
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,000 |
تعداد دریافت فایل اصل مقاله | 3,580,066 |
تغییرات بیان ژن KRAS مرتبط با نانوذرات نقره (AgNPs) | ||
مجله بیوتکنولوژی کشاورزی | ||
دوره 17، شماره 2، اردیبهشت 1404، صفحه 217-236 اصل مقاله (836.54 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22103/jab.2025.24920.1672 | ||
نویسندگان | ||
محمد عاید نجم1؛ گلبوی عبدالمجید نصیر2؛ هدی مصلح محمود* 3 | ||
1گروه داروشناسی، دانشکده پزشکی، دانشگاه علوم پزشکی و داروسازی ابنسینا، بغداد، عراق | ||
2دانشکده علوم مهندسی کشاورزی، دانشگاه بغداد، عراق | ||
3گروه بیوتکنولوژی، دانشکده علوم، دانشگاه الانبار، عراق | ||
چکیده | ||
هدف: فناوری نانو انقلابی در حوزههای مختلف از جمله پزشکی، لوازم آرایشی و بستهبندی مواد غذایی ایجاد کرده است، بهویژه از طریق استفاده از نانومواد مهندسیشده مانند نانوذرات نقره (AgNPs). نانوذرات نقره به دلیل خواص ضد میکروبی قوی، از پرکاربردترین نانوذرات در محصولات مصرفی و زیستپزشکی محسوب میشوند. این مطالعه با هدف بررسی اثرات نانوذرات نقره بر سطح بیان ژن سرطانزای ویروسی Kirsten rat sarcoma (KRAS) در بافتهای کبد و طحال موشها انجام شد تا ایمنی مولکولی تماس با AgNPs ارزیابی شود. مواد و روشها: در مجموع ۵۶ موش بهصورت تصادفی به هفت گروه (n=8 در هر گروه) تقسیم شدند. سه گروه بهمدت ۷ روز مقادیر 25/0، 5/0 و 1 میلیگرم بر کیلوگرم وزن بدن AgNP دریافت کردند. سه گروه دیگر همان دوزها را بهمدت ۱۴ روز دریافت کردند. یک گروه نیز به عنوان کنترل بدون درمان باقی ماند. پس از پایان دوره درمان، بافتهای کبد و طحال جمعآوری شد. RNA کل با استفاده از روش جونکویرا و کارنیرو استخراج و سنتز cDNA با استفاده از کیت Applied Biosystem به شماره 4387406 برای آنالیز بیان ژن انجام شد. نتایج: سطح بیان ژن KRAS بسته به دوز و مدتزمان تماس با AgNPها متفاوت بود. در بافت کبد، بیان ژن KRAS در همه گروههای دریافتکننده AgNP نسبت به گروه کنترل کاهش یافت. در مقابل، در بافت طحال، بیان ژن KRAS در تمام گروههای دریافتکننده بهطور قابلتوجهی افزایش داشت. این تغییرات در دوزهای بالاتر و مدت تماس طولانیتر شدیدتر بودند. نتیجهگیری: یافتهها نشان میدهند که تماس با AgNPها باعث تنظیم مجدد بیان ژن KRAS بهصورت مختص-بافتی میشود؛ بهطوریکه کاهش بیان در بافت کبد و افزایش بیان در بافت طحال مشاهده شد. این الگوهای متفاوت بیان بیانگر آن هستند که نانوذرات نقره ممکن است مسیرهای پیامرسانی سلولی را به شیوهای تحت تأثیر عملکرد اندامها و ریزمحیطها تغییر دهند. بهویژه، افزایش مداوم بیان KRAS در طحال پس از مصرف AgNPها، بهویژه در دوزهای بالا و تماس طولانیمدت نگرانیهایی جدی درباره اختلالات ایمنی یا آغاز فرآیندهای سرطانزایی در بافتهای مرتبط با سیستم ایمنی ایجاد میکند. این نتایج لزوم ارزیابی دقیقتر استفاده از AgNPها را بهویژه در محصولاتی که برای کاربرد طولانیمدت یا سیستمیک طراحی شدهاند، نشان میدهد. مطالعات بیشتری برای روشنسازی مکانیسمهای زیربنایی تنظیم KRAS توسط AgNPها، ارزیابی پیامدهای آسیبشناسی احتمالی بلندمدت، و تعیین آستانههای ایمن تماس ضروری است. تهیه یک پروفایل جامع ایمنی مولکولی برای تضمین توسعه و استفاده مسئولانه از فناوریهای مبتنی بر نانوذرات نقره در حوزههای پزشکی و تجاری حیاتی است. | ||
کلیدواژهها | ||
بیان ژن؛ طحال؛ کبد؛ نانوذرات نقره؛ β-ACTIN | ||
مراجع | ||
Abbas AL-Essawi, I., & Mahmood, H. M. (2024). Effect of gold nanoparticles on hmgA gene expression of Pseudomonas aeruginosa isolates. Journal of Nanostructures, 14(4), 1029-1039. https://doi.org/10.22052/JNS.2024.04.004 Abramenko, N. B., Demidova, T. B., Abkhalimov, E. V., Ershov, B. G., Krysanov, E. Y., & Kustov, L. M. (2018). Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. Journal of Hazardous Materials, 347, 89-94. https://doi.org/10.1016/j.jhazmat.2017.12.060 Alavi, M., Mozafari, M. R., Ghaemi, S., Ashengroph, M., Hasanzadeh Davarani, F., & Mohammadabadi, M. (2022). Interaction of epigallocatechin gallate and quercetin with spike glycoprotein (S-glycoprotein) of SARS-CoV-2: In silico study. Biomedicines, 10(12), e3074. https://doi.org/10.3390/biomedicines10123074 Ali, F., Khan, A., Muhammad, S. A., & Hassan, S. S. U. (2022). Quantitative Real-Time Analysis of Differentially Expressed Genes in Peripheral Blood Samples of Hypertension Patients. Genes, 13(2), 187. https://doi.org/10.3390/genes13020187 Al-taee, E. H. (2020). Effect of Silver Nanoparticles Synthesized Using Leaves Extract of Olive on Histopathological and Cytogenetic Effects in Albino Mice. Iraqi Journal of Agricultural Sciences, 51(5), 1448-1457. https://doi.org/10.36103/ijas.v51i5.1155 Amiri Roudbar, M., Mohammadabadi, M. R., Ayatollahi Mehrgardi, A., Abdollahi-Arpanahi, R., Momen, M., Morota, G., Brito Lopes, F., Gianola, D., & Rosa, G. J. M. (2020). Integration of single nucleotide variants and whole-genome DNA methylation profiles for classification of rheumatoid arthritis cases from controls. Heredity, 124(5), 658-674. https://doi.org/10.1038/s41437-020-0301-4 Arabpour, Z., Mohammadabadi, M., & Khezri, A. (2021). The expression pattern of p32 gene in femur, humeral muscle, back muscle and back fat tissues of Kermani lambs. Agricultural Biotechnology Journal, 13(4), 183-200. https://doi.org/10.22103/jab.2022.18782.1371 Arzumanyan, A., Reis, H. M., & Feitelson, M. A. (2013). Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nature Reviews Cancer, 13(2), 123–135. https://doi.org/10.1038/nrc3449 Balls, M. (2022). Alternatives to laboratory animals: Trends in replacement and the Three Rs. Alternatives to Laboratory Animals (ATLA), 50(1), 10–26. https://doi.org/10.1177/02611929221082250 Bin Saeed, H. A., Daghestani, M. H., Ambreen, K., Khan, S., & Shahid, M. (2023). Low dose of green synthesized silver nanoparticles is sufficient to cause strong cytotoxicity via its cytotoxic efficiency and modulatory effects on the expression of PIK3CA and KRAS oncogenes in lung and cervical cancer cells. Journal of Cluster Science, 34, 2471–2485. https://doi.org/10.1007/s10876-022-02395-3 Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in Simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing. Animals, 12(9), e1103. https://doi.org/10.3390/ani12091103. Camonis, J. H., Aushev, V. N., Zueva, E., & Zalcman, G. (2024). A review and perspective paper: Ras oncogene gets modest, from kingpin to mere henchman. Cellular and Molecular Life Sciences, 81(1), 412. https://doi.org/10.1007/s00018-024-05449-z Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J., & Der, C. J. (2014). Drugging the undruggable RAS: Mission possible? Nature Reviews Drug Discovery, 13(11), 828–851. https://doi.org/10.1038/nrd4389 Daghman, B., Kaddar, N., Najm, M. A., & Barakat, H. (2024). Comparison of a double dose of paracetamol tablets 500 mg with one paracetamol tablet 1000 mg. Research Journal of Pharmacy and Technology, 17(10), 4671–4676. https://doi.org/10.52711/0974-360X.2024.00720 Djuraeva, N. M., Ikramov, A. I., Abdukhalimova, Kh. V., Hursanova, D. Kh., & Kholmirzaev, M. A. (2025). Hepatocellular carcinoma complicating liver cirrhosis: A case report with emphasis on vascular involvement. https://doi.org/10.5281/zenodo.14957003 Elechalawar, C. K., Rao, G., Gulla, S. K., Patel, M. M., Frickenstein, A., Means, N., Roy, R. V., Tsiokas, L., Asfa, S., Panja, P., Rao, C., Wilhelm, S., Bhattacharya, R., & Mukherjee, P. (2023). Gold nanoparticles inhibit macropinocytosis by decreasing KRAS activation. ACS Nano, 17(10), 9326–9337. https://doi.org/10.1021/acsnano.3c00920 Gökmen, İ., Taştekin, E., Demir, N., Özcan, E., Akgül, F., Hacıoğlu, M. B., Erdoğan, B., Topaloğlu, S., & Çiçin, İ. (2023). Molecular pattern and clinical implications of KRAS/NRAS and BRAF mutations in colorectal cancer. Current Issues in Molecular Biology, 45(10), 7803–7812. https://doi.org/10.3390/cimb45100491 Hajalizadeh, Z., Dayani, O., Khezri, A., Tahmasbi, R., Mohammadabadi, M., Solodka, T., Kalashnyk, O., Afanasenko, V., & Babenko, O. (2021). Expression of calpastatin gene in Kermani sheep using real-time PCR. Journal of Livestock Science and Technologies, 9(2), 51-57. https://doi.org/10.22103/jlst.2021.18165.1381 Hazim, O. H., Najm, M. A., & Ibraheem, Z. O. (2020). Genetic diversity of three medicinal plants of Apiaceous family. Systematic Reviews in Pharmacy, 12, 737–741. https://www.semanticscholar.org/paper/Genetic-Diversity-of-Three-Medicinal-Plants-of-Hazim-Najm/5a826b322f251f827618b9829c075aede5454055 Heidarpour, F., Mohammadabadi, M. R., Zaidul, I. S. M., Maherani, B., & Saari, N. (2011). Use of prebiotics in oral delivery of bioactive compounds: A nanotechnology perspective. Pharmazie, 66(5), 319-324. https://pubmed.ncbi.nlm.nih.gov/21699064/ Kadhum, M. M., & Hussein, N. N. (2020). Detection of the antimicrobial activity of silver nanoparticles biosynthesized by Streptococcus pyogenes bacteria. Iraqi Journal of Agricultural Sciences, 51(2), 500–507. https://doi.org/10.36103/ijas.v51i2.976 Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S. E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII.1.1) isolated in Iran. Veterinary Research Forum, 14(4), 221. https://doi.org/10.30466/vrf.2022.548152.3373 Klimek, A., & Rogalska, J. (2021). Extremely low-frequency magnetic field as a stress factor—Really detrimental? Insight into literature from the last decade. Brain Sciences, 11(2), 174. https://doi.org/10.3390/brainsci11020174 Kouroumalis, E., Tsomidis, I., & Voumvouraki, A. (2023). Pathogenesis of hepatocellular carcinoma: The interplay of apoptosis and autophagy. Biomedicines, 11(4), 1166. https://doi.org/10.3390/biomedicines11041166 Kumar, S. S. D., Houreld, N. N., Kroukamp, E. M., & Abrahamse, H. (2018). Cellular imaging and bactericidal mechanism of green-synthesized silver nanoparticles against human pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 178, 259–269. https://doi.org/10.1016/j.jphotobiol.2017.11.001 Li, Z., Yang, L., Wang, J., Shi, W., Pawar, R., Liu, Y., Xu, C., Cong, W., Hu, Q., Lu, T., Xia, F., & Guo, W. (2010). β-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish & Shellfish Immunology, 29(1), 89–93. https://doi.org/10.1016/j.fsi.2010.02.021 Louay M. Al-Ani, Maha R. Ghreeb, Huda M. Mahmood, Bilal J.M. Aldahham. (2020). Teratogenicity of Pyocyanin Pigment Isolated from Local Pseudomonas aeruginosa Isolates on Mice Neural Tube Defects (NTDs) and other Abnormities. Systematic Reviews in Pharmacy, 11 (7), 600-604. doi:10.31838/srp.2020.7.84 Ma, Q., Gu, L., Liao, S., Zheng, Y., Zhang, S., Cao, Y., & Wang, Y. (2019). NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivo. Apoptosis, 24(1–2), 83–94. https://doi.org/10.1007/s10495-018-1498-z Mahmood, A. S., Hamid, S., & Najm, M. A. (2019). Association of polymorphism GST1 gene and antioxidant status, and interleukin-17 of colorectal cancer Iraqi patients. Indian Journal of Forensic Medicine & Toxicology, 13, 535. https://www.researchgate.net/publication/337602852 Mat Lazim, Z., Salmiati, S., Marpongahtun, M., Arman, N. Z., Mohd Haniffah, M. R., Azman, S., Yong, E. L., & Salim, M. R. (2023). Distribution of silver (Ag) and silver nanoparticles (AgNPs) in aquatic environment. Water, 15(7), 1349. https://doi.org/10.3390/w15071349 McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M., Dockery, P., Prendergast, M., Rowan, N., & Morris, D. (2017). Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Science of the Total Environment, 575, 231–246. https://doi.org/10.1016/j.scitotenv.2016.10.041 Mescher, A. L. (Ed.). (2024). Junqueira's basic histology: Text and atlas (17th ed.). McGraw-Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=3390§ionid=281539243 Mohamadinejad, F., Mohammadabadi, M., Roudbari, Z., Eskandarynasab Siahkouhi, S., Babenko, O., Klopenko, N., Borshch, O., Starostenko, I., Kalashnyk, O., & Assadi Soumeh, E. (2024). Analysis of liver transcriptome data to identify the genes affecting lipid metabolism during the embryonic and hatching periods in ROSS breeder broilers. Journal of Livestock Science and Technologies, 12(2), 61-67. https://doi.org/10.22103/jlst.2024.23814.1554 Mohammadabadi, M., & Asadollahpour Nanaei, H. (2021). Leptin gene expression in Raini Cashmere goat using Real Time PCR. Agricultural Biotechnology Journal, 13(1), 197-214. https://doi.org/10.22103/jab.2021.17334.1305 Mohammadabadi, M., Babenko, I., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measuring the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317-332. https://doi.org/10.22103/jab.2024.24337.1627 Mohammadabadi, M., Golkar, A., & Askari Hesni, M. (2023). The effect of fennel (Foeniculum vulgare) on insulin-like growth factor 1 gene expression in the rumen tissue of Kermani sheep. Agricultural Biotechnology Journal, 15(4), 239-256. https://doi.org/10.22103/jab.2023.22647.1530 Mohammadabadi, M., Kheyrodin, H., Latifi, A., & Babenko Ivanivna, O. (2022a). mRNA expression profile of DNAH1 gene in testis tissue of Raini Cashmere goat. Agricultural Biotechnology Journal, 14(3), 243-256. https://doi.org/10.22103/jab.2022.20199.1428 Mohammadabadi, M., Shaban Jorjandy, D., Arabpoor Raghabadi, Z., Abareghi, F., Sasan, H. A., & Bordbar, F. (2022b). The role of fennel on DLK1 gene expression in sheep heart tissue. Agricultural Biotechnology Journal, 14(2), 155-170. https://doi.org/10.22103/jab.2022.19402.1399 Najm, M. A. (2019). Evaluation of antioxidant (GSH, CAT, SOD) and MDA in Iraqi women with breast cancer. Journal of Global Pharma Technology, 11(7), 107–110. https://www.jgpt.co.in/index.php/jgpt/article/view/2597 Najm, M. A., Al–Hadeithi, Z. S. M., & Salih, A. T. A. (2020). Correlating schizophrenia with DRD3 Ser9Gly or HTR2 receptor gene variants by using the RFLP method. Indian Journal of Forensic Medicine and Toxicology, 14(3), 2038–2043. https://doi.org/10.37506/ijfmt.v14i3.10727 Nasir, G. A., Mohammed, A. K., & Samir, H. F. (2016). Biosynthesis and characterization of silver nanoparticles using olive leaves extract and sorbitol. Iraqi Journal of Biotechnology, 15(1), 22–32. https://jige.uobaghdad.edu.iq/index.php/IJB/article/view/167 Nasir, G. A., Najm, M. A., & Hussein, A. L. (2020). The effect of silver nanoparticles on BRAF gene expression. Systematic Reviews in Pharmacy, 11(10), 570–575. https://www.sysrevpharm.org/abstract/the-effect-of-silver-nanoparticles-on-braf-gene-expression-66388.html Nasir, G., Khudhair, I., Najm, M. A., & Mahmood, H. (2022). Nanotechnology at the molecular level. Al-Rafidain Journal of Medical Sciences, 3, 71–74. https://ajms.iq/index.php/ALRAFIDAIN/article/view/88 Nasir G., Najm M., Mahmood H. (2025). Association Between Silver Nanoparticle Dose and Brain or Renal NF-κB Gene Expression. J Nanostructures, 15(1), 249-254. Doi.10.22052/JNS.2025.01.024 Noori, A. N., Behzadi, M. R. B., & Mohammadabadi, M. R. (2017). Expression pattern of Rheb gene in Jabal Barez Red goat. The Indian Journal of Animal Sciences, 87(11), 1375–1378. https://doi.org/10.56093/ijans.v87i11.75890 Padhye, L. P., Jasemizad, T., Bolan, S., Tsyusko, O. V., Unrine, J. M., Biswal, B. K., Balasubramanian, R., Zhang, Y., Zhang, T., Zhao, J., Li, Y., Rinklebe, J., Wang, H., Siddique, K. H. M., & Bolan, N. (2023). Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Science of the Total Environment, 871, 161926. https://doi.org/10.1016/j.scitotenv.2023.161926 Pakrashi, S., Tan, C., & Wang, W. X. (2017). Bioaccumulation-based silver nanoparticle toxicity in Daphnia magna and maternal impacts. Environmental Toxicology and Chemistry, 36(12), 3359–3366. https://doi.org/10.1002/etc.3917 Raheem, G. L. A., Nasir, G., Alshammari, M. M. M., & Ghasemian, A. (2021). Antibacterial and antibiofilm effects of bismuth nanoparticles produced by Bacillus subtilis against multidrug-resistant Pseudomonas aeruginosa. Malaysian Journal of Biochemistry and Molecular Biology, 3, 15–22. https://repository.uobaghdad.edu.iq/articles/hxZ214sBVTCNdQwCbOHm Rajapantulu, A., & Bandyopadhyaya, R. (2021). Formation of gold nanoparticles in water-in-oil microemulsions: Experiment, mechanism, and simulation. Langmuir, 37. https://doi.org/10.1021/acs.langmuir.1c00084 Roudbar, M.A., Mohammadabadi, M., & Salmani, V. (2015). Epigenetics: A new challenge in animal breeding. Genetics in the Third Millennium, 12(4), 3900–3914. Rubab, M., Zain, A., Mubeen, B., Tariq, H., Malik, A., & Arshad, N. (2023). Green synthesized FM-AgNPs lead to alterations in hematology, oxidative stress biomarkers, and microanatomy of liver and spleen in rats. Brazilian Archives of Biology and Technology, 66. https://doi.org/10.1590/1678-4324-2023220098 Safaei, S. M. H., Dadpasand, M., Mohammadabadi, M., Atashi, H., Stavetska, R., Klopenko, N., & Kalashnyk, O. (2022). An Origanum majorana leaf diet influences Myogenin gene expression, performance, and carcass characteristics in lambs. Animals, 13(1), 14. https://doi.org/10.3390/ani13010014 Safaei, S. M. H., Mohammadabadi, M., Moradi, B., Kalashnyk, O., Klopenko, N., Babenko, O., Borshch, O. O., & Afanasenko, V. (2024). Role of fennel (Foeniculum vulgare) seed powder in increasing testosterone and IGF1 gene expression in the testis of lamb. Gene Expression, 23(2), 98-105. https://doi.org/10.14218/GE.2023.00020 Sakamoto, M., Ha, J. Y., Yoneshima, S., Kataoka, C., Tatsuta, H., & Kashiwada, S. (2015). Free silver ion is the main cause of acute and chronic toxicity of silver nanoparticles to cladocerans. Archives of Environmental Contamination and Toxicology, 68(3), 500–509. https://doi.org/10.1007/s00244-014-0091-x Shahsavari, M., Mohammadabadi, M., Khezri, A., Asadi Fozi, M., Babenko, O., Kalashnyk, O., Oleshko, V., & Tkachenko, S. (2023). Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Animal Biotechnology, 34(4), 882-892. https://doi.org/10.1080/10495398.2021.2000997 Shahsavari, M., Mohammadabadi, M., Khezri, A., Borshch, O., Babenko, O., Kalashnyk, O., Afanasenko, V., & Kondratiuk, V. (2022). Effect of fennel (Foeniculum vulgare) seed powder consumption on insulin-like growth factor 1 gene expression in the liver tissue of growing lambs. Gene Expression, 21(2), 21-26. https://doi.org/10.14218/GE.2022.00017 Shen, M. H., Zhou, X. X., Yang, X. Y., Chao, J. B., Liu, R., & Liu, J. F. (2015). Exposure medium: Key in identifying free Ag⁺ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Scientific Reports, 5, 9674. https://doi.org/10.1038/srep09674 Shi, Q., Xue, C., Zeng, Y., Yuan, X., Chu, Q., Jiang, S., Wang, J., Zhang, Y., Zhu, D., & Li, L. (2024). Notch signaling pathway in cancer: From mechanistic insights to targeted therapies. Signal Transduction and Targeted Therapy, 9, 128. https://doi.org/10.1038/s41392-024-01828-x Shokri, S., Khezri, A., Mohammadabadi, M., & Kheyrodin, H. (2023). The expression of MYH7 gene in femur, humeral muscle and back muscle tissues of fattening lambs of the Kermani breed. Agricultural Biotechnology Journal, 15(2), 217-236. https://doi.org/10.22103/jab.2023.21524.1486 Sohn, E. K., Johari, S. A., Kim, T. G., Kim, J. K., Kim, E., Lee, J. H., Chung, Y. S., & Yu, I. J. (2015). Aquatic toxicity comparison of silver nanoparticles and silver nanowires. BioMed Research International, 2015, 893049. https://doi.org/10.1155/2015/893049 Sorensen, S. N., Hjorth, R., Delgado, C. G., Hartmann, N. B., Sørensen, S. N., & Baun, A. (2015). Nanoparticle ecotoxicity—Physical and/or chemical effects. Integrated Environmental Assessment and Management, 11, 722–724. https://doi.org/10.1002/ieam.1683 Srisaisap, M., & Boonserm, P. (2024). Anticancer efficacy of biosynthesized silver nanoparticles loaded with recombinant truncated parasporin-2 protein. Scientific Reports, 14(1), 15544. https://doi.org/10.1038/s41598-024-66650-5 Tian, X., Jiang, X., Welch, C., Croley, T. R., Wong, T. Y., Fan, S., Chong, Y., Li, R., Ge, C., Chen, C., & Yin, J. J. (2018). Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Applied Materials & Interfaces, 10(10), 8443–8450. https://doi.org/10.1021/acsami.7b17274 Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. S., & Chen, G. (2015). Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discovery Today, 20(5), 595–601. https://doi.org/10.1016/j.drudis.2014.11.014 Xu, G., Song, X., Wang, X., Xue, R., Yan, X., Qin, L., Chang, X., Gao, J., Chen, Z., & Song, G. (2024). Combined miR-181a-5p and Ag nanoparticles are effective against oral cancer in a mouse model. International Journal of Nanomedicine, 19, 9227–9253. https://doi.org/10.2147/IJN.S458484 Yue, Y., Li, X., Sigg, L., Suter, M. J., Pillai, S., Yue, Y., Behra, R., & Schirmer, K. (2017). Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. Journal of Nanobiotechnology, 15(1), 16. https://doi.org/10.1186/s12951-017-0254-9 Zhou, Y., Kuang, Y., Wang, C., Yu, Y., Pan, L., & Hu, X. (2024). Impact of KRAS mutation on the tumor microenvironment in colorectal cancer. International Journal of Biological Sciences, 20(5), 1947–1964. https://doi.org/10.7150/ijbs.88779 | ||
آمار تعداد مشاهده مقاله: 236 تعداد دریافت فایل اصل مقاله: 144 |