

In this paper, we denote the Levi-Civita connection with respect to the Rie-
mannian metric G, by D.

Definition 2.2. [11] An almost poly-Norden structure (B,ψ) is called a lo-
cally almost poly-Norden manifold (or integrable), if its Nijenhuis tensor field
Nψ is equal to zero, i.e.

Nψ(E,F ) = ψ2[E,F ] + [ψE,ψF ]− ψ[ψE,F ]− ψ[E,ψF ] = 0.

Note that Nψ = 0 is equivalent to Dψ = 0 ( [11]). This means ψ is parallel

with respect to the Levi-Civita connection associated to G.

Lemma 2.3. Let (B,ψ) be an almost poly-Norden Riemannian manifold then
(DEψ)ψF = (mI − ψ)(DEψ)F , for any E,F ∈ T (B).
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Proof. For any E,F ∈ T (B), from definition of almost poly-Norden manifolds,
we have

(DEψ)ψF = DEψ
2F − ψDEψF

= mDEψF −DEF − ψDEψF

= (mI − ψ)(DEψ)F.

�

Lemma 2.4. If (B,ψ,G) is an almost poly-Norden Riemannian manifold then
G((DEψ)F,W ) = G(F, (DEψ)W ) for any E,F,W ∈ T (B).

Proof. By using equation (3) we have for any E,F,W ∈ T (B):

G((DEψ)F,W ) = G(DEψF,W )− G(ψDEF,W )

= EG(ψF,W )− G(ψF,DEW )− EG(F,ψW ) + G(F,DEψW )

= G(F, (DEψ)W ).

�

The fundamental 2-form Ψ on almost poly-Norden manifold (B,ψ,G) is
defined as follows:

Ψ(E,F ) = G(E,ψF ),

for any E,F ∈ T (B).
According to the above definition we, get that Ψ is symmetric because for any
E,F ∈ T (B):

Ψ(E,F ) = G(E,ψF ) = G(ψE,F ) = Ψ(F,E).

Lemma 2.5. Let (B,ψ,G) be an almost poly-Norden Riemannian manifold
then
(DEΨ)(F,W ) = G(F, (DEψ)W ) for all E,F ∈ T (B).

Proof. According to the definition of Ψ, directly we conclude

(DEΨ)(F,W ) = EΨ(F,W )−Ψ(DEF,W )−Ψ(F,DEW )

= EG(F,ψW )− G(DEF,ψW )− G(F,ψDEW )

= G(DEF,ψW ) + G(F,DEψW )− G(DEF,ψW )− G(F,ψDEW )

= G(F, (DEψ)W ),

for all E,F,W ∈ T (B). �

Theorem 2.6. If (B,ψ,G) is a locally almost poly-Norden Riemannian man-
ifold then for E,F,W ∈ T (B), we get
dΨ(E,F,W )− dΨ(E,ψF, ψW ) = 2{Ψ(F,DEW ) + Ψ(E, [W,F ])
−Ψ(ψF,DEψW ) + Ψ(E, [ψF,ψW ])}
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Proof. Before proving the proposition, we obtain the following equation
dΨ(E,F,W ) = 2{Ψ(F,DEW ) + Ψ(E, [W,F ])}.
By direct computations and since Dψ = 0, we have

dΨ(E,F,W ) = EΨ(F,W )− FΨ(E,W ) +WΨ(E,F )−Ψ([E,F ],W ) + Ψ([E,W ], F )

−Ψ([F,W ], E) = (DEΨ)(F,W ) + Ψ(F,DEW )− (DFΨ)(E,W )−Ψ(E,DFW )

+ (DWΨ)(E,F ) + Ψ(E,DWF ) + Ψ(DEW,F )−Ψ(DFW,E) + Ψ(DWF,E)

= G(F, (DEψ)W )− G(E, (DFψ)W ) + G(E, (DWψ)F ) + 2{Ψ(F,DEW )

+ Ψ(E, [W,F ])} = 2{Ψ(F,DEW ) + Ψ(E, [W,F ])}.

Now, by using the above equation and previous lemmas, for all E,F,W ∈ T (B),
we obtain

dΨ(E,F,W )− dΨ(E,ψF, ψW ) = 2{Ψ(F,DEW ) + Ψ(E, [W,F ])−Ψ(ψF,DEψW )

+ Ψ(E, [ψF,ψW ])}.

�

Definition 2.7. A Matrix A is called an almost poly-Norden matrix if there
exists a real number m 6= 0 such that A2 = mA − I, where I denotes the
identity matrix and we show it as a pair of (A,m).

Example 2.8. The pairs (A, 2), (B,
10

3
) and (C,

2

3
) in which A,B and C are

defined as follows are almost poly-Norden matrices.

A =

(
0 2

−1

2
2

)
, B =

3 0 0

2
1

3
0

0 0 3

 , C =



0 0
5

3
0

0
1

3
0 −8

9

−3

5
0

2

3
0

0 1 0
1

3


3. Curvatures and submanifolds of integrable poly-Norden
manifolds

Suppose (B,G) is a submanifold of an almost poly-Norden structure (B,G, ψ),
where G is the induced metric on B.
We denote the Levi-Civita connection on the submanifold B by the notation
D. So, the Gauss and Weingarten formulas can be written as follows

DEF = DEF − h(E,F ),(4)

DEC = −ACE + D⊥
EC.(5)
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In which h is the second fundamental form, A is the shape tensor and we have
G(h(E,F ), C) = G(ACE,F ).

Lemma 3.1. Let (B,ψ) be a locally almost poly-Norden Riemannian manifold
and let σ be a (1,1)-tensor on a submanifold B of B such that σ = ψ |B. Then,
(B, σ) is a locally almost poly-Norden submanifold if and only if h(E, σF ) =
σh(E,F ).

Proof. First, we show that (B, σ) is an almost poly-Norden Riemannian sub-
manifold and then by using equation (4) we prove that it is locally almost
poly-Norden. We have

σ2E = ψ2 |B E = mψ |B E − E = mσE − E,

and

(DEψ |B)F = 0,

DEψ |B F − ψ |B DEF = 0,

DEσF + h(E, σF )− σDEF − σh(E,F ) = 0,

(DEσ)F + h(E, σF )− σh(E,F ) = 0.

So (B, σ) is a locally almost poly-Norden if and only if h(E, σF ) = σh(E,F ).
�

Definition 3.2. Let B be a submanifold of B, B is called the ψ-invariant
submanifold of B if ψ(TB) ⊂ TB and B is ψ-anti-invariant of B if ψ(TB) ⊂
TB⊥( [9]).

For any E ∈ Γ(B) and C ∈ Γ(B⊥) we put

ψE = TE +NE,(6)

ψC = tC + nC,(7)

where these projection maps act as T : Γ(B) −→ Γ(B) , N : Γ(B) −→ Γ(B⊥)
and
t : Γ(B⊥) −→ Γ(B) , n : Γ(B⊥) −→ Γ(B⊥).
From (6) and (7) we can easily get the following equations [4]

G(TE,F ) = G(E, TF ),(8)

G(nU,C) = G(U, nC),(9)

G(nE,C) = G(E, tC),(10)

for any E,F ∈ Γ(B) and U,C ∈ Γ(B⊥).
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Lemma 3.3. For any E,F ∈ Γ(B) and U,C ∈ Γ(B⊥), the following relations
hold.

T 2 = mT − I − tN,(11)

N =
1

m
(NT + nN),(12)

t =
1

m
(Tt+ tn),(13)

n2 = mn− I −Nt.(14)

Proof. Apply the ψ to the (6), then we have

ψ2E = ψTE + ψNE,

now using the (1),(6) and (7) we get

mψE − E = T 2E +NTE + tNE + nNE,

mTE +mNE − E = T 2E +NTE + tNE + nNE, ∀E ∈ Γ(TB).

Now, we separate the tangential and normal components of the above state-
ment, then (11) and (12) obtained.
Similar to the previous case, apply the ψ to the (7), then we have

ψ2C = ψtC + ψnC,

now using the (1), (6) and (7) we obtain

mψC − C = TtC +NtC + tnC + n2C,

mtC +mnC − C = TtC +NtC + tnC + n2C, ∀C ∈ Γ(TB⊥),

by separating the tangential and normal components, we get (13) and (14). �

Note if B is an invariant submanifold, it implies N = 0, so from (11) and
(14) we have

T 2 = mT − I, n2 = mn− I,
hence (T,G) and (n,G) is an almost poly-Norden structure on B.

Moreover, by taking covariant derivative on the project operators we get

(DET )F = DETF − TDEF,(15)

(DEN)F = D⊥
ENF −NDEF,(16)

(DEt)C = DEtC − tDEC,(17)

(DEn)C = D⊥
EnC − nD⊥

EC.(18)

for any E,F ∈ Γ(B) and C ∈ Γ(B⊥).

Lemma 3.4. If B is a submanifold in B and almost poly-Norden structure ψ
on almost poly-Norden manifold (B, g, ψ) is integrable, then we obtain

G((DEN)F,C) = G((DEt)C,F ),
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for any E,F ∈ Γ(TB) and C ∈ Γ(TB⊥).

Proof. Since the ψ is integrable then for any E,F ∈ Γ(TB) we have DEψF =
ψDEF, now by using Gauss and Weingarten formulas and Equations (6) and
(7) we have

DETF + DENF = ψ(DEF + h(E,F )),

DETF + h(E, TF )−ANFE + D⊥
ENF = TDEF +NDEF + th(E,F ) + nh(E,F ),

by separating the tangential and normal components we have

(DET )F = ANFE + th(E, TF ),(19)

(DEN)F = nh(E,F )− h(E, TF ).(20)

And for any E ∈ Γ(B) and C ∈ Γ(B⊥) we get DEψC = ψDEC.
Similarly, we can state

DEtC + DEnC = ψ(−ACE + D⊥
EC),

DEtC + h(E, tC)−AnCE + D⊥
EnC = −TACE −NACE + tD⊥

EC + nD⊥
EC.

So we get it by separating the tangential and normal component

(DEt)C = AnCE − TACE,(21)

(DEn)C = −h(E, tC)−NACE.(22)

And finally, by using the above equations, (8) and (9)

G((DEN)F,C) = G(h(E,F ), nC)− G(h(E, TF ), C)

= G(AnCE − TACE,F )

= G((DEt)C,F ).

�

Theorem 3.5. Let B be a submanifold of an integrable poly-Norden mani-
fold (B, g, ψ), then we have (DEN)F = 0 and (DEt)C = 0, for all E,F ∈
Γ(TB), C ∈ Γ(TB⊥) if and only if A satisfies

AnCE = TACE = ACTE.

Proof. By using (20)

G(h(E,F ), nC)− G(h(E, TF ), C) = 0.

Given the relation between h and A and Equality (8) we have

G(AnCE,F )− G(ACE, TF ) = 0,

G(AnCE,F )− G(TACE,F ) = 0.

So equality is achieved on the left.
On the other hand, since (DEt)C = 0 then by using (21) we get

G(AnCE − TACE,F ) = 0,
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the right-hand equation can also be obtained by the following statement,

G(E,AnCF )− G(E,ACTF ) = 0.

Conversely, All of the above steps are reversible. �

Theorem 3.6. The Riemannian curvature tensor R of an integrable almost
poly-Norden manifold (B, g, ψ) satisfies

i) R(E,F )ψ = ψR(E,F ).
ii) R(ψE,F ) = R(E,ψF ).
iii) R(ψE,ψF ) = mR(ψE,F )−R(E,F ).
iv) G(R(E,F )ψW,ψW ) = mG(R(E,F )W,ψW )− G(R(E,F )W,W ).
v) G(R(E,F )ψW,W ) = G(R(E,F )W,ψW ).

Proof. By using (2), (3), equation R(E,F )W = [DE ,DF ]W − D[E,F ]W and
the integrability property ψ the result is achieved. �

Theorem 3.7. Let S be the curvature Ricci tensor of B and almost poly-
Norden structure ψ on almost poly-Norden (B, g, ψ) be integrable, then

i) S(ψ2E,F ) = mS(ψE,F )− S(E,F ).
ii) S(E,ψ2F ) = mS(E,ψF )− S(E,F ).
iii) S(ψE,F ) = S(E,ψF ).
iv) S(ψE,ψF ) = mS(ψE,F )− S(E,F ).

Proof. Let {ei}, i = 1, ..., n be an orthonormal basic on TpB then by using (1)
we obtain

i) S(ψ2E,F ) = Σni=1R(ei, ψ
2E,F, ei)

= mΣni=1R(ei, ψE, F, ei)− Σni=1R(ei, E, F, ei)

= mS(ψE,F )− S(E,F ).

ii) Similar to part (i).

iii) S(ψE,F ) = Σni=1R(ei, ψE, F, ei)

= Σni=1R(ψei, E, F, ei)

= Σni=1ψR(F, ei, ei, E)

= Σni=1R(ei, E, ψF, ei)

= S(E,ψF ).

iv) By using items (i) and (iii) we have

S(ψE,ψF ) = S(ψ2E,F ) = mS(ψE,F )− S(E,F ).

�

Theorem 3.8. On the integrable almost poly-Norden manifold (B, g, ψ), the
following relations hold:

i) (DWR)(E,F )ψW = ψ(DWR)(E,F )W.
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ii) (DWS)(ψE,F ) = (DWS)(E,ψF ).

Proof. i) By using Theorem 3.6 part (i) and the integrability property ψ we
get:

(DWR)(E,F )ψW = DWR(E,F )ψW −R(DWE,F )ψW −R(E,DWF )ψW

−R(E,F )DWψW

= ψ(DWR)(E,F )W.

ii) We use the Theorem 3.7 to prove this part

(DWS)(ψE,F ) = DWS(ψE,F )− S(DWψE,F )− S(ψE,DWF )

= DWS(E,ψF )− S(DWE,ψF )− S(E,ψDWF )

= (DWS)(E,ψF ).

�

4. Slant submanifolds of integrable poly-Norden manifolds

Definition 4.1. A submanifold (B,G) of an almost poly-Norden manifold
(B, g, ψ) is said to be a slant submanifold if ∀E ∈ TpB, the α(E) angle between
TpB and ψE, does not depend on the choice of p ∈ B and E ∈ TpB. Also,
α := α(E) is called the slant angle.

It should be noted that, if

i) α = 0, B is ψ-invariant,

ii) α =
π

2
, B is ψ-anti-invariant,

iii) 0 < α <
π

2
, B is a proper slant.

According to the above definition we have:
(23)

cosα =
G(ψEp, TEp)

‖TEp‖‖ψEp‖
=
G(TEp, TEp) + G(NEp, TEp)

‖TEp‖‖ψEp‖
=

‖TEp‖2

‖TEp‖‖ψEp‖
=
‖TEp‖
‖ψEp‖

.

Example 4.2. ( [11]) Consider Euclidean space R4 with map ψ, such that

ψ : R4 −→ R4

(x1, x2, x3, x4) 7→ (Bmx1, Bmx2, Bmx3, Bmx4)
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where Bm =
m+

√
m2 − 4

2
and g = Σ4

i=1dxi ⊗ dxi.
(R4, ψ,G) is an almost poly-Norden manifold because

ψ2(x1, x2, x3, x4) = (B2
mx1, B

2

mx2, B
2
mx3, B

2

mx4)

= m(Bmx1, Bmx2, Bmx3, Bmx4)− (x1, x2, x3, x4)

= mψ(x1, x2, x3, x4)− (x1, x2, x3, x4).

Suppose B = {(u, v) | u, v ∈ R} is a submanifold of R4 and f : B −→ R4, that
f(u, v) = (Bmu,Bmu,Bmv,Bmv).
In this case, the tangent space of the TB is generated by the following vectors

e1 = (Bm, Bm, 0, 0), e2 = (0, 0, Bm, Bm),

On the other hand we have:

‖e1‖ = ‖e2‖ =
√
m2 − 2,

‖ψe1‖ = ‖ψe2‖ =
√
m4 − 4m2 − 2,

cos γ =
G(ψe1, e1)

‖ψe1‖ ‖e1‖
=

m(m2 − 3)√
(m2 − 4)(m4 − 4m− 2)

,

cosβ =
G(ψe2, e2)

‖ψe2‖ ‖e2‖
=

m(m2 − 3)√
(m2 − 4)(m4 − 4m− 2)

,

so γ = β = arccos(
m(m2 − 3)√

(m2 − 4)(m4 − 4m− 2)
).

Therefore B is a proper slant submanifold of R4.

Lemma 4.3. On a slant submanifold (B,G) of an almost poly-Norden manifold
(B, g, ψ), we get

i) G(TE, TF ) = cos2α[mG(E, TF )− G(E,F )],
ii) G(NE,NF ) = sin2α[mG(E, TF )− G(E,F )].

Proof. i) From Equation (23) we have

(24) G(TE, TE) = cos2αG(ψE,ψE),

in the above equation, put E + F instead of E,

G(TE + TF, TE + TF ) = cos2αG(ψE + ψF,ψE + ψF ),

now by using the linearity feature of the metric g we have:

G(TE, TE) + G(TE, TF ) + G(TF, TE) + G(TF, TF ) = cos2α[G(ψE,ψE)
+ G(ψE,ψF ) + G(ψF,ψE) + G(ψF,ψF )],
given the Equation (24)

G(TE, TF ) = cos2αG(ψE,ψF ),
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and the finally by using (3), (1) and (6) we have:

G(TE, TF ) = cos2α[mG(E, TF )− G(E,F )].

ii) To prove this part, we use part (i) and (6), the similarly to the previous
case we have:

G(NE,NF ) = G(ψE − TE,ψF − TF )

= G(ψE,ψF )− G(TE, TF )− G(TE, TF ) + G(TE, TF )

= G(E,ψ2F )−mcos2αG(E, TF ) + cos2αG(E,F )

= mG(E, TF +NF )− G(E,F )−mcos2αG(E, TF ) + cos2αG(E,F )

= (1− cos2α)mG(E, TF )− (1− cos2α)G(E,F )

= sin2α[mG(E, TE)− G(E,F )].

�

Theorem 4.4. Let (B,G) be a submanifold of an almost poly-Norden manifold
(B, g, ψ). Then B is a slant submanifold of B if and only if we have λ belong
to interval [0, 1] such that T 2 = λ(mT − I).

Proof. Let B be a slant submanifold of an almost poly-Norden manifold B with
the constant slant angle α, so put λ = cos2α ∈ [0, 1].
By using the previous lemma

G(T 2E,F ) = G(TE, TF ) = cos2α[mG(TE,F )− G(E,F )]

= cos2αG(mTE − E,F ) = cos2αG((mT − I)E,F ),(25)

for any E,F ∈ Γ(TB), therefore we have T 2 = λ(mT − I).
Conversely, suppose there exist a real number λ in the interval [0, 1] such that
T 2 = λ(mT − I). Let α be the angele between ψ and the tangent space of B.
Thus from Equation (23), for any E ∈ Γ(TB), we have

(26) cosα =
‖TE‖
‖ψE‖

.

On the other hand, by using (3), we obtain

(27) cosα =
G(ψE, TE)

‖TE‖‖ψE‖
=
G(E,ψTE)

‖TE‖‖ψE‖
=
G(E, T 2E)

‖TE‖‖ψE‖
.

So, (26) and (27) imply

(28) cos2α =
G(E, T 2E)

‖ψE‖2
=
G(E, T 2E)

G(ψE,ψE)
.

In account of the Equation (2), by putting T 2 = λ(mT − I) in (28), we get

(29) cos2α =
λG(E,mTE − E)

G(mTE − E,E)
.
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This means λ = cos2α, hence α is constant and independent of the choice
E. �

Theorem 4.5. Let (B,G) be a submanifold of an almost poly-Norden manifold
(B, g, ψ). If B is slant submanifold with slant angle α, then

(DET
2)F = mcos2α(DET )F,

for any E,F ∈ Γ(TB).

Proof. By using Lemma 4.3 we have:

(DET
2)F = DET

2F − T 2DEF

= mcos2αDETF − cos2αDEF −mcos2αTDEF + cos2αDEF

= mcos2α(DET )F.

�
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