
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,999 |
تعداد دریافت فایل اصل مقاله | 3,580,063 |
ارزیابی برخی متابولیتهای ثانویه، ویژگیهای مورفوفیزیولوژیکی و بیوشیمیایی گیاه همیشه بهار تحت تاثیر الیسیتور کیتوزان در کشت درون شیشهای | ||
مجله بیوتکنولوژی کشاورزی | ||
دوره 17، شماره 2، اردیبهشت 1404، صفحه 1-30 اصل مقاله (998.06 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22103/jab.2025.24064.1618 | ||
نویسندگان | ||
مژگان سلیمانی زاده* 1؛ علیرضا یاوری2؛ یونس محمودی2 | ||
1استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران. | ||
2گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران | ||
چکیده | ||
هدف: بهدلیل دارا بودن متابولیتهای دارویی مهم (از جمله calenduloside، Quercetin و غیره) گل همیشه بهار منبع عالی داروهای جدید محسوب میشود. یکی از ابزارهای بیوتکنولوژیکی برای افزایش تولید این متابولیتها، استفاده از فرآیند الیسیتاسیون در کشت درون شیشهای است. لذا هدف از این تحقیق بهبود متابولیتهای داوریی، ویژگیهای مورفوفیزیولوژیکی و بیوشیمیایی این گیاه تحت تاثیر الیسیتور کیتوزان در کشت درون شیشهای میباشد. مواد و روشها: در این تحقیق، تأثیر روشهای مختلف ضدعفونی و پوشش بذر بر صفات درصد جوانهزنی و آلودگی بذور همیشه بهار مورد ارزیابی قرار گرفت. بدین منظور آزمایشی بهصورت فاکتوریل در قالب طرح کاملا تصادفی با دو فاکتور (نوع روش ضدعفونی و نوع پوشش بذر) و 4 تکرار انجام شد. سپس الیسیتور کیتوزان با وزن مولکولی پایین با غلظتهای مختلف (صفر، 25، 50 و 75 میلیگرم در لیتر) تهیه و روی بذور مورد استفاده قرار گرفت. در نهایت تاثیر کیتوزان روی بهبود صفات مورفوفیزیولوژیکی، متابولیتی و بیوشیمیایی همیشه بهار در کشت درون شیشهای بررسی شد. نتایج: نتایج مقایسه میانگین اثر متقابل روش ضدعفونی و پوشش بذر نشان داد که تیمارS2C1 (روش دوم ضدعفونی، قرار دادن در قارچ کش بنومیل 10 درصد بهمدت 5 دقیقه، قرار دادن در الکل 70 درصد بهمدت 30 ثانیه، قرار دادن در هیپوکلریت سدیم 1% بهمدت 15 دقیقه، همراه با تیمار بدون پوشش بذر) بیشترین میزان درصد جوانهزنی (100) را در مقایسه با سایر تیمارها داشت. نتایج مقایسه میانگین اثر ساده روش ضدعفونی نشان داد که بیشترین و کمترین میزان درصد آلودگی بهترتیب مربوط به روش اول (S1) و سوم (S3) ضدعفونی میباشد. نتایج مقایسه میانگین نشان دهنده افزایش معنیدار صفات ارتفاع، وزن تر گیاهچه، تعداد و طول ریشه، طول ساقه، تعداد و عرض برگ در همه غلظتهای کیتوزان در مقایسه با نمونه شاهد بود. بیشترین و کمترین میزان فلاونوئید، فنل کل، فعالیت آنتیاکسیدانی، آنتوسیانین، کاروتنوئید، کلرفیل a و b، کاتالاز، پراکسیداز و میزان پرولین بهترتیب به تیمار 50 میلیگرم در لیتر کیتوزان و شاهد اختصاص داشت. بیشترین و کمترین میزان مالون دیآلدهید به تیمار شاهد و کیتوزان 50 میلیگرم در لیتر تعلق داشت. نتیجهگیری: بهطور کلی نتایج نشان داد که غلظت 50 میلیگرم در لیتر کیتوزان در بهبود ویژگیهای مورفوفیزیولوژیکی، متابولیتی و بیوشیمایی همیشه بهار در کشت درون شیشهای موثرتر بوده است. | ||
کلیدواژهها | ||
متابولیت ثانویه؛ کشت بافت گیاهی؛ الیسیتاسیون؛ گیاه دارویی؛ فلاونوئید | ||
مراجع | ||
Abdelaal, K., Attia, K. A., Niedbała, G., Wojciechowski, T., Hafez, Y., Alamery, S., Alateeq, T. K., & Arafa, S. A. (2021). Mitigation of Drought Damages by Exogenous Chitosan and Yeast Extract with Modulating the Photosynthetic Pigments, Antioxidant Defense System and Improving the Productivity of Garlic Plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510 Acemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., Eddine El Gueddari, N., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular & Developmental Biology-Plant, 54, 537-544. https://doi.org/10.1007/s11627-018-9915-0 Aebi, H. (1974). Catalase, Methods of enzymatic analysis. Elsevier, pp. 673-684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3 Ahmad, W., Zahir, A., Nadeem, M., Garros, L., Drouet, S., Renouard, S., Doussot, J., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2019). Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process biochemistry, 79, 155-165. https://doi.org/10.1016/j.procbio.2018.12.025 Ahmadi, E., Nasr, S. M. H., Jalilvand, H., & Savadkoohi, S. K. (2012). Contamination control of microbe Ziziphus spina [christti] seed in vitro culture. Trees, 26, 1299-1304. https://doi.org/10.1007/s00468-012-0705-8 Ahmed, S. A., & Baig, M. M. V. (2014). Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi Journal of Biological Sciences, 21(5), 499-504. https://doi.org/10.1016/j.sjbs.2013.12.008 Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608-614. https://doi.org/10.1007/s00299-003-0733-3 Algam, S., Xie, G., Li, B., Yu, S., Su, T., & Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of plant Pathology, 593-600. https://doi.org/10.5897/AJMR10.549 Arora, D., Rani, A., & Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacognosy reviews, 7(14), 179. https://doi.org/10.4103/0973-7847.120520 Arya, S. S., Rookes, J. E., Cahill, D. M., & Lenka, S. K. (2022). Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures. International Journal of Biological Macromolecules, 214, 632-641. https://doi.org/10.1016/j.ijbiomac.2022.06.145 Attaran Dowom, S., Karimian, Z., Mostafaei Dehnavi, M., & Samiei, L. (2022). Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biology, 22(1), 364. https://doi.org/10.1186/s12870-022-03689-4 Bates, L. S., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207. https://doi.org/10.1007/BF00018060 Bayraktar, M., Naziri, E., Akgun, I. H., Karabey, F., Ilhan, E., Akyol, B., Bedir, E., & Gurel, A. (2016). Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 127, 289-300. https://doi.org/10.1007/s11240-016-1049-7 Cai, Z., Kastell, A., Mewis, I., Knorr, D., & Smetanska, I. (2012). Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell, Tissue and Organ Culture (PCTOC), 108, 401-409. https://doi.org/10.1007/s11240-011-0051-3 Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624. Chourykae, B, Sreenamkhum O (2018) Effect of Chitosan on Growth of In vitro Seedling Culture of Dendrobium lindleyi Steud. Bur Sci J, 669-681. https://doi.org/10.3390/agriculture10120624 Coelho, N., & Romano, A. (2022). Impact of chitosan on plant tissue culture: recent applications. Plant Cell, Tissue and Organ Culture (PCTOC), 148(1), 1-13. https://doi.org/10.1007/s11240-021-02156-6 Cola G, Cavenago B, Gardana CS, et al. (2024) Effect of Elicitor Treatments on Quality Attributes in Blueberry: Implications of Cultivar and Environmental Conditions. Plants 13, 1105. https://doi.org/10.1007/s11240-021-02156-6 de Souza Silva, P. T., de Souza, L. M., de Morais, M. B., de Moraes, M. M., da Camara, C. A. G., & Ulisses, C. (2022). Effect of biotic elicitors on the physiology, redox system, and secondary metabolite composition of Lippia alba cultivated in vitro. South African Journal of Botany, 147, 415-424. https://doi.org/10.1016/j.sajb.2022.01.042 Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate polymers, 84(2), 751-755. https://doi.org/10.1016/j.carbpol.2010.07.066 Dzung, N. A., Thang, N. T., Suchiva, V., Chandrkrachang, S., Methacanon, P., & Peter, M. (2002). Effect of oligoglucosamine prepared by enzyme degradation on the growth of soybean. Advances of Chitin Science, 5, 463-467. Fazal, H., Abbasi, B. H., Ahmad, N., & Ali, M. (2016). Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied biochemistry and biotechnology, 180, 1076-1092. https://doi.org/10.1007/s12010-016-2153-1 Forouzandeh, M., Mohkami, Z., & Fazelinasab, B. (2019). Evaluation of biotic elicitors foliar application on functional changes, physiological and biochemical parameters of fennel (Foeniculum vulgare). Journal of Plant Production Research, 25(4), 49-65. https://doi.org/10.22069/jopp.2018.14077.2262 Golkar, P., Taghizadeh, M., & Yousefian, Z. (2019). The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC), 137, 575-585. https://doi.org/10.1007/s11240-019-01592-9 Guan, Y.-j., Hu, J., Wang, X.-j., & Shao, C.-x. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10, 427-433. https://doi.org/10.1631/jzus.B0820373 Guru, A., Dwivedi, P., Kaur, P., & Pandey, D. K. (2022). Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. South African Journal of Botany, 149, 1029-1043. https://doi.org/10.1016/j.sajb.2021.10.014 Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and pharmaceutical bulletin, 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090 Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1 Pourbeyrami Hir, Y., Adham, R., Chamani, E., Maleki Lajayer, H., & Hasanzadeh, M. (2022). Effect of chitosan on morpho-physiological traits and regeneration of Iris pseudacorus plantlets under in vitro conditions. Journal of Plant Physiology and Breeding, 12(2), 71-83. https://doi.org/10.22034/jppb.2022.16255 Jami, S., Esmaeilzadeh, B. S., & Modarres, M. (2018). Effect of chitosan on micropropagation, secondary metabolites content and antioxidant activity of Salvia leriifolia Benth. Journal of Plant Physiology and Breeding, 31, 568-578. https://doi.org/10.22034/jppb.2022.16255 Jiao, J., Gai, Q.-Y., Wang, X., Qin, Q.-P., Wang, Z.-Y., Liu, J., & Fu, Y.-J. (2018). Chitosan elicitation of Isatis tinctoria L. hairy root cultures for enhancing flavonoid productivity and gene expression and related antioxidant activity. Industrial crops and products, 124, 28-35. https://doi.org/10.1016/j.indcrop.2018.07.056 Kahromi, S., & Khara, J. (2021). Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture, 101(9), 3898-3907. https://doi.org/10.1002/jsfa.11030 Khan, M. S. I., Khatun, F., Afrin, S., & Hoque, M. (2020). Callus induction and plantlet regeneration in Chrysanthemum. Int. J. Bus. Soc. Sci. Res, 8(1), 06-10. Khan, T., Khan, T., Hano, C., & Abbasi, B. H. (2019). Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Industrial crops and products, 129, 525-535. https://doi.org/10.1016/j.indcrop.2018.12.048 Kohli, S. K., Handa, N., Bali, S., Arora, S., Sharma, A., Kaur, R., & Bhardwaj, R. (2018). Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicology and environmental safety, 147, 382-393. https://doi.org/10.1016/j.ecoenv.2017.08.051 Lagrimini, L. M., & Rothstein, S. (1987). Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant physiology, 84(2), 438-442. https://doi.org/10.1104/pp.84.2.438 Leal, F., Rodrigues, A., Fernandes, D., Nunes, F., Cipriano, J., Ramos, J., Teixeira, S., Vieira, S., Carvalho, L., & Pinto-Carnide, O. (2007). In vitro multiplication of Calendula arvensis for secondary metabolites extraction. (Ed.),^(Eds.). III International Symposium on Acclimatization and Establishment of Micropropagated Plants 812. pp. 251-256. https://doi.org/10.17660/ActaHortic.2009.812.33 Leelavathy, S., & Sankar, P. D. (2016). Curbing the Menace of Contamination in Plant Tissue Culture. Journal of Pure & Applied Microbiology, 10(3), 2145-2152. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes (Methods in enzymology Vol. 148, pp. 350-382). Elsevier. https://doi.org/10.1016/0076-6879(87)48036-1 Lima, A. d. M., Siqueira, A. S., Möller, M. L. S., Souza, R. C. d., Cruz, J. N., Lima, A. R. J., Silva, R. C. d., Aguiar, D. C. F., Junior, J. L. d. S. G. V., & Gonçalves, E. C. (2022). In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. Journal of Biomolecular Structure and Dynamics, 40(3), 1064-1073. https://doi.org/10.1080/07391102.2020.1821782 Lin, J.-Y., & Tang, C.-Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food chemistry, 101(1), 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014 Mahdavi, B., Modarres Sanavy, S., Aghaalikhani, M., Sharifi, M., & Alavi Asl, S. (2014). Effect of foliar application of chitosan on growth and biochemical characteristics of safflower (Carthamus tinctorius L.) under water deficit stress. Iranian Journal of Field Crops Research, 12(2), 229-236. https://doi.org/10.22067/gsc.v12i2.39153 Malekpoor, F., Salimi, A., & Ghasemi Pirbalouti, A. (2017). Effect of bio-elicitor chitosan on physiological and morphological properties in purpule basil (Ocimum basilicum L.) under water deficit. Journal of Plant Ecophysiology, 8(27), 56-71. https://dorl.net/dor/20.1001.1.20085958.1395.8.27.5.6 Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3). https://doi.org/10.1111/j.1399-3054.1962.tb08052.x Nahar, S. J., Kazuhiko, S., & Haque, S. M. (2012). Effect of polysaccharides including elicitors on organogenesis in protocorm-like body (PLB) of Cymbidium insigne in vitro. Journal of Agricultural Science and Technology. B, 2(9B), 1029. Nourafcan, H. (2019). Effect of chitosan on physiological and morphological traits of Lemon Verbena (Lippia citriodora L.) under in vitro and field conditions. Journal of Crop Ecophysiology, 13(49 (1)), 73-86. https://doi.org/10.30495/jcep.2019.664838 Obsuwan, K., Yoodee, S., & Uthairatanakij, A. (2010). Application of chitosan on in vitro growth of Rhynchostylis gigantea protocorms and seedlings. (Ed.),^(Eds.). I International Orchid Symposium 878. pp. 283-288. https://doi.org/10.17660/ActaHortic.2010.878.35 Olennikov, D. N., & Kashchenko, N. I. (2022). Marigold metabolites: Diversity and separation methods of Calendula genus phytochemicals from 1891 to 2022. Molecules, 27(23), 8626. https://doi.org/10.3390/molecules27238626 Paris, L., García-Caparrós, P., Llanderal, A., Silva, J., Reca, J., & Lao, M. (2019). Plant regeneration from nodal segments and protocorm-like bodies (PLBs) derived from Cattleya maxima J. Lindley in response to chitosan and coconut water. Propagation of Ornamental Plants, 19(1), 18-23. https://www.cabidigitallibrary.org/doi/full/10.5555/20203245875 Rad, Z. P., Mokhtari, J., & Abbasi, M. (2019). Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. International Journal of Biological Macromolecules, 135, 530-543. https://doi.org/10.1016/j.ijbiomac.2019.05.204 Rahman, M., Mukta, J. A., Sabir, A. A., Gupta, D. R., Mohi-Ud-Din, M., Hasanuzzaman, M., Miah, M. G., Rahman, M., & Islam, M. T. (2018). Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PloS one, 13(9), e0203769. https://doi.org/10.1371/journal.pone.0203769 Mitu, R., Velicevici, G., Madoşă, E., Camen, D., Ciulca, A., Ciulca, S., & Lupulescu, C. (2020). Research on the variability of some morphological characteristics in local populations of Calendula officinalis L. Journal of Horticulture, Forestry and Biotechnology, 24, 80-83. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20219977355 Razavizadeh, R., Adabavazeh, F., & Komatsu, S. (2020). Chitosan effects on the elevation of essential oils and antioxidant activity of Carum copticum L. seedlings and callus cultures under in vitro salt stress. Journal of Plant Biochemistry and Biotechnology, 29, 473-483. https://doi.org/10.1007/s13562-020-00560-1 Safikhan, S., Khoshbakht, K., Chaichi, M. R., Amini, A., & Motesharezadeh, B. (2018). Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 49-58. https://doi.org/10.1016/j.jarmap.2018.06.002 Salachna, P., & Zawadzińska, A. (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Journal of ecological engineering, 15(3). https://doi.org/10.12911/22998993.1110223 Santo Pereira, A. E., Silva, P. M., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017). Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces, 150, 141-152. https://doi.org/10.1016/j.colsurfb.2016.11.027 Shah, M., Jan, H., Drouet, S., Tungmunnithum, D., Shirazi, J. H., Hano, C., & Abbasi, B. H. (2021). Chitosan elicitation impacts flavonolignan biosynthesis in Silybum marianum (L.) Gaertn cell suspension and enhances antioxidant and anti-inflammatory activities of cell extracts. Molecules, 26(4), 791. https://doi.org/10.3390/molecules26040791 Shahane, K., Kshirsagar, M., Tambe, S., Jain, D., Rout, S., Ferreira, M. K. M., Mali, S., Amin, P., Srivastav, P. P., & Cruz, J. (2023). An updated review on the multifaceted therapeutic potential of Calendula officinalis L. Pharmaceuticals, 16(4), 611. https://doi.org/10.3390/ph16040611 Silva da Rocha, A., Rocha, E. K., Alves, L. M., Amaral de Moraes, B., Carvalho de Castro, T., Albarello, N., & Simões-Gurgel, C. (2015). Production and optimization through elicitation of carotenoid pigments in the in vitro cultures of Cleome rosea Vahl (Cleomaceae). Journal of Plant Biochemistry and Biotechnology, 24, 105-113. https://doi.org/10.1007/s13562-013-0241-7 Silva, V., Singh, R. K., Gomes, N., Soares, B. G., Silva, A., Falco, V., Capita, R., Alonso-Calleja, C., Pereira, J. E., & Amaral, J. S. (2020). Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants, 9(2), 178. https://doi.org/10.3390/antiox9020178 Smith, R. H. (2013). Plant tissue culture: techniques and experiments. academic press. https://doi.org/10.1016/B978-0-12-650340-1.X5001-9 Soland, S., & Laima, S. (1999). Phenolics and cold tolerance of Brassica napus. Plant Agriculture, 1, 1-5. Tantasawat, P., Wannajindaporn, A., Chantawaree, C., Wangpunga, C., Poomsom, K., & Sorntip, A. (2010). Chitosan stimulates growth of micropropagated plantlets. (Ed.),^(Eds.). I International Orchid Symposium 878. pp. 205-212. https://doi.org/10.17660/ActaHortic.2010.878.24 Van, S. N., Minh, H. D., & Anh, D. N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289-294. https://doi.org/10.17660/ActaHortic.2010.878.24 Veraplakorn, V., & Kudan, S. (2021). Chitosan elicitor stimulation of in vitro growth and ex vitro acclimatization of Lantana camara L. Agriculture and Natural Resources, 55(3), 431–439-431–439. https://doi.org/10.34044/j.anres.2021.55.3.13 Victório, C. P., Lage, C. L. S., & Sato, A. (2012). Tissue culture techniques in the proliferation of shoots and roots of Calendula officinalis. Revista Ciência Agronômica, 43, 539-545. https://doi.org/10.1590/S1806-66902012000300017 Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64(1), 88-93. https://doi.org/10.1104/pp.64.1.88 Zhang, X., Li, K., Liu, S., Zou, P., Xing, R., Yu, H., Chen, X., Qin, Y., & Li, P. (2017). Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. Journal of agricultural and food chemistry, 65(2), 501-509. https://doi.org/10.1021/acs.jafc.6b03665 Zhao, J.-L., Zhou, L.-G., & Wu, J.-Y. (2010). Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Applied Microbiology and Biotechnology, 87, 137-144. https://doi.org/10.1007/s00253-010-2443-4 Zou, P., Li, K., Liu, S., Xing, R., Qin, Y., Yu, H., Zhou, M., & Li, P. (2015). Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydrate polymers, 126, 62-69. https://doi.org/10.1016/j.carbpol.2015.03.028 | ||
آمار تعداد مشاهده مقاله: 299 تعداد دریافت فایل اصل مقاله: 255 |