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ABSTRACT. The skewed and weighted distributions may be considered as
nice alternatives to fit a real data set in practical situations in which the
well-known distributions are not suitable. The weighted distributions are
first discussed and then two extensions of weighted models are proposed
in this paper to analyze the skew data. The flexibility of the models is
studied in view of the moment skewness coefficient for some cases. Fi-
nally, two real data sets are used to illustrate the results of the paper.
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1. Introduction

The weighted distributions are generally used in the statistical modelling of
data that some parts of them are missed or an unequal-chance sampling process
is performed. The main idea of using weighted models was first expressed by
Fisher [11] and then formally defined by Rao [28]. Weighted distributions were
proposed to model the sampling methods in which the sampling probabilities
are proportional to a weighted function. Using the theory of weighted distribu-
tions, flexibility of a distribution can be increased by considering an appropriate
weight. The random variable X with probability density function (pdf) f(-) is
said to have the structure of a weighted model if it has the following pdf

w(z)f(x)
where w(z) is a weight function with finite expectation, F{w(X)] < co. The
weighted models with w(z) = ¢(F(x)) are of great importance, where F(+) is
the cumulative distribution function (cdf) of the underlying population.

The proportional hazard rate is a well-known special case of a weighted
model with w(z) = [F(x)]*. This model is also known as an o model in the
literature. Similarly, the proportional reversed hazard rate models is derived by
taking w(x) = [F(z)]*. Asa more general weighted model Jones [21] considered
a model with weight w(z) = (F(2))*"'(1 — F(z))*~!. In Jones model, if a = i
and b = (n—i+1), the distribution of the ith order statistic in the sample of size
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n is obtained. Many authors have studied special cases of the Jones model by
using specific distributions instead of F'(x). Nadaraja and Kotz [26] introduced
the exponential beta model by considering the exponential distribution. Also,
the beta-normal model is obtained by considering F'(x) as the cdf of standard
normal distribution; see Gupta and Nadaraja [13]. On the other hand, in the
situations in which the observations are skewed, a more flexible distribution
may be created by adding the appropriate weight to a symmetric distribution.
Azzalini [5] introduced the skew-normal (SN) distribution with pdf

(2) f(@;A) = 20(x)2(A\z), 2 € (—00,00),

where ¢(-) and ®(-) stand for the pdf and cdf of standard normal distribution,
respectively, and A is a tuning parameter of skewness. Indeed, the distribution
(2) follows a weighted model (1) with w(xz) = 2®(Az). Many authors have
introduced new models of skew distributions by considering different weight
functions. For example, Arellano-Valle [2] proposed the skew-generalized nor-
mal distribution by taking w(x) = @(ﬁ) The Kumaraswamy skew-
normal distribution was introduced by Mameli [23]. Beranger et al. [8] studied
some properties of the univariate extended SN distribution. Recently, some
inferential analyses have been derived by some authors. Gui and Guo [14]
considered the problem of estimating the location and scale parameters of the
SN distribution. The Fisher information in order statistics of SN distribution
was investigated by Hasanalipour and Razmkhah [15]. Testing skew-symmetry
based on extreme ranked set sampling was also discussed by Hasanalipour and
Razmkhah [16]. A more detailed literature review is presented in the next
section.

Based on the idea of weighted distributions, two new models are proposed in
this paper to deal with the skew data. These model put a specific pdf together
with a different cdf in two various approaches. The first one looks like model
(2), though, the second investigates that if a proportional hazard rate model
might be used as an alternative of a skew distribution. This motivates us
to study these two special weighted model as candidates for skew data. Their
flexibility in skewness is investigated in detail when the underlying distributions
are normal, Laplace or logistic.

The rest of the paper is organized as follows. A literature review of the
relationship between weighted models and skew distributions is proposed in
Section 2. Two extensions of weighted models are discussed in Section 3. To
illustrate the results of the paper, a real data set is analyzed in Section 4.
Eventually, some conclusions are stated in Section 5.

2. A literature review of weighted models and skew distri-
butions

Most of proposed skew-symmetric distributions belong to class of weighted
distributions. The weighted density functions of a number of skew models with
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different weights are given in Table 1. In this table, the ¢(:) and ®(-) stand for
the pdf and cdf of standard normal distribution, respectively.

It is of great importance to note that there are different approaches to de-
fine a suitable weighted distribution for skew data. For example, Beta-skew
distributions are derived by substituting skew distributions as F(z) in Jones
model. Mameli and Musio [24] studied the beta skew-normal distribution with
parameter A which has the pdf below

(®(x; )\))a_l(l — & (x; )\))b_l(b(x)q)()\x), a,b> 0.

2
B . —
g@(w;)\) (x7 )‘7 a, b) - B(a, b)

The beta skew-generalized normal distribution was introduced by Hasanalipour
et al. [17] with the pdf

2 a—1 b—1
Iz ) (T3 A1, Az, a,0) = m(@(:c;Al,Az)) (1= ®(x5M1,)2))
X ()b (— L

T )\29:2)7

where A\; and A; are the skewness parameters. Also, Basalamah et al. [7]
introduced the beta skew-t model with pdf

1
B(a,b)
where f(z;A,7) and F(x; A\, r) are the pdf and cdf of the t-student distribution
with r degrees of freedom, respectively. Aleem et. al [1] introduced a class
of Modified weighted Weibull distribution and its properties. A Brief review,
perspective and characterizations of weighted distributions was introduced by
Saghir et al. [30]. Moreover, the alpha-skew and the alpha-beta-skew distribu-
tions are obtained by taking w(x) = (1—ax)?+1 and w(z) = (1—ax—B23)?+1
in model (1), where o and § are real-valued parameters. Recently, Das et al. [9]
introduced a new flexible alpha-skew normal distribution. Also, Hazarika et
al. [19] proposed a multimodal alpha-skew normal distribution.

In the next section, we first propose two new extensions of weighted models
which are useful for the skew data, then, their flexibilities are compared in view
of skewness criterion.

flx; A r,a,b) = Fla A r)Fe (@A) (1= Fa; A, )Y,
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3. Models’ description and their properties

Here, two weighted models are proposed which are useful in dealing with the
skew data. Assume X has the pdf f(-), and G(-) is any continuous cdf. Let us
define two extended weighted models with pdfs

_ fl2)G(Az)

and
by
(W g, ) = LUEW)

)
E((Gx)*)
which are correspond to the weight functions wi(z) = G(Az) and we(x) =

((G(x)))\, respectively. By substituting the cdf and pdf of different distribu-
tions instead of G(-) and f(-), a class of weighted distributions is created. The
SN distribution, introduced by Azzalini [5] is obtained by taking f = ¢ and
G = ® in the model (3), where ¢(-) and ®(-) are the pdf and cdf of standard
normal distribution, respectively. Also, in a special case where the pdf f(-) is
the derivative of the cdf G(+), the model (4) for A > 0 turns into a class of pro-
portional reversed hazard rate distributions. Therefore, the proposed models
are in fact some generalizations of proportional hazard rate model and skew-
symmetric distributions. To compare the flexibility of the proposed models in
view of skewness, the moment coefficient of skewness is used. For the weighted
random variable X,, by weight w(-), this criterion is defined as

(5) Sl = E(W)

Ow

where u,, and o, are mean and standard deviation of X,,, respectively. So,
the skewness of the models (3) and (4) are denoted by S, (A) and Sy, (A),
respectively.

Note that the pdf f(-) and cdf G(-) of either symmetric or asymmetric dis-
tributions may be used in the models (3) and (4). So, different cases are
investigated in the sequel.

3.1. Symmetric underlying distributions. Here, some weighted distribu-
tions based on symmetric underlying distributions are studied. Consider the
normal, Laplace and logistic distributions with the pdfs

1 _7}2

filz) = ¢(I):me’7, r€R
fo(z) = %ef‘mh reR
fa@) = —% _ weR

(1+e2)2’
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respectively. Note that these distributions are all symmetric with different
heavy tails. At first, we assume that both of f(-) and G(-) in the models (3)
and (4) are the pdf and cdf of the same distribution. It is of interest to find how
the parameter A affect on the model skewness. Figure 1 shows the behavior of
Sw,(A) and S, (N) with respect to the variation of the parameter A when f(-)
and G(-) are both follow normal, logistic or Laplace distributions.

S_WKR)

'

— i) K « ,

- w2fx) ; ;
/

S i)

S_wz)

FIGURE 1. Skewness of the weighted models (3) and (4) when f(-)
and G(-) follow normal (left), logistic (middle) or Laplace (right)
distributions.

From Figure 1, the following results are deduced for the case that both f(-)
and G(-) follow the same distribution:

For all cases, the S, (\) is an odd function. More precisely, for A > 0
(A < 0) the model (3) is skew to the right (left), and the absolute
skewness is the same when A takes away from zero to either left or
right.

In the model (4), the sign of the parameter X is not directly influenced
on the positive or negative values of skewness. That is, sometimes
model skewness is negative (positive) for A > 0 (A < 0).

For negative values of A, the model (4) is not flexible such that S,,, (A) —
0 when A — —oo0.

In models (3) and (4), when the pdf and cdf of the normal distribution
are used as f(-) and G(-), respectively, we have Sy, (A) > Sy, (), at
least for positive values of A. This means that the skewness of model
(4) is greater than model (3) for A > 0. But for Laplace and logistic
distributions, Sy, (A) > Sy, (A) for A > 1.

When | A |= oo, the amount of skewness for both models tends to a
constant limit.

To more investigations about the flexibility of the proposed models, let us
determine the range of skewness of each model by the following interval

(5h52) = (i S, 0.5 8,00
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where Sy, (A\) is computed using (5). The range of skewness are reported in
Table 2, for some choices of f(-) and G(-).

Table 2. The range of skewness of the models (3) and (4) for some choices of f(-)

and G(-).

GO 70 &, 50 (& 50)
Normal Normal (-0.995, 0.995) (-0.931, 2.530)
Normal Logistic (-1.540, 1.540) (-0.062, 2.735)
Normal Laplace (-2, 2) (0, 3.110)
Logistic Normal (-0.995, 0.995) (-0.223, 3.212)
Logistic Logistic (-1.540, 1.540) (-0.125, 2.924)
Logistic Laplace (-2, 2) (0, 3.523)
Laplace Normal (-0.995, 0.995) (-0.314, 2.747)
Laplace Logistic (-1.540, 1.540) (-0.165, 2.825)
Laplace Laplace (-2, 2) (0, 3.264)

Since the models may be constructed based on different choices of pdfs and
cdfs, to simply interpret the results the length of skewness interval is denoted by
LS(disty,disty) when the pdf of distribution dist; and the cdf of distribution
disty are used in a given model. Also, Nor, Lap and Log stand for normal,
Laplace and logistic distributions, respectively. From Table 2, the following
results are obtained:

In model (3), when wy () = G(Ax), for fixed G(-), the range of skewness
changes by varying f(-), but, this interval remains the same by varying
G(-) when f(-) is fixed. Moreover, the flexibility of model (3) by using
the pdf of Laplace distribution is more than logistic, and it is more
than normal distribution. Precisely,

LS(NOT, Nor) = LS (Nor7 Log) = LS (Nor, Lap) ,
LS(Log, Nor) = LS (Log, Log) = LS (Log, Lap) ,
LS (Lap, Nor) = LS (Lap, Log) = LS’(Lap, Lap) ,
LS (Lap, Nor) > LS (Log, Nor) > LS (Nor, Nor) .

In model (4), when wy(z) = G*(z), for fixed G(-), using the pdf of
normal distribution provides more flexibility in skewness compared to
pdfs of logistic and Laplace distributions.

For the skew-to-right data, using the pdf of Laplace distribution along
the cdf of either normal, logistic or Laplace distribution in model (4)
may lead to a suitable skew model.

e For the skew-to-right data, model (4) is more flexible than model (3).
e The range of skewness in model (3) is symmetric around zero, but in

model (4) it is asymmetric and tends to positive values.

Figures 2-4 show the plots of pdfs of skew distributions introduced in Table
2 for some choices of skewness parameter A based on models (3) (left plots) and
(4) (right plots) when G(+) is the cdf of normal, logistic or Laplace distributions,
respectively. The figures show that by increasing the skewness parameter,
model (4) is more flexible than model (3) for the skew-to right data.
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FIGURE 2. Plots of pdf of skew distributions introduced in Table
2 based on modes (3) (left) and (4) (right) when G(-) is the cdf of
normal distribution.

3.2. Asymmetric underlying distributions. Here, we investigate about
how the amount of skewness will change in models (3) and (4) when either
f(-) or G(+) are the pdf or cdf of asymmetric distributions, respectively. To-
ward this end, we consider the standard exponential and Weibull distributions
with the pdfs

e >0, . 2336_"2, x>0,
f4(m)_{ 0, =<0 andff’(f”)_{ 0, =<0,
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FIGURE 3. Plots of pdf of skew distributions introduced in Table
2 based on modes (3) (left) and (4) (right) when G(-) is the cdf of
logistic distribution.

respectively. Then, the following three cases are studied:

Case I f(-) is a symmetric pdf and G(-) is the cdf of an asymmetric distribu-
tion.

Case II f(-) is an asymmetric pdf and G(-) is the cdf of a symmetric distribu-
tion.

Case III f(-) and G(-) are both the pdf and cdf of asymmetric distributions,
respectively.
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FIGURE 4. Plots of pdf of Skew distributions introduced in Table
2 based on modes (3) (left) and (4) (right) when G(-) is the cdf of
Laplace distribution.

Table 3 shows ranges of skewness of models (3) and (4) for the Case I for
different choices of f(-) and G(-). From this table, it is observed that:
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e For fixed G(-) (either exponential or Weibull), the length of skewness
range for model (3) by using the pdf of Laplace distribution as f(-) is
larger than logistic and it is larger than normal distribution. That is,

LS(Lap, Exp) > LS(Log,E:Ep) > LS(Nor, Exp),
LS(Lap, Wei) > LS(Log,Wei) > LS(NOT, Wei),

where Fxp and Wei stand for exponential and Weibull distributions,
respectively.

e The range of skewness of model (3) is symmetric around zero, though,
it is totally positive for model (4). So, it is suggested to use model (4)
if the data are skew-to-right.

e For fixed f(-), there is not a significant difference between using either
exponential or Weibull distribution as G(-) in model (3), though, using
exponential distribution as G(-) in model (4) is more flexible than using
Weibull distribution.

Table 3. The range of skewness of models (3) and (4) for Case I.

G() O (Shy:Su, (Sty:Suy
Exponential Normal (-1.004, 1.004) (0, 3.713)
Weibull Normal (-1.022, 1.022) (0, 2.834)
Exponential Laplace (-2, 2) (0, 3.640)
Weibull Laplace (-2, 2) (0, 3.110)
Exponential Logistic (-1.555, 1.555) (0, 2.972)
Weibull Logistic (-1.586, 1.586) (0, 2.798)

The ranges of skewness values of models (3) and (4) for the Case II are
shown in Table 4. From this table, the following results are observed
e The length of skewness interval for model (3) is more than model (4).
In other words, the model (3) is more flexible than model (4).
e For model (3), we get

LS(Exp, Lap) > LS (Exp, Nor) > LS(E:rp, Log),

LS(W&i,NOT) > LS(Wei,Lap) > LS(Wei,Log).
e For model (4), we have

LS(E;L‘p, Log) > LS’(E:Cp, Lap) > LS(Exp, Nor),

LS(Wei, Log) > LS(W@Z’, Nor) > LS(Wei, Lap).

e Using the pdf of weibull distribution and the cdf of normal distribution
in model (3), creates the most flexibility in the model skewness. Also,
in model (4), the most flexibility is related to the use of the pdf of
exponential distribution and the cdf of logistic distribution.

e The ranges of skewness in both of models (3) and (4) are asymmetric

around zero and tend to positive values. This is because an asymmetric
pdf is used as the pdf f(-) in these models.
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Table 4. The range of skewness of models (3) and (4) for Case II.
T

70 0 &, 50 L5

Exponential Normal (-0.450, 4.981) (-0.573,2.524)
Exponential Laplace (-0.436,5.640) (-0.595,2.638)
Exponential Logistic (-0.402,4.637) (-0.606,2.826)
Weibull Normal (-0.995,5.933) (-0.989,1.797)
Weibull Laplace (-0.992,5.132) (-0.833,1.997)
Weibull Logistic (-0.997,4.771) (-0.986,2.269)

From Table 5, which shows skewness values for the Case III, it is seen that:

e For fixed f(-) and G(-), the length of skewness interval in model (3)
is larger than model (4). That is, the model (3) is more flexible than
model (4).

e For all pairs of (f(-),G()), models (3) and (4) both may be used for
either skew-to-right or skew-to-left data, however, they show more flex-
ibility for skew-to-right data.

The behavior of the skewness ranges in Tables 3 to 6 show that if a symmetric
pdf f(-) is used in model (3), the skewness range of the model is also symmet-
ric when G(-) is either symmetric or asymmetric. We prove this fact in the
following theorem. Further, we show that S, (A) is an even function.

Table 5. The range of skewness of models (3) and (4) for Case III.

70 a0 GG GG

Exponential Exponential (-0.319,4.224) (-0.500,2.868)
Exponential Weibull (-0.335,4.137) (-0.565,2.823)
Weibull Exponential (-0.974,3.184) (-0.993,2.602)
Weibull Weibull (-0.995.5.666) (-1.010,2.049)

The plots of pdfs of skew distributions in models (3) and (4) with the pdfs
and cdfs as introduced in Tables 3-5 may be plotted similar to Figures 2-4,
which are omitted from here to avoid similarity.

Theorem 3.1. Assume that in model (3), f(-) is a symmetric pdf around zero.
For any continuous cdf G(-), we have

Sw1 (>‘) = S'LUI (_)‘)
where X is the model parameter, such that wi(x) = G(Ax).

Proof. Using (3) and (5), we get

(e W)Y F@)C0)
(6) S = [ (%(A) ) ) g,

— 00

where
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Note that ¢(\) is an even function when f(-) is symmetric, because

vy = f T G f(a)de

| cowicna

/ GO )y
b,

Similarly, it can be shown that

fow, (=) = /Z xf(z)((i()\;)m)dx

_ [T (=GO
-/ Y
* yfy)Gy)
-

= _:uwl(/\)v

where the third equality is obtained from the symmetry of f(-) and evenness
of (). So, fiw, (A) is an odd function. Therefore,

AN = [ (e maen) TOEE D
= /jo < — Y~ My (/\)> f(;i)_ci\(;y) dy
= - /_ N (y—uwl(k)) f(ylz)g())\y)dy
= 02,0
That is, o7, (A) is also an odd function. Using (6) and transforming y = —z,

it can be shown that

S, (V)

[ sy scascon,
- B _ 3 _
[ () s

— 00

— 00

= Su(=A).

Hence the proof is complete. O
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4. Application to real data sets

In this section, two real data sets are used to illustrate the proposed mod-
els. The strategy is to use the proposed weighted models for skew-symmetric
models.

4.1. Strength of carbon fibers data. The first data set is originally con-
sidered by Badar and Priest (1982). These data contain the strength of single
carbon fibers. Single fibers were tested under tension at gauge lengths of 1, 10,
20 and 50 mm. Here, we consider the single fibers data set of 10 mm in gauge
lengths with sample size 63. The data are as follows:

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474,
2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738,
2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145,
3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435,
3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,
4.225, 4.395, 5.020.

The sample mean, variance and skewness are 3.0593, 0.3855 and 0.6278, respec-
tively. So, the data are skew to the right. Gupta and Kunda (2010) showed that
skew-logistic distribution is appropriate for these data. From Table 2, it was
deduced that there is no difference in flexibility of models (3) and (4) if the cdf
of logistic, Laplace or normal distributions are used as G(+) in these models. So,
we fix to use the cdf of logistic distribution and investigate the pdf of logistic,
Laplace and normal distributions as f(-) in these models. Since the support
of all symmetric distributions in Table 2 are real line, the studentized data
are used to get better fitted distribution. To compare the performance of the
proposed weighted models, values of parameter estimate 5\, and some goodness
of fit criteria such as AIC (Akaike Information Criterion), KSS (Kolmogorov-
Smirnov statistic), the p-value are presented in Table 6. Moreover, the inverse
of observed Fisher information measure 1 ’1(5\) has been reported in Table 6 as
an approximation to the variance of MLE. Note that under regularity condi-
tions, the MLE is asymptotically normal with mean equal to the true parameter
and variance given by the inverse of the Fisher Information. Further, the Q-Q
plots for all different cases discussed in Table 6 have been drawn in Figure 5.

Table 6. Some goodness of fit criteria for strength of carbon fibers data and some choices of f(-)

in Models (3) and (4).

Model ) ) I=t(\) AIC KSS  p-value
Log 0.00008 0.1149 204.6037 0.1694 0.0475
Model (3) Lap 2.28417  0.2808 189.6569 0.1448 0.1291
Nor 0.00006 0.6423 179.7863 0.0971 0.5592
Log 0.24382 0.1200 201.8116  0.2087 0.0069
Model (4) Lap 2.24381 0.0773 201.8116  0.2087 0.0069
Nor 0.00772 0.5136 179.7853  0.0985 0.5407

From Table 6 and Figure 5, it is observed that using the pdf of normal distri-
bution along with the cdf of logistic distribution in model (3) provides the best
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fit among all other cases. However, using the same pdf and cdf in model (4)
does not lead to a significant difference.

Q-Qplotfor g_1(x, 1) when (fG) is (Log, Log) Q-Q plot forg_1(x, 1) when () is (Lap, Log) Q-Qplot forg_1(x, 1) when (£.G) is (Nor, Log)
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FIGURE 5. Q-Q plots of skew distributions based on models (3)
and (4) for the strength of single carbon fibers data.

4.2. Breaking stress of carbon fibers data. The second data set is ob-
tained from Nichols and Padget (2006). These data, as presented below, include
100 observations on breaking stress of carbon fibers.

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,3.22,
1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67,
2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35,
2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83,1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76,
4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00,1.22, 1.12, 1.71,
2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48,
0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82,
2.05, 3.65.

The sample mean, variance and skewness are 2.6214, 1.0279 and 1.0138, re-
spectively. So, these data are skew to the right. Hassan and Abd-Allah (2018)



368 P. Hasanalipour, M. Razmkhah, G.R. Mohtashami Borzadaran

fitted the exponentiated-Lomax distribution to them. Now, we compare the
performance of some weighted models for these data when f(-) or G(-) are the
pdf and cdf of either a symmetric or an asymmetric distribution. The logistic,
Laplace and normal distributions are used as some candidates for symmetric
distributions and exponential distribution is considered as an asymmetric dis-
tribution. The results for the Weibull distribution are similar and so they are
omitted. Values of parameter estimate 5\, the inverse of observed Fisher infor-
mation and some goodness of fit criteria are presented in Table 7. Moreover,
the Q-Q plots for all different cases have been drawn in Figure 6.

Table 7. Some goodness of fit criteria for breaking stress of carbon fibers data for some choices
of f(-) and G(+) in Models (3) and (4).

Model ) G() X I~1()) AIC KSS p-value
Exp Log 0.94967 0.2559  473.6023 0.59741  0.00000

Exp Lap 0.57997 0.1489  478.3610 0.60438  0.00000

Model (3) Ezp Nor 0.58243 0.2170  471.8882 0.59502  0.00000
Log Ezp 0.10005 0.0288  321.8044 0.22991  0.00005

Lap Exp 1.00644 0.0190 381.0012 0.33162 0.00000

Nor Exp 0.00006 0.0571  615.4765 0.57843  0.00000

Exp Log 10.58986  0.5970  292.8269 0.12008 0.11180

Exp Lap 15.49155 0.7451 292.2572 0.09723 0.30123

Model (4) Ezp Nor 16.35712 1.0513 299.042 0.16911  0.00656
Log Exp  5.29202 2.0802  293.4271 0.09632 0.31160

Lap Exp 1.82942 2.4125 375.7508 0.38978  0.00000

Nor Exp 15.64054 4.9164 414.1316 0.31276 0.00000

From Table 7 and Figure 6, we can see that the model (4) with (f,G) =
(Exp, Lap) or (Log, Exp) may be suggested as an almost suitable distribution
for the data.

5. Conclusions

In this paper, the use of weighted distributions for modelling skew data was
investigated. First, a literature review regarding relationship between weighted
models and skew distributions was presented. Then, two weighted models were
proposed and their flexibility were discussed for some special cases. The results
of the paper are summarized as follows:

e In model (3), for fixed G(-), the range of skewness changes by varying
f(-), but, it remains the same by varying G(-) when f(-) is fixed.

e For the skew-to-right data, model (4) is more flexible than model (3).
So, it is suggested to use model (4) if the data are skew-to-right.

e For a symmetric pdf f(-) and any continuous cdf G(-) (symmetric or
asymmetric), the range of skewness in model (3) is symmetric around
zero, but in model (4) it is asymmetric and tends to positive values.

e The skewness range of model (3) is symmetric if a symmetric pdf f(-)
is used in the model regardless that G(-) is either symmetric or asym-
metric.

e Using the pdf or cdf of either symmetric or asymmetric distributions in
models (3) and (4) may be used for either skew-to-right or skew-to-left
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FIGURE 6. Q-Q plots of skew distributions based on models (3)
and (4) for breaking stress of carbon fibers data.
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data, however, using asymmetric distributions shows more flexibility
for skew-to-right data.

e Two real data sets were studied to show the performance of the pro-
posed models. In the first data set, both models could be appropriate.
However, only model (4) provided a reasonable fit for the second data
set.

Some properties of the proposed weighted model may be considered as future
research works. For example, the Fisher information or entropy of these models
as well as their order statistics may be investigated. Also, estimating the
unknown parameters and testing hypotheses may be of great importance.
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