
ON AUTOCENTRAL KERNEL OF GROUPS

Sh. Bahri , A. Kaheni �, and M.M. Nasrabadi

Article type: Research Article

(Received: 02 January 2025, Received in revised form 06 May 2025)

(Accepted: 18 May 2025, Published Online: 21 May 2025)

Abstract. Let G be a group, where Aut(G) denotes the full automor-

phisms group of G and L(G) represents the absolute center of G. An

automorphism α ∈ Aut(G) is called an autocentral automorphism if
g−1α(g) ∈ L(G), for all g ∈ G. In this paper, we introduce the no-

tion of autocentral kernel subgroup for an arbitrary group G. We then

investigate and establish several structural properties of this subgroup,
providing insights into its role within the broader framework of group

theory.
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1. Introduction and preliminaries

Let G be a group. We denote the terms of the lower and upper central series
of G by γi(G) and Zi(G), respectively. The group of all automorphisms of G is
denoted by Aut(G), while Inn(G) represents the group of inner automorhisms
of G. For a group H and an abelian group K, we denote the group of homo-
morphisms from H to K by Hom(H,K). We use Cm to represent the cyclic
group of order m. The Frattini subgroup of G is denoted by Φ(G). Throughout
this paper, p always denotes a prime number. Finally, we will use standard
notation and terminology as found in [11].

For each g ∈ G and α ∈ Aut(G), the element [g, α] = g−1α(g) is called the
autocommutator of g and α. The autocommutator of higher weight is defined
inductively as follows:

[g, α1, α2, ..., αn] = [[g, α1, α2, ..., αn−1], αn],

for all α1, α2, . . . , αn ∈ Aut(G) and g ∈ G.
Hegarty [5] introduced the absolute center of a group G denoted by

L(G) = {g ∈ G | [g, α] = 1, ∀α ∈ Aut(G)}.
Thus, the absolute center of G consists of all elements that remain fixed

under every automorphism of G, making it a characteristic subgroup of G. Since
Inn(G) acts trivially on Z(G), it follows that L(G) ≤ Z(G). Furthermore, if
Aut(G) = Inn(G), then L(G) = Z(G). In 2015, H. Meng and X. Guo [4]
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characterized the structure of finite groups G where L(G) is contained in the
Frattini subgroup Φ(G). Later, Orfi and Fouladi [9] proved that if G is a p-group
of maximal class of order pn and Aut(G) is also a p-group, then L(G) = Z(G).
For further details, see also [5] and [10].

Now, define L0(G) = 〈1〉, L1(G) = L(G), and for n ≥ 2, the n-th absolute
center of G inductively as

Ln(G) = {g ∈ G | [g, α1, ..., αn] = 1 , ∀α1, ..., αn ∈ Aut(G)}.
Clearly, Ln(G) is a characteristic subgroup of G and it satisfies Ln(G) ≤ Zn(G),
where Zn(G) is the n-th center of G. Using this notation, we obtain the follow-
ing series for G :

L0(G) = 〈1〉E L1(G) = L(G)E L2(G)E · · ·E Ln(G)E . . . .

A group G is called autonilpotent (See [6]) if there exists some n such that
G = Ln(G). Clearly, autonilpotent groups are nilpotent, but the converse does
not necessarily hold. For instance, C3 is not autonilpotent because L(C3) = 1.
Similarly, it is well known that the symmetric group S3 is not nilpotent and
since L(S3) = 1, it follows that S3 is not autonilpotent.

Hegarty [5] introduced the notion of absolute central automorphisms. An
automorphism α of G is called an absolute central automorphism if [g, α] ∈
L(G), for all g ∈ G. The set of all absolute central automorphisms, denoted
by AutL(G), forms a normal subgroup of Aut(G). In 2016, Nasrabadi and
Farimani [8, Main Theorem] proved that if G is a finite autonilpotent p-group
of class 2, then AutL(G) = Inn(G) if and only if L(G) = Z(G) and Z(G) is
cyclic.

Moghaddam and Safa [7] further examined the properties of AutL(G) and
demonstrated that it fixes certain elements of G. They introduced the subgroup
E(G), defined as follows:

E(G) = 〈[g, α] | g ∈ G ,α ∈ CAut(G)(AutL(G))〉,
in which

CAut(G)(AutL(G)) = {α ∈ Aut(G) | αβ = βα ,∀β ∈ AutL(G)}.
The subgroup E(G) is characteristic in G and contains the derived subgroup

of G.

Lemma 1.1. ( [7, Lemma 1]) If G is an arbitrary group, then AutL(G) acts
trivially on the subgroup E(G) of G.

Example 1.2. Let G be a group with the following presentation

G = 〈x, y | x2n−1 = 1 , xy = x2〉 , where n ≥ 2.

Then AutL(G) = 1, and E(G) = 〈x〉. (See Example 1 of [7]).

An automorphism α of G is called a central automorphism if [g, α] ∈ Z(G),
for all g ∈ G. The set of all central automorphisms of G is denoted by Autc(G),
and this set forms a normal subgroup of the automorphism group Aut(G).
Moreover, Autc(G) contains the set AutL(G).
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In 1955, Haimo [3] introduced the concept of the central kernel of a given
group. The central kernel of G consists of all elements of G that are fixed
by every central automorphism. Davoudirad et al. [2] denoted this subgroup
by Lc(G), and proved that Lc(G) is a charachteristic subgroup of G, which

contains both L(G) and G
′
.

The following result is well known:

Lemma 1.3. Let U , V and W be finite abelian groups. Then

(1) Hom(U × V,W ) = Hom(U,W )×Hom(V,W ).
(2) Hom(U, V ×W ) = Hom(U, V )×Hom(U,W ).
(3) If (|U |, |V |) 6= 1, then Hom(U, V ) 6= 1.
(4) Hom(Cm, Cn) = Cs, where s is the greatest common divisor of m and

n.

In this paper, we introduce the notion of autocentral kernel for any group,
which is a set of elements containing the derived subgroup, the subgroup E(G),
and the central kernel Lc(G). We then establish some of its fundamental prop-
erties.

2. Autocentral kernel of a group

The previous section established that every autocentral automorphism acts
trivially on the derived subgroup and certain subgroups detailed in [7]. How-
ever, autocentral automorphisms may also fix elements outside the derived sub-
group. Therefore, we define the set of all elements fixed by every autocentral
automorphism. This set provides a more comprehensive understanding of the
action of these automorphisms beyond their known behavior on the subgroups
mentioned in [7].

Definition 2.1. Let G be a group. The set of all elements that remain fixed
under every absolute central automorphism of G is called the autocentral kernel
of G, denoted by LL(G).

LL(G) = {g ∈ G | [g, α] = 1 , ∀α ∈ AutL(G)}.

It is straightforward to verify that the autocentral kernel LL(G) is a char-
acteristic subgroup of G and contains both Lc(G) and E(G).

Since autocentral automorphisms fix every element of G
′
, we conclude that

G
′ ≤ LL(G). Consequently, the quotient group G/LL(G) is abelian.

Example 2.2. It can be easily verified that: LL(C6) = C6, LL(C12) ∼= C6,
LL(C16) ∼= C8. Additionally, for the dihedral group D8 = 〈a, b|a4 = b2 =
1, bab = a−1〉, we have LL(D8) = {1, a2}.

The reason of calling LL(G) as the autocentral kernel becomes evident in
the following result, which follows directly from Definition 2.1.

Lemma 2.3. Let G be a group. Then LL(G) = ∩α∈AutL(G)kerα.
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In the following, we will identify the conditions under which the autocenteral
kernel of a group coincides with the group itself, i.e., when LL(G) = G.

Lemma 2.4. Let G be a group in which L(G) or AutL(G) is trivial. Then
LL(G) = G.

Proof. By Definition 2.1, it follows directly that if either L(G) or AutL(G) is
trivial, then the autocentral kernel LL(G) must equal the entire group G. This
result can be easily verified by applying the definition of the autocentral kernel.

�

The next results provide the exact structure of autocentral kernel for each
cyclic p-group.

Theorem 2.5. Let G be a cyclic group of order pn, where p is an odd prime
number. Then LL(G) = G.

Proof. Let G = 〈a : ap
n

= 1〉. Consider the automorphism φ : a 7−→ a2.
Assume there exists some i < pn such that φ(ai) = ai. Then applying φ to ai,
we get a2i = ai. This implies ai = 1, which is a contradiction unless i = 0. Thus,
there is no non-trivial element in G that is fixed by φ. Therefore, L(G) = 1
and by Lemma 2.4, we conclude that LL(G) = G. �

Theorem 2.6. Let G be a finite cyclic group of order 2n, where n ≥ 2. Then
LL(G) is a cyclic group of order 2n−1.

Proof. Let G = 〈x : x2
n

= 1〉, where n ≥ 2. Each automorphism of G can be
expressed as α : x 7−→ xr, where r is an odd number, and 1 ≤ r ≤ 2n − 1. We
aim to show that LL(G) =< x2 > . Assume that r = 2t + 1, for some integer
t. Consider the following calculation:

r2n−1 = (2t+ 1)(2n−1) = 2nt+ 2n−1 ≡ 2n−1 (mod 2n).

We conclude that 2n|2n−1(r − 1). This implies α(x2
n−1

) = (x2
n−1

)r = x2
n−1

,

showing that x2
n−1 ∈ L(G). Now, let xs ∈ L(G) for some 1 ≤ s < 2n. Then,

α(xs) = xs or xrs = xs. Then 2n|s(r − 1), and s = 2n−1. This gives us

L(G) = {1, x2n−1}. Now, using [7, Proposition 1], we find the automorphism
group AutL(G) is isomorphic to

AutL(G) ∼= Hom(
C2n

C2
, C2) ∼= Hom(C2n−1 , C2) ∼= C2.

Thus, AutL(G) = {1, σ}, where σ : x 7−→ x2
n−1+1. Hence, LL(G) = 〈x2〉 ∼=

C2n−1 . �

It is known from Proposition 1.6 in [10] that L(G) 6= 1 when G is a non
trivial autonilpotent group. The next result provides a similar statement for
the autocentral kernel of G.

Lemma 2.7. If G is an autonilpotent group of class 2, then LL(G) = L(G).
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Proof. Let α be an arbitrary element of Aut(G). Since G is an autonilpotent
group of class 2, we know that L2(G) = G. This implies that for every β ∈
Aut(G), we have the commutator identity [g, α, β] = 1. In particular, this means
that [g, α] ∈ L(G), where g is any element of G. Therefore, α ∈ AutL(G),
and since α was chosen arbitrarily, we conclude that Aut(G) = AutL(G), as
required. �

Lemma 2.8. Let G be a group such that G/L(G) is an abelian group. Then
LL(G) ≤ Z(G).

Proof. Let G/L(G) be an abelian group. Therefore, G
′ ≤ L(G), which implies

that Inn(G) ≤ AutL(G). Now, let g be an arbitrary element of LL(G). Since
Inn(G) acts trivially on g, we conclude that LL(G) ≤ Z(G). �

An immediate consequence of Lemma 2.8 is the following result:

Corollary 2.9. If G is a finite group in which G
′ ≤ L(G) = Z(G), then

LL(G) = Z(G).

Theorem 2.10. Let G be a finite p-group such that L(G) = Φ(G). Then
LL(G) ≤ Z(G).

Proof. Since G is a p-group, it follows that Φ(G) = G
′
Gp. Therefore, we have

L(G) = G
′
Gp, which implies that G

′ ≤ L(G). Then, the result is followed by
applying Lemma 2.8. �

Lemma 2.11. ( [1, Corollary 2.2]) If G is a finite group in which G
′ ≤ L(G)

and also Z(G) = L(G) is cyclic, then AutL(G) = Inn(G).

Recall that, a p-group G is called extra special if G
′

= Z(G) = Φ(G) and
Z(G) has order p. For a finite extra special p-group, the following result can
be derived by using Corollary 3.5 from [12].

Corollary 2.12. Let G be a finite extra special p-group. Then

(i) If p > 2, then LL(G) = G.
(ii) If p = 2, then LL(G) = Z(G).

Example 2.13. Let G = 〈x1, x2, x | [x1, x2] = xs (s 6= 1) , [xi, x] = 1, i = 1, 2〉.
Then LL(G) = Z(G) = 〈x〉.

Using Lemma 2.8 and Theorem 3.2 from [8 ] one obtains the next result.

Corollary 2.14. Let G be a non-abelian finite p-group. If G is autonilpotent
of class 2 and L(G) = Z(G) is cyclic, then LL(G) = Z(G).

3. Some results for absolute central automorphism

In this section, we delve into the properties of absolute central automor-
phisms, leveraging the concept of the autocentral kernel of a group. We be-
gin by establishing a property of autocentral automorphisms analogous to [7,
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Proposition 1], originally demonstrated by Moghaddam and Safa. It is impor-
tant to note that while the quotient group G/L(G) is not necessarily abelian,
the quotient group G/LL(G) is always abelian. This distinction arises from the
fact that LL(G) is defined as the autocentral kernel, which enforces a stronger
commutativity condition. Furthermore, when G is finite, the order of G/LL(G)
is strictly less than that of G/L(G), reflecting the refined structure captured
by the autocentral kernel. This inequality highlights that LL(G) is a larger
subgroup of G than L(G), thus providing a more precise measure of centrality
within the group. The fact that G/LL(G) is abelian, even when G/L(G) is not,
provides an important tool for analyzing the structure of non-abelian groups.
We will explore the implications of these properties in the subsequent results.

Theorem 3.1. Let G be a group. Then AutL(G) ∼= Hom(
G

LL(G)
, L(G)).

Proof. Let g ∈ G and α ∈ AutL(G). By Definition 2.1, we have [g, α] ∈ L(G) so

the map fα :
G

LL(G)
−→ L(G) given by fα(gLL(G)) = [g, α] is a well-defined

homomorphism. To see this, consider g1, g2 ∈ G. If g1LL(G) = g2LL(G), then
g−12 g1 ∈ LL(G). Therefore, there exists l ∈ LL(G) such that g−12 g1 = l, and so
using Definition 2.1

fα(g1LL(G)) = [g1, α] = [g2l, α] = (g2l)
−1α(g2l) = l−1g−12 α(g2)α(l)

= g−12 α(g2)l−1α(l)

= g−12 α(g2)

= [g2, α] = fα(g2LL(G))

Now let g1, g2 ∈ G, then

fα(g1g2LL(G)) = [g1g2, α] = (g1g2)−1α(g1g2)

= g−12 g−11 α(g1)α(g2)

= g−11 α(g1)g−12 α(g2)

= fα(g1LL(G))fα(g2LL(G)).

Now, consider the map

ψ : AutL(G) −→ Hom(
G

LL(G)
, L(G))

α 7−→ fα

such that fα :
G

LL(G)
−→ L(G) given by fα(gLL(G)) = [g, α], for all g ∈ G.

We show that ψ is an isomorphism. Clearly, the map ψ is a well-defined
monomorphism. Therefore, it remains to verify that ψ is onto. For an arbitrary
element h of Hom( G

LL(G) , L(G)), consider the map β : G −→ G, defined by
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β(g) = gh(gLL(G)), for all g ∈ G. We will show that β ∈ AutL(G), and ψ(β) =
h. Clearly, β is well-defined homomorphism. To see that β is injective, let k ∈
kerβ, then β(k) = 1, which implies that kh(kLL(G)) = 1. Since h(kLL(G)) ∈
L(G),we conclude that, k ∈ L(G) ≤ LL(G). Therefore, we have 1 = β(k) =
kh(kLL(G)) = k. Thus, k = 1, as required. To prove that β is onto, first note
that, Imh ≤ Imβ. Now, for each g ∈ G,

g−1β(g) = g−1gh(gLL(G)) = h(gLL(G)) ∈ Imh ≤ Imβ.

Therefore, G = Imβ. Clearly, β is an autocentral automorphism of G and
ψ(β) = h, as desirable. �

Example 3.2. Let G ∼= C12. It is straightforward to verify that L(G) ∼=
C2, AutL(G) ∼= C2, and LL(G) ∼= C6. Therefore, we conclude that AutL(G) ∼=
Hom(

G

LL(G)
, L(G)).

It is evident that Inn(G) ⊆ AutL(G), when G/L(G) is abelian. In the
following, using Theorem 3.1 we will demonstrate that Inn(D8) ∼= AutL(D8).

Example 3.3. Let G ∼= D8. It is easy to verify that LL(G) = L(G) = Z(G) ∼=
C2. Therefore G/Z(G) ∼= C2×C2. Since G/Z(G) ∼= Inn(G) is abelian, we con-
clude that Inn(G) ⊆ AutL(G). Using Theorem 3.1, it follows that |AutL(G)| = 4
and hence Inn(G) ∼= AutL(G).

Some conditions under which the autocentral automorphism group is trivial
are stated below:

Theorem 3.4. Assume that G is a group in which L(G) is torsion-free. Then
AutL(G) is trivial if G/LL(G) is torsion.

Proof. Let g ∈ G. It is sufficient to show that α(g) = g, for each α ∈ AutL(G).
Since G/LL(G) is torsion, there exists some n ∈ N such that gn ∈ LL(G). Now,
consider the action of α on g :

α(g)n = α(gn) = gn

Note that g−1α(g) ∈ L(G) ⊆ Z(G). Therefore g−1α(g) commutes with α(g),
which implies that (g−1α(g))n = 1. On the other hand, since g−1α(g) ∈ L(G)
and L(G) is torsion-free, we must have g−1α(g) = 1. This completes the proof.

�

Theorem 3.5. Let G be a finite group. If (|G|, | G

LL(G)
|) = 1, then AutL(G) =

1.

Proof. By the way of contradiction, assume that AutL(G) 6= 1. This implies
that there exists a homomorphism f ∈ Hom( G

LL(G) , L(G)) such that Imf 6= 1,

using Theorem 3.1. Thus, (| G
LL(G) |, |L(G)|) = (|kerf ||Imf |, r|Imf |) 6= 1, which

is a contradiction as required. �
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Example 3.6. Let G ∼= C10. It is not difficult to verify that L(G) ∼= C2,
AutL(G) ∼= 1, and LL(G) = G. Thus C10 satisfies the conditions in Theorem
3.5.

Theorem 3.7. Let G be a finite p-group such that exp(
G

LL(G)
)|exp(L(G)).

Then

Hom(
G

LL(G)
, L(G)) ∼=

G

LL(G)

if and only if L(G) is cyclic.

Proof. Let G be a finite p-group such that exp( G
LL(G) ) divides exp(L(G)). If

L(G) is cyclic, then exp(L(G)) = |L(G)|. Since G/LL(G) and L(G) are both
abelian groups, the result follows from parts (1) and (4) of Lemma 1.3. Con-
versely, let Hom( G

LL(G) , L(G)) ∼= G
LL(G) . We proceed by contradiction. Sup-

pose that L(G) is not cyclic and let us assume that L(G) ∼= Cpi × B, where

exp(L(G)) = pi and B is a non- trivial abelian group. By Lemma 1.3 (2), we
can decompose the homomorphism group as follows:

Hom( G
LL(G) , L(G)) ∼= Hom( G

LL(G) , Cpi)×Hom( G
LL(G) , B).

By our assumption, we have G
LL(G)

∼= G
LL(G) ×Hom( G

LL(G) , B). It follows that

the homomorphism group Hom( G
LL(G) , B) is trivial. This leads to a contradic-

tion because B is assumed to be non-trivial. Therefore, L(G) is cyclic and the
proof is complete. �

Corollary 3.8. Let G be a finite p-group such that exp(
G

L(G)
)|exp(L(G)).

Suppose that L(G) is cyclic and G/L(G) is an abelian group. Then LL(G) =
L(G).

Proof. Let G be a finite p-group that G/L(G) is abelian and L(G) is cyclic.
Suppose that, exp( G

L(G) )|exp(L(G)). By invoking parts (1) and (4) of Lemma

1.3, we have Hom( G
L(G) , L(G)) ∼= G

L(G) . Since L(G) ≤ LL(G), it follows that

exp( G
LL(G) )|exp(L(G)).Using Theorem 3.7, we then obtainHom( G

LL(G) , L(G)) ∼=
G

LL(G) . Thus, G
L(G)

∼= G
LL(G) and by Theorem 3.1 and Proposition 1 from [7] we

conclude that L(G) = LL(G). �

Let CAutL(G)(Z(G)) denote the set of all absolute central automorphisms of
G that fix Z(G), elementwise.

In the following, we provide a structural property of CAutL(G)(Z(G)).

Theorem 3.9. Let G be a group. Then

CAutL(G)(Z(G)) ∼= Hom(
G

LL(G)Z(G)
, L(G)).
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Proof. For each α ∈ CAutL(G)(Z(G)), consider the map fα :

fα :
G

LL(G)Z(G)
−→ L(G)

gLL(G)Z(G) 7−→ [g, α]

Using the method from the proof of Theorem 3.1, it is not difficult to show
that fα is a homomorphism. Furthermore, the map Ψ : CAutL(G)(Z(G)) −→

Hom(
G

LL(G)Z(G)
, L(G)) defined by α 7−→ fα, is an isomorphism as required.

�

By applying Lemma 2.8 and Theorem 3.9, one can derive the following result.

Corollary 3.10. Let G be a group such that G/L(G) is an abelian group. Then

CAutL(G)(Z(G)) ∼= Hom(
G

Z(G)
, L(G)).
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