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Abstract. The quality of some processes is defined by a simple linear
function between a response and an explanatory variable, which is named

a simple linear profile. Various capability indices have been introduced in

the literature for these processes. Some of them are functional, that use
all domain of the explanatory variable instead of its levels values. There-

fore, these methods may fail to account capability of the process and

overstate it. This paper applies fuzzy logic to deal with the explanatory
variable domain and introduces two capability indices. Then, investigates

and compares the performance of the proposed indices and some existing

ones, using a simulation study. Results show that one of the new pro-
posed indices has the best performance based on the mean square error

and mean absolute error criteria.

Keywords: Simple linear profile, Functional capability indices, Fuzzy logic,

Simulation study.
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1. Introduction

In some processes, the quality of the product is characterized by a simple lin-
ear relationship between the response variable and an explanatory/independent
variable, such a simple linear regression model. This kind of model is called a
simple linear profile.

In the literature, numerous studies have been conducted on process capabil-
ity indices for simple linear profiles. Shahriari and Sarrafian [19] proposed a
basic method to measure the capability of simple linear profiles. Hosseinifard
and Abbasi [9] used the proportion of the non-conformance criterion to estimate
the process capability index in a simple linear profile and investigated it for
both fixed and random explanatory variable with constant and functional spec-
ification limits. In another work, Hosseinifard and Abbasi [10] considered non
normal linear profiles and investigated and compared five methods to estimate
the process capability index.

Ebadi and Shahriari [8] proposed two methods for measuring the process
capability. The first one uses the percentage of nonconforming parts produced
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at each level of the independent variable and the second one is a multivariate
process capability approach with three components based on the vector of the
predicted responses. Wang [21] provided an exact measure of the process yield
for a simple linear profile and obtained its lower confidence bound. In another
research [22], he developed two new indices for measuring the process yield for
simple linear profiles with one-sided specification, and obtained the asymptotic
distribution of the estimated index and also, the approximate lower confidence
bound for the true process yield. Wu [23] employed two-dimensional predictions
of the slope and the intercept, and applied a multivariate process capability
index based on a vector of three components to assess the process capability in
a simple linear profile.

Ebadi and Amiri [7] considered several correlated quality characteristics and
proposed three methods for measuring process capability in multivariate simple
linear profiles. Abbasi Ganji and Sadeghpour Gildeh [4] introduced a new
capability index for simple linear profile.

Nemati Keshteli et al. [15] proposed a functional approach to measure the
process capability of simple linear profile in all ranges of explanatory variable.
This approach uses a reference profile, functional specification limits and func-
tional natural tolerance limits to present a functional form of process capability
indices. They used a non-conforming proportion method to make a comparison
study and show the better performance of their proposed indices. Because using
the proposed approach, all information in the entire range of the explanatory
variable is utilized. Pakzad et al. [16] developed traditional loss-based indices
using a functional approach and introduced two capability indices and by a
simulation study, showed that the proposed indices perform better than the
other one. Some recent studies in this field are [5], [12], [17], [24].

All available functional indices use the entire domain of the explanatory vari-
able, which may fail to account the capability appropriately and overestimate
it. To overcome this problem, in the present paper, fuzzy logic is applied. The
motivation is that all explanatory variable domain values should not get the
same attention, so the scheme is the most weigh is considered for the levels
values and other weighs are concerned with other values between levels values.
In capability indices formulas, fuzzy numbers are used instead of crisp numbers
to set membership grade as 1 for levels values and membership grades less than
1 for other values in explanatory variable domain.

Fuzzy numbers are necessary for physical measurements. The objective of
fuzzy logic control (FLC) systems is to control complex processes by means
of human experience. These systems are designed for the control of technical
processes. The complexity of these processes range from cameras and vacuum
cleaners to cement kilns, model cars, and trains. [26]

The structure of the rest of the present paper is outlined as follows. In the
following section, preliminary of capability indices for simple linear profile is
presented. Fuzzy set theory and some basic definitions are reviewed in Sec-
tion 3. Section 4 introduces a new functional capability index. Two functional
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capability indices based on fuzzy logic are recommended in Section 5. Simula-
tion study is carried out to make comparisons among the proposed indices and
some existing ones in Section 6. Section 7 provides a method for detecting
the appropriate sample size. Section 8 presents an example to illustrate the
applicability and effectiveness of the proposed index. Finally, conclusions are
given in the last section.

2. Capability indices for simple linear profile

Let (xi, yij); i = 1, 2, ..., k be the observations for the jth sample collected
over time. In fact, k random samples of size n, for k fixed x points, are available.
Furthermore, it is assumed that when the process is in statistical control, the
relationship between the response, independent variable and error terms can
be modeled by

(1) Yij = A0 +A1xi + εij ; i = 1, 2, ..., k , j = 1, 2, ..., n,

where, the slope and the intercept of the line, A0 and A1, are called the pa-
rameters of the model (profile coefficients) and the random errors εij ’s are
independent and εij ∼ N(0, σ2) [6]. The relation between the levels of inde-
pendent variables is similar to a process with multiple streams. A0 and A1 are
unknown and however, remain fixed. Then, we can estimate them by a0 and
a1 according to the sample observations as;

(2) Â0 = a0 =

∑n
j=1 a0j

n
, Â1 = a1 =

∑n
j=1 a1j

n
,

where,

(3) a0j = ȳj − a1j x̄, a1j =
Sxy(j)

Sxx
,

and ȳj =
∑k
i=1 yij/k, x̄ =

∑k
i=1 xi/k, Sxy(j) =

∑k
i=1(xi − x̄)yij , and Sxx =∑k

i=1(xi − x̄)2 [14].

Hence, we can write Ŷij = a0j +a1jxi, i = 1, 2, ..., k, where Ŷij denotes the
predicted value of the response variable from jth sample for a given level of x.

Furthermore, Ŷi = a0 + a1xi is the predicted value of the response variable for
a given level of the independent variable.

The unbiased estimator of σ2, the mean square error (MSE), is defined by

(4) σ̂2 = MSE =

∑n
j=1MSEj

n
,

where, MSEj =
∑k
i=1 e

2
ij/(k − 2), and eij = yij − Ŷij . Here eij is the residual

of the jth sample. For more information [6].
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2.1. Latest capability index. Abbasi Ganji and Sadeghpour Gildeh [1] in-
troduced a new class of generalized capability indices as follows:

(5) C
′′′

p (u, v) =
d∗ − uA∗

3
√
σ2 + vA2

; u, v ≥ 0,

where, d∗ = min{Dl, Du} with Dl = T − LSL, Du = USL− T , and

(6) A∗ =
(µ− T )2

Du
I{µ > T}+

(T − µ)2

Dl
I{µ ≤ T},

(7) A2 =
d2(µ− T )2

D2
u

I{µ > T}+
d2(T − µ)2

D2
l

I{µ ≤ T},

and d = (USL− LSL)/2, and the indicator function I{x} is defined as

(8) I{x} =

{
1;

0;

x ≥ 0,

x < 0.

Abbasi Ganji and Sadeghpour Gildeh [1], [4] proposed a new capability index
for a simple linear profile by setting u = v = 1. Similarly, in this paper, setting
u = v = 1, some new functional capability indices are introduced. Therefore,
the following index is obtained:

(9) C
′′′

pp = C
′′′

p (1, 1) =
d∗ −A∗

3
√
σ2 +A2

.

This index can be simplified as the following;

(10) C
′′′

pp =


d∗Du−(µ−T )2

3
√
σ2D2

u+d
2(µ−T )2

; µ > T,

d∗Dl−(T−µ)2

3
√
σ2D2

l +d
2(T−µ)2

; µ ≤ T.

Developing C
′′′

pp, a new functional capability index is introduced in section
4.

2.2. Some traditional functional capability indices. Nemati Keshteli et
al. [15] proposed a functional approach to measure the process capability index
of simple linear profiles in all ranges of explanatory variable. The functional
approach uses a reference profile, functional specification limits and functional
natural tolerance limits to present a functional form of process capability in-
dices. These functions are defined as follows:

(11) µY (X) = A0 +A1X,

(12)
LSLY (X) = A0l +A1lX, USLY (X) = A0u +A1uX, TY (X) = A0t +A1tX,

(13) LNTLY (X) = A0 +A1X − 3σ, UNTLY (X) = A0 +A1X + 3σ,

(14) DlY (X) = TY (X)− LSLY (X), DuY (X) = USLY (X)− TY (X),
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(15) dY (X) =
USLY (X)− LSLY (X)

2
.

Based on the LSL and USL of the dependent variable in each level of the
explanatory variable, two regression lines are obtained, so that A0l and A1l

are intercept and slope of regression line related to LSLs, respectively and
A0u and A1u are intercept and slope of regression line concerned with USLs,
respectively. Furthermore, A0t and A1t are intercept and slope of regression
line concerned with the target values.

Nemati Keshteli et al. [15] introduced two functional indices Cp(profile)
and Cpk(profile) as what follows;

(16) Cp(profile) =

∫
xk

x1
[USLY (X)− LSLY (X)]dX∫

xk

x1
[UNTLY (X)− LNTLY (X)]dX

,

and

(17) Cpk(profile) = min
{
Cpkl(profile), Cpku(profile)

}
,

where

Cpkl(profile) =

∫
xk

x1
[µY (X)− LSLY (X)]dX∫

xk

x1
[µY (X)− LNTLY (X)]dX

,

Cpku(profile) =

∫
xk

x1
[USLY (X)− µY (X)]dX∫

xk

x1
[UNTLY (X)− µY (X)]dX

.

Based on the sample gathered from the in-control process, all parameters of
the model are estimated and so, the above indices are estimated.

Pakzad et al. [16] suggested two functional indices Cpm(profile) and Cpmk(profile),
based on this scheme, as:

(18) Cpm(profile) =



∫
xk

x1
[USLY (X)−LSLY (X)]dX∫

xk

x1
[6

√
σ2+
(
µY (X)−TY (X)

)2
]dX

; TY (X) = MY (X),∫
xk

x1
[d∗Y (X)]dX∫

xk

x1
[3

√
σ2+
(
µY (X)−TY (X)

)2
]dX

; TY (X) 6= MY (X),

and

(19) Cpmk(profile) = min
{
Cpmkl(profile), Cpmku(profile)

}
,

in which,

(20) Cpmkl(profile) =

∫
xk

x1
[µY (X)− LSLY (X)]dX∫

xk

x1
[3

√
σ2 +

(
µY (X)− TY (X)

)2
]dX

,
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(21) Cpmku(profile) =

∫
xk

x1
[USLY (X)− µY (X)]dX∫

xk

x1
[3

√
σ2 +

(
µY (X)− TY (X)

)2
]dX

,

MY (X) =
(
LSLY (X) + USLY (X)

)
/2, and

d∗Y (X) = min
{(
TY (X)− LSLY (X)

)
,
(
USLY (X)− TY (X)

)}
.

These indices are estimated from the in-control process. Simulation study
concluded that the two indices Cpm(profile) and Cpmk(profile) perform better
than the indices Cp(profile) and Cpk(profile), in terms of mean square error
(MSE) and mean absolute error (MAE) [16].

Interpretation of these four functional indices are such as the traditional
ones. The process is considered as “capable” if the value of the functional
index is at least 1.

3. Preliminary concepts on fuzzy numbers

Fuzzy sets were introduced by Zadeh [25] to deal with the data and informa-
tion possess nonstatistical uncertainties. Fuzzy logic is a form of a many-valued
logic which deals with an approximating reasoning rather than a fixed and ex-
act one. Compared to traditional binary sets (where variables may take on true
or false values), fuzzy logic variables may have a true value that ranges from
0 to 1. Here, some basic definitions are presented that are mentioned in [2]
and [3], too.

Definition 3.1. (Fuzzy set) Suppose X is a nonempty set. A fuzzy set

(subset) Ã of X is described by its membership function µÃ : X → [0, 1] and

µÃ(x) is expressed as the degree of membership of element x in fuzzy set Ã for

each x ∈ X. This function is shown by Ã, that is Ã : X → [0, 1]. In the present
paper, the second notation is used.

Definition 3.2. (Support) Let Ã be a fuzzy set of X. The support of Ã,

denoted by supp(Ã), is defined as follows:

supp(Ã) =
{
x ∈ X|Ã(x) > 0

}
.

Definition 3.3. (Normal fuzzy set) A fuzzy set Ã of X is called normal if

there exists an x ∈ X that Ã(x) = 1. Otherwise, Ã is subnormal.

Definition 3.4. (α-cut) An α-level set of a fuzzy set Ã of X is a crisp set,

written by Ãα, and is defined by

Ãα =

{
{t ∈ X|Ã(t) ≥ α};

cl(suppÃ);

α > 0,

α = 0,

where, cl(suppÃ) is the closure of the support of Ã.
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Definition 3.5. (Convex fuzzy set) A fuzzy set Ã of X is convex if Ãα is a
convex subset of X, ∀α ∈ [0, 1].

Definition 3.6. (Fuzzy number) A fuzzy number Ã is a fuzzy set of the
real line with a normal, (fuzzy) convex and continuous membership function of
bounded support. The family of fuzzy numbers is denoted by F.

Definition 3.7. (LR fuzzy quantity) Any fuzzy quantity Ã is described as;

Ã(t) =


L(a−tα ); t ∈ [a− α, a],

1; t ∈ [a, b],

R( t−bβ ); t ∈ [b, b+ β],

0; otherwise,

where, L,R : [0, 1] → [0, 1] are continuous and non-increasing shape functions
which L(0) = R(0) = 1 and L(1) = R(1) = 0. This function is called LR-type

fuzzy quantity and denoted by Ã = (a, b, α, β)LR.

Definition 3.8. (Triangular fuzzy number) A fuzzy set Ã is called a tri-
angular fuzzy number, denoted by T (a, b, c), if its membership function is as
follows:

Ã(t) =


(t− a)/(b− a); a ≤ t < b,

(c− t)/(c− b); b ≤ t < c,

0; otherwise.

Definition 3.9. (Trapezoidal fuzzy quantity) A fuzzy set Ã is called a
trapezoidal fuzzy quantity, denoted by Tr(a, b, c, d), if its membership function
is as the follows:

Ã(t) =


(t− a)/(b− a); a ≤ t < b,

1; b ≤ t < c,

(d− t)/(d− c); c ≤ t < d,

0; otherwise.

It is noted that a fuzzy quantity has all properties of a fuzzy number with
at least one normal element.

4. New functional capability indix

In this section, a new functional capability index is recommended, which is
the extension of the index C

′′′

pp, mentioned in section 2.1. To introduce the new

capability index C
′′′

pp(profile), four situations are considered. The two cases
are that the mean line is parallel to the target line in the interval [x1, xk] and
the two other ones are that the mean line has an intersection with the target
line, somewhere between two points x1 and xk.
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For the first two ones, if the mean line is on the left side of the target line
in the interval [x1, xk], then it is concluded that µY (X) > TY (X), otherwise,

µY (X) < TY (X). Hence, the index C
′′′

pp.g(profile) is defined as:

(22)

C
′′′
pp(profile) =



∫
xk

x1

[
d∗Y (X)DuY (X)−

(
µY (X)−TY (X)

)2]
dX∫

xk

x1

[
3

√
σ2D2

uY
(X)+d2

Y
(X)
(
µY (X)−TY (X)

)2]
dX

; µY (X) > TY (X),

∫
xk

x1

[
d∗Y (X)DlY (X)−

(
TY (X)−µY (X)

)2]
dX∫

xk

x1

[
3

√
σ2D2

lY
(X)+d2

Y
(X)
(
TY (X)−µY (X)

)2]
dX

; µY (X) < TY (X).

If the mean and target lines intersect somewhere between two points x1
and xk, in other words µY (xm) = TY (xm), where xj ≤ xm < xj+1; j =
{1, 2, ..., k − 1}, there are two cases that are discussed as follows:
• Case 1. For x1 ≤ x ≤ xm, the process mean line is located on the left side

of the target line, that is, µY (X) > TY (X), and for xm < x ≤ xk, the mean
line is on the right side of the target line, i.e., µY (X) ≤ TY (X). Therefor, the
new index is obtained as the following;

C
′′′

pp(profile) =
C
′′′

pp(profile)[num1]

C ′′′pp(profile)[denum1]
,(23)

where,

C
′′′

pp(profile)[num1] =

∫ xm

x1

[d∗Y (X)DuY (X)−
(
µY (X)− TY (X)

)2
]dX

+

∫ xk

xm

[d∗Y (X)DlY (X)−
(
TY (X)− µY (X)

)2
]dX,(24)

and

C
′′′

pp(profile)[denum1] =

∫ xm

x1

[3

√
σ2D2

uY (X) + d2Y (X)
(
µY (X)− TY (X)

)2
]dX

+

∫ xk

xm

[3

√
σ2D2

lY (X) + d2Y (X)
(
TY (X)− µY (X)

)2
]dX.(25)

• Case 2. For x1 ≤ x ≤ xm, µY (X) ≤ TY (X), and for xm < x ≤ xk,
µY (X) > TY (X). Hence, the index is gain as:

(26) C
′′′

pp(profile) =
C
′′′

pp(profile)[num2]

C ′′′pp(profile)[denum2]
,
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that

C
′′′

pp(profile)[num2] =

∫ xm

x1

[d∗Y (X)DlY (X)−
(
TY (X)− µY (X)

)2
]dX

+

∫ xk

xm

[d∗Y (X)DuY (X)−
(
µY (X)− TY (X)

)2
]dX,(27)

and

C
′′′

pp(profile)[denum2] =

∫ xm

x1

[3

√
σ2D2

lY (X) + d2Y (X)
(
TY (X)− µY (X)

)2
]dX

+

∫ xk

xm

[3

√
σ2D2

uY (X) + d2Y (X)
(
µY (X)− TY (X)

)2
]dX.(28)

First of all, all model parameters should be estimated from the in-control
process and then, the index C

′′′

pp(profile) is estimated. The process is supposed

to be “capable” if Ĉ
′′′

pp(profile) ≥ 1.

5. New fuzzy-based functional capability indices

In the simple linear profile processes the explanatory variable is assumed to
have k levels with fixed values x1, x2, ..., xk. Nevertheless, the traditional and
new functional indices use the entire domain of the explanatory variable. In
other word, for calculating these indices, integration domain is [x1, xk], that
uses all values between these levels.

Further explanation is that the level i has the crisp value equal to xi, for
i = {1, 2, ..., k}, while the functional indices use all values in ranges [xi, xi+1]
for i = {1, 2, ..., k−1} instead of xi. More illustrated that although more focus
should be on values x1, x2, ..., xk and less focus for the other numbers in range
[x1, xk], the same focus is given to all numbers. It means the weigh of all
values in [x1 xk] is equal to 1. To overcome the drawback of this issue, the
use of fuzzy numbers/quantities x̃i; i = {1, 2, ..., k} instead of xi is suggested.
In this way, the maximum weigh, equal to 1, is given to the values x1, x2, ...,
xk, and other numbers have less weigh.

The scheme is that the explanatory variable levels is set to x̃1, x̃2, ..., x̃k,
which is equivalent to approximately x1, approximately x2, ..., approximately xk.
It should be mentioned that these fuzzy numbers are used only for capability
indices calculations, not in general. Because of the wide field of applications of
triangular fuzzy numbers, this research is based on these numbers. To detect
support of fuzzy numbers, first the following values should be obtained first.

ai =
xi − xi−1

2
, bi =

xi+1 − xi
2

; i = 2, 3, ..., k − 1

and ak = bk−1, b1 = a2. Then, fuzzy numbers x̃1, and x̃k are defined as:

(29) x̃1 =

{
x1+b1−x

b1
; x1 ≤ x < x1 + b1,

0; otherwise,
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and

(30) x̃k =

{
x−xk+ak

ak
; xk − ak < x ≤ xk,

0; otherwise.

Other levels fuzzy numbers, for i = {2, ..., k − 1}, are obtained as what
follows;

(31) x̃i =


x−xi+ai

ai
; xi − ai ≤ x < xi,

xi+bi−x
bi

; xi ≤ x < xi + bi,

0; otherwise.

It should be noted that due to the preference of the traditional index Cpmk
index over the indices Cp, Cpk, and Cpm, here a functional index based on
fuzzy logic is introduced according to this index. Furthermore, As shown in
the paper [1], the class of capability indices C

′′′

p (u, v) performs better than the
other traditional indices, in expressing process capability. Therefore, the index
C
′′′

pp has the better performance than the other ones. For this reason, functional
and fuzzy-based functional indices according to this index are proposed, too.
In addition, the performance of two introduced fuzzy-based functional indices
is studied comparatively with the performance of functional indices.

5.1. Fuzzy-based functional index Cpmk.g(profile). Now, based on the
functional capability index Cpmk(profile), presented in section 2.2, the fuzzy-
based functional capability index Cpmk.g(profile) is introduced as the follow-
ing;

(32) Cpmk.g(profile) = min
{
Cpmkl.g(profile), Cpmku.g(profile)

}
,

that

(33) Cpmkl.g(profile) =

∑k
i=1

∫
xk

x1
x̃i[µY (X)− LSLY (X)]dX∑k

i=1

∫
xk

x1
[3x̃i

√
σ2 +

(
µY (X)− TY (X)

)2
]dX

,

(34) Cpmku.g(profile) =

∑k
i=1

∫
xk

x1
x̃i[USLY (X)− µY (X)]dX∑k

i=1

∫
xk

x1
[3x̃i

√
σ2 +

(
µY (X)− TY (X)

)2
]dX

.

5.2. Fuzzy-based functional index C
′′′

pp.g(profile). To introduce the fuzzy

functional capability index C
′′′

pp.g(profile), four situations should be consid-
ered, as mentioned in section 4. For the first two ones that there is no inter-
section between the mean and target lines in the interval [x1, xk], the index

C
′′′

pp.g(profile) is defined as:
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(35)

C
′′′
pp.g(profile) =



∑k
i=1

∫
xk

x1
x̃i[d
∗
Y (X)DuY (X)−

(
µY (X)−TY (X)

)2
]dX

∑k
i=1

∫
xk

x1
[3x̃i

√
σ2D2

uY
(X)+d2

Y
(X)
(
µY (X)−TY (X)

)2
]dX

; µY (X) > TY (X),

∑k
i=1

∫
xk

x1
x̃i[d
∗
Y (X)DlY (X)−

(
TY (X)−µY (X)

)2
]dX

∑k
i=1

∫
xk

x1
[3x̃i

√
σ2D2

lY
(X)+d2

Y
(X)
(
TY (X)−µY (X)

)2
]dX

; µY (X) < TY (X).

Now, suppose the mean and target lines intersect somewhere between two
points x1 and xk, that is µY (xm) = TY (xm), where xj ≤ xm < xj+1; j =
{1, 2, ..., k − 1}. Hence two cases are discussed here.
• Case 1. For x1 ≤ x ≤ xm, µY (X) > TY (X), and for xm < x ≤ xk,

µY (X) ≤ TY (X). Therefor, the index is calculated from the following equa-
tions.

(36) C
′′′

pp.g(profile) =
C
′′′

pp.g(profile)[num1]

C ′′′pp.g(profile)[denum1]
,

where,

C
′′′

pp.g(profile)[num1] =

j−1∑
i=1

∫ xj−1

x1

x̃i[d
∗
Y (X)DuY (X)−

(
µY (X)− TY (X)

)2
]dX

+

∫ xm

x̃−j [0]

x̃j [d
∗
Y (X)DuY (X)−

(
µY (X)− TY (X)

)2
]dX

+

∫ x̃+
j [0]

xm

x̃j [d
∗
Y (X)DlY (X)−

(
TY (X)− µY (X)

)2
]dX

+

k∑
i=j+1

∫ xk

xj+1

x̃i[d
∗
Y (X)DlY (X)−

(
TY (X)− µY (X)

)2
]dX,(37)

and

C
′′′
pp.g(profile)[denum1] =

j−1∑
i=1

∫ xj−1

x1

[3x̃i

√
σ2D2

uY (X) + d2Y (X)
(
µY (X) − TY (X)

)2
]dX

+
∫ xm

x̃−j [0]
[3x̃j

√
σ2D2

uY (X) + d2Y (X)
(
µY (X) − TY (X)

)2
]dX

+
∫ x̃+j [0]

xm

[3x̃i

√
σ2D2

lY (X) + d2Y (X)
(
TY (X) − µY (X)

)2
]dX

+
k∑

i=j+1

∫ xk

xj+1

[3x̃i

√
σ2D2

lY (X) + d2Y (X)
(
TY (X) − µY (X)

)2
]dX,(38)

and x̃−j [0] and x̃+j [0] are the minimum and maximum values in the 0-cut

interval of x̃j , respectively. In other word, x̃j [0] =
[
x̃−j [0] x̃+j [0]

]
.
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• Case 2. For x1 ≤ x ≤ xm, µY (X) ≤ TY (X), and for xm < x ≤ xk,
µY (X) > TY (X). Hence, the index is obtained as what follows;

(39) C
′′′

pp.g(profile) =
C
′′′

pp.g(profile)[num2]

C ′′′pp.g(profile)[denum2]
,

where,

C
′′′

pp.g(profile)[num2] =

j−1∑
i=1

∫ xj−1

x1

x̃i[d
∗
Y (X)DlY (X)−

(
TY (X)− µY (X)

)2
]dX

+

∫ xm

x̃−j [0]

x̃j [d
∗
Y (X)DlY (X)−

(
TY (X)− µY (X)

)2
]dX

+

∫ x̃+
j [0]

xm

x̃j [d
∗
Y (X)DuY (X)−

(
µY (X)− TY (X)

)2
]dX

+

k∑
i=j+1

∫ xk

xj+1

x̃i[d
∗
Y (X)DuY (X)−

(
µY (X)− TY (X)

)2
]dX,(40)

and

C
′′′
pp.g(profile)[denum2] =

j−1∑
i=1

∫ xj−1

x1

[3x̃i

√
σ2D2

lY (X) + d2Y (X)
(
TY (X) − µY (X)

)2
]dX

+
∫ xm

x̃−j [0]
[3x̃i

√
σ2D2

lY (X) + d2Y (X)
(
TY (X) − µY (X)

)2
]dX

+
∫ x̃+j [0]

xm

[3x̃j

√
σ2D2

uY (X) + d2Y (X)
(
µY (X) − TY (X)

)2
]dX

+
k∑

i=j+1

∫ xk

xj+1

[3x̃i

√
σ2D2

uY (X) + d2Y (X)
(
µY (X) − TY (X)

)2
]dX.(41)

Based on the sample data gathered from the in-control process, the mean
line µY (X) is estimated by the refernce line Y (X), and the variance σ2 is
estimated by MSE and then, the index is estimated. The process is considered
to be “capable” if the estimated value of the index C

′′′

pp.g(profile) is at least
one.

6. Simulation Study

In this section, simulation study with 10000 iterations are engaged to in-
vestigate and compare the performance of the mentioned traditional and new
capability indices. Kang and Albin [11] used the linear profile Yij = 3+2Xi+εij ;
ε ∼ N(0, 1). They considered four levels for the independent variable and the
fix values was x = 2, 4, 6, and 8. The specification limits and target values of
the dependent variable in each level of the explanatory variable are presented
in Table 1. Here, simulation scheme is used to generate the necessary data
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from this model by εij ∼ N(0, σ2), for various values of σ ∈ {0.5, 0.8, 1.0, 1.2}
and sample size n ∈ {25, 50, 100, 200}.

Capability indices are compared in terms of the mean square error (MSE)

and mean absolute error (MAE). To mind these criteria, suppose statistic θ̂ is
used for estimating parameter θ. These criteria are as:

MSE = E(θ̂ − θ)2, MAE = E|θ̂ − θ|.

The less the values of these criteria, the better the index in measuring process
capability.

Table 1. Specification limits and target value for each level
of the independent variable.

i Xi LSL USL T

1 2 2.5 10 6.25

2 4 6.85 14.35 10.6
3 6 11.25 18.75 15

4 8 16.25 23.75 20

Fitting regression line for LSL values in Table 1, functional lower specifi-
cation limit is gain. Similarly, regression line for USL values gives functional
upper specification limit. These lines are obtained as the following:

LSLY (X) = −2.2 + 2.2825X, USLY (X) = 5.3 + 2.2825X

Furthermore, it is obviously seen that for each level, the target value is in
the middle of the LSL and USL values, that means the tolerance is symmet-
ric. According to this, for symmetric tolerance, the target line is obtained as
TY (X) = 1.55+2.2825X. To further evaluate the performance of the proposed
index in comparison with the other ones, two other models Y = 3.5 + 2X + ε,
and Y = 3.4 + 1.8X + ε are investigated, too. Figure 1 shows the graph of
these lines.

For asymmetric case, consider the target line TY (X) = 3.425+2.2825X, and
three profile lines Y = 3.4+2.4X+ε, Y = 3.6+2.2X+ε, and Y = 3.3+2.3X+ε.
Graph of these lines are presented in Figure 1.

Fuzzy values of approximately 2, approximately 4, approximately 6, and
approximately 8 are considered for the explanatory variable, as what follows;

x̃1 =

{
3− x; 2 ≤ x < 3,

0; otherwise.
x̃4 =

{
x− 7; 7 < x ≤ 8,

0; otherwise.

x̃2 =


x− 3; 3 ≤ x < 4,

5− x; 4 ≤ x < 5,

0; otherwise.

x̃3 =


x− 5; 5 ≤ x < 6,

7− x; 6 ≤ x < 7,

0; otherwise.
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Figure 2 shows graph of these fuzzy numbers as well as the traditional case
that gives to the explanatory levels the same weigh equal to 1.

For each profile model and fix values of σ and sample size n, the simulation
procedure is done by six steps as follows:
• Step 1. Calculate the values of capability indices Cpmk(profile), C ′′′pp(profile),

Cpmk.g(profile), C
′′′
pp.g(profile), and set them as true values.

• Step 2. Generate four samples of size n from standard normal distribution
by variance σ2 and set them as values of ε for each level of the explanatory
variable.

• Step 3. Obtain the values of Y in samples, based on the linear equation
Y = a0 + a1X + ε, and substituting the values of X levels by 2, 4, 6, and 8 and
ε values gotten in Step 2.

• Step 4. Calculate estimated values of capability indices as Ĉpmk(profile),

Ĉ ′′′pp(profile), Ĉpmk.g(profile), Ĉ
′′′
pp.g(profile), based on the sample values ob-

tained in Step 3.

• Step 5. Obtain AE and SE of each index based on the formula AEC =

|Ĉ − Ctruevalue| and SEC = (Ĉ − Ctruevalue)2.

• Step 6. Replicate steps 2 to 5 for 10000 times and obtain mean of the
estimated indices, AEs and SEs, and set them as estimated indices, MAEs
and MSEs of indices, respectively.

Results of simulations are tabulated in tables 2-13.
Simulation study demonstrates that for various sigma values and various

sample sizes and various profile models and also, in both case symmetric and
asymmetric specification lines, the index C

′′′

pp.g(profile) performs the best for
assessment of process capability, because of having the lowest values of MSE
and MAE. Moreover, this index has accurate and flexible information of the
explanatory variable, because it uses fuzzy numbers for its levels value. On the
other hand, the sample size affects the MSE and MAE. In fact, the larger the
sample size, the smaller the values MSE and MAE.

For a better representation of the results, figures 3 and 4 show MSE plots of
the discussed estimators in simulation study for one model in symmetric toler-
ance and asymmetric case, respectively. These figures show that the mentioned
values for the index C

′′′

pp.g(profile) are putted in bellow of others indices values.
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Table 2. Comparison among the previous PCIs and the new in-
dices for symmetric functional tolerance and yij = 3 + 2xi + εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 0.52) true value 1.808677 1.79566 1.79067 1.776072

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 1.76346 1.75662 1.74654 1.73810
(0.08652&0.01153) (0.08392&0.01086) (0.08538&0.01123) (0.08295&0.01062)

50 1.78659 1.77609 1.76912 1.75702
(0.05870&0.00536) (0.05784&0.00518) (0.05800&0.00524) (0.05726&0.00508)

100 1.79846 1.78634 1.78073 1.76702
(0.04023&0.00255) (0.039637&0.00247) (0.03978&0.00249) (0.03928&0.00243)

200 1.80393 1.79113 1.78605 1.77167
(0.02836&0.00126) (0.02788&0.00122) (0.02806&0.00123) (0.02764&0.00120)

ε ∼ N(0, 0.82) true value 1.32817 1.31861 1.32002 1.30926

sample size 25 1.27822 1.27960 1.27077 1.27091
(0.07973&0.00962) (0.07421&0.00839) (0.07905&0.00946) (0.07370&0.00829)

50 1.30277 1.29904 1.29497 1.29001
(0.05284&0.00430) (0.05052&0.00393) (0.05246&0.00424) (0.05027&0.00389)

100 1.31592 1.30910 1.30796 1.299928
(0.03568&0.00199) (0.03440&0.00186) (0.03545&0.00197) (0.03426&0.00184)

200 1.32266 1.31399 1.31460 1.30472
(0.02495&0.00098) (0.02413&0.00091) (0.02479&0.00096) (0.02404&0.00090)
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Figure 1. Specification limits lines, target line and functional
profiles for symmetric (a) and asymmetric (b) functional tol-
erances.
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Table 3. Comparison among the previous PCIs and the new in-
dices for symmetric functional tolerance and yij = 3 + 2xi + εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 1.02) true value 1.11504 1.10701 1.10992 1.10087

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 1.06573 1.07066 1.06111 1.06498
(0.073170&0.00802) (0.06616&0.00663) (0.07268&0.00793) (0.06585&0.00658)

50 1.08930 1.08875 1.08444 1.08284
(0.04799&0.00353) (0.044738&0.00307) (0.04773&0.00350) (0.04461&0.00306)

100 1.10222 1.09808 1.09724 1.09207
(0.03216&0.00161) (0.03038&0.00145) (0.03200&0.00160) (0.03032&0.00144)

200 1.10917 1.10267 1.10412 1.09659
(0.02231&0.00078) 0.02126&0.00071) (0.02222&0.00077) (0.02123&0.00070)

ε ∼ N(0, 1.22) true value 0.95645 0.94956 0.95309 0.94532

sample size 25 0.90866 0.91611 0.90564 0.91217
(0.06725&0.00672) (0.05900&0.00525) (0.06690&0.00666) (0.05882&0.00523)

50 0.93091 0.93274 0.92773 0.92865
(0.04374&0.00293) (0.03968&0.00241) (0.04357&0.00290) (0.03963&0.00241)

100 0.94333 0.94130 0.94008 0.4
(0.02912&0.00132) (0.02689&0.00113) (0.02901&0.00131) (0.02688&0.00113)

200 0.95026 0.94554 0.94695 0.94134
(0.02006&0.00063) (0.01879&0.00055) (0.01999&0.00063) (0.01879&0.09006)
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Figure 2. The membership functions plots of fuzzy values
x̃1, x̃2, x̃3, x̃4 (a) and integration interval plot of crisp values in
[x1, x4] (b)

.
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Table 4. Comparison among the previous PCIs and the new in-
dices for symmetric functional tolerance and yij = 3.5 + 2xi + εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 0.52) true value 1.29462 1.45445 1.28536 1.44262

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 1.27375 1.43029 1.26496 1.41903
(0.06242&0.00607) (0.06208&0.00600) (0.06164&0.00592) (0.06139&0.00587)

50 1.28438 1.44251 1.27534 1.43096
(0.04368&0.00300) (0.04311&0.00291) (0.04314&0.00292) (0.04265&0.00285)

100 1.28931 1.44841 1.28018 1.43674
(0.03064&0.00147) (0.03006&0.00142) (0.03027&0.00144) (0.02975&0.00139)

200 1.29196 1.45144 1.28276 1.43970
(0.02151&0.00073) (0.02110&0.00070) (0.02125&0.00071) (0.02089&0.00069)

ε ∼ N(0, 0.82) true value 1.01799 1.14367 1.01330 1.13728

sample size 25 0.99434 1.11587 0.98992 1.10982
(0.06302&0.00616) (0.06178&0.00591) (0.06252&0.00607) (0.06141&0.00584)

50 1.00635 1.12987 1.00178 1.12364
(0.04408&0.00304) (0.04261&0.00283) (0.04373&0.00299) (0.04238&0.00280)

100 1.01194 1.13669 1.00733 1.13040
(0.03090&0.00149) (0.02959&0.00137) (0.03066&0.00147) (0.02942&0.00136)

200 1.01498 1.14022 1.01033 1.13388
(0.02167&0.00074) (0.02076&0.00068) (0.02151&0.00073) (0.02066&0.00067)
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Figure 3. Graph comparison based on the MSE criterion in
simulation study, for various values of variances and sample
sizes, for profile model yij = 3.5 + 2xi + εij .
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Table 5. Comparison among the previous PCIs and the new in-
dices for symmetric functional tolerance and yij = 3.5 + 2xi + εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 1.02) true value 0.88003 0.98868 0.87688 0.98417

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.85671 0.96095 0.85374 0.95668
(0.05979&0.00554) (0.05793&0.00518) (0.05944&0.00548) (0.05770&0.00514)

50 0.86853 0.97488 0.86546 0.97048
(0.04180&0.00273) (0.03976&0.00246) (0.04156&0.00270) (0.03963&0.00245)

100 0.87405 0.98170 0.87095 0.97726
(0.02930&0.00134) (0.02756&0.00119) (0.02913&0.00133) (0.02746&0.00118)

200 0.87706 0.98524 0.87393 0.98076
(0.02055&0.00067) (0.01932&0.00059) (0.02044&0.00066) (0.01926&0.00058)

ε ∼ N(0, 1.22) true value 0.77064 0.86578 0.76844 0.86246

sample size 25 0.74833 0.83892 0.74626 0.83577
(0.05600&0.00486) (0.05358&0.00442) (0.05575&0.00482) (0.05344&0.00439)

50 0.75962 0.85238 0.75749 0.84914
(0.03916&0.00240) (0.03660&0.00209) (0.03898&0.00237) (0.03653&0.00208)

100 0.76489 0.85900 0.76273 0.85574
(0.02746&0.00119) (0.02532&0.00100) (0.02734&0.00117) (0.02527&0.00099)

200 0.76779 0.86245 0.76561 0.85915
(0.01926&0.00059) (0.01773&0.00049) (0.01918&0.00058) (0.01770&0.00049)
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Figure 4. Graph comparison based on the MSE criterion in
simulation study, for various values of variances and sample
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Table 6. Comparison among the previous PCIs and the new in-
dices for symmetric functional tolerance and yij = 3.4+ 1.8xi + εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 0.52) true value 1.03888 1.13401 1.02751 1.11827

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 1.02760 1.12116 1.01644 1.10568
(0.03866&0.00232) (0.03860&0.00233) (0.03818&0.00226) (0.03821&0.00228)

50 1.03317 1.12749 1.02190 1.11187
(0.02746&0.00117) (0.02737&0.00116) (0.02713&0.0011) (0.02710&0.00114)

100 1.03644 1.13116 1.02512 1.11548
(0.019074&0.00057) (0.01893&0.00056) (0.018848&0.00056) (0.01875&0.00055)

200 1.03775 1.13266 1.02640 1.11694
(0.01339&0.00028) (0.01331&0.00028) (0.01323&0.00027) (0.01318&0.00027)

ε ∼ N(0, 0.82) true value 0.86986 0.94952 0.86202 0.93815

sample size 25 0.85466 0.93188 0.84716 0.92097
(0.04517&0.00316) (0.04452&0.00308) (0.04462&0.00308) (0.04412&0.00303)

50 0.86221 0.94062 0.85454 0.92948
(0.03210&0.00160) (0.03148&0.00153) (0.03172&0.00156) (0.03123&0.00150)

100 0.86647 0.94549 0.85871 0.93424
(0.02228&0.00078) (0.02167&0.00074) (0.02202&0.00076) (0.02151&0.00073)

200 0.86828 0.94760 0.86047 0.93629
(0.01565&0.00038) (0.01521&0.00036) (0.01547&0.00037) (0.01510&0.00035)

7. Determining sample size

Although larger sample sizes provide better capability estimators, they may
not be appropriate in some processes due to sampling cost or some other fac-
tors. Determination a good sample size is an important issue of estimating the
process capability. Absolute percentage error (APE) can be applied to derive
the optimal sample size. As mentioned in [13], APE is popular numerical tool,
due to its advantages of scale-independency and interpretability. For instance,
Sedighi Maman, et al. [18] and Pakzad, et al. [16] engaged this metric for detect-
ing the sample size. In this section, first this metric for the index C ′′′pp.g(profile)
is defined and then, the minimum necessary sample size is offered.

APE for C ′′′pp.g(profile) is defined as follows:

(42) APEC′′′pp.g(profile)
=

∣∣∣∣C ′′′pp.g(profile)− Ĉ ′′′pp.g(profile)C ′′′pp.g(profile)

∣∣∣∣.
Cumulative distribution function (cdf) of APEC′′′pp.g(profile)

is calculted as:

(43) FAPEC′′′pp.g(profile)
(APE0) = p(APEC′′′pp.g(profile)

≤ APE0).
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Table 7. Comparison among the previous PCIs and the new in-
dices for symmetric functional tolerance and yij = 3.4+ 1.8xi + εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 1.02) true value 0.77479 0.84574 0.768905 0.83682

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.75859 0.82670 0.75304 0.81822
(0.04590&0.00326) (0.04477&0.0031) (0.04541&0.00319) (0.04447&0.00306)

50 0.76665 0.83614 0.76093 0.827433
(0.03263&0.00165) (0.03156&0.00153) (0.03230&0.00162) (0.03139&0.00152)

100 0.77114 0.84134 0.76534 0.83253
(0.02266&0.00081) (0.02168&0.00074) (0.02243&0.00079) (0.02158&0.00073)

200 0.77308 0.84364 0.76724 0.83477
(0.01593&0.00040) (0.01522&0.00036) (0.01577&0.00039) (0.01515&0.00036)

ε ∼ N(0, 1.22) true value 0.69407 0.75763 0.68965 0.75056

sample size 25 0.67766 0.73805 0.67353 0.73136
(0.04527&0.00317) (0.04367&0.00294) (0.04487&0.00311) (0.04346&0.00292)

50 0.68583 0.74776 0.68155 0.74087
(0.03220&0.00161) (0.03068&0.00145) (0.03193&0.00158) (0.03058&0.00144)

100 0.69035 0.75306 0.68600 0.74609
(0.02238&0.00079) (0.02105&0.00070) (0.02219&0.00078) (0.02099&0.00069)

200 0.69233 0.75544 0.68794 0.74842
(0.01574&0.00039) (0.01477&0.00034) (0.01561&0.00038) (0.01474&0.00034)

Figure 5 depicts the empirical cdf plots of APEC′′′pp.g(profile)
of two profile

models Y = 3 + 2X + ε and Y = 3.4 + 2.4X + ε, discussed in section 6, for
symmetric and asymmetric functional tolerances, respectively.
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Table 8. Comparison among the previous PCIs and the new in-
dices for asymmetric functional tolerance and yij = 3.4+2.4xi+εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 0.52) true value 0.57156 0.45120 0.57097 0.45050

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.56273 0.44902 0.56210 0.44823
(0.04094&0.00260) (0.03201&0.00161) (0.04084&0.00259) (0.03190&0.00160)

50 0.56743 0.45034 0.56683 0.44960
(0.02918&0.00133) (0.02294&0.00083) (0.02910&0.00132) (0.02285&0.00082)

100 0.56916 0.45049 0.56856 0.44978
(0.02057&0.00066) (0.01620&0.00041) (0.02052&0.00066) (0.01614&0.00041)

200 0.57035 0.45081 0.56975 0.45010
(0.01452&0.00033) (0.01142&0.00020) (0.01448&0.00033) (0.01138&0.00020)

ε ∼ N(0, 0.82) true value 0.44090 0.40028 0.44054 0.39958

sample size 25 0.43058 0.39519 0.43020 0.39436
(0.04024&0.00251) (0.03760&0.00220) (0.04018&0.00250) (0.03750&0.00218)

50 0.43599 0.39806 0.43562 0.39730
(0.02871&0.00129) (0.02708&0.00115) (0.02866&0.00128) (0.02700&0.00114)

100 0.43812 0.39883 0.43775 0.39809
(0.02027&0.00064) (0.01920&0.00058) (0.02023&0.00064) (0.01914&0.00057)

200 0.43950 0.39953 0.43914 0.39880
(0.01431&0.00032) (0.01357&0.00029) (0.01429&0.00032) (0.01353&0.00029)
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Figure 5. Empirical cdf plots of APEC′′′pp.g
(profile) for var-

ious values of sample sizes for symmetric (a) and asymmetric
(b) tolerance cases.
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Table 9. Comparison among the previous PCIs and the new in-
dices for asymmetric functional tolerance and yij = 3.4+2.4xi+εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 1.02) true value 0.37680 0.36670 0.37655 0.36606

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.36670 0.35969 0.36644 0.35892
(0.03818&0.00226) (0.03796&0.00223) (0.03814&0.00225) (0.03791&0.00222)

50 0.37197 0.36354 0.37171 0.36283
(0.02728&0.00116) (0.02741&0.00118) (0.02724&0.00116) (0.02735&0.00117)

100 0.37407 0.36477 0.37382 0.36408
(0.01927&0.00058) (0.01948&0.00059) (0.01924&0.00058) (0.01944&0.00059)

200 0.37543 0.36571 0.37518 0.36505
(0.01362&0.00029) (0.01379&0.00030) (0.01360&0.00029) (0.01376&0.00030)

ε ∼ N(0, 1.22) true value 0.32696 0.33563 0.32678 0.33506

sample size 25 0.31741 0.32696 0.31722 0.32626
(0.03616&0.00203) (0.03704&0.00212) (0.03613&0.00202) (0.03702&0.00211)

50 0.32237 0.33161 0.32219 0.33098
(0.02587&0.00104) (0.02678&0.00112) (0.02585&0.00104) (0.02675&0.00112)

100 0.32436 0.33327 0.32419 0.33266
(0.01829&0.00052) (0.01907&0.00057) (0.01827&0.00052) (0.01904&0.00057)

200 0.32566 0.33444 0.32548 0.33385
(0.01293&0.00026) (0.01351&0.00029) (0.01292&0.00026) (0.01349&0.00028)

The sample size is obtained approximataly based on the empirical cdf of
APEC′′′pp.g

(profile), so by simulation scheme, the minimum sample size required
to achive the pre-determined APE, i.e. APE0, with the least probability 1−α,
is considered as the appropriate sample size, equivalent to solve the following
equation.

(44) p(APEC′′′pp.g(profile)
≤ APE0) ≥ 1− α.

Here, for two profile models Y = 3 + 2X + ε and Y = 3.4 + 2.4X + ε,
discussed in section 6, respectively with symmetric and asymmetric functional
tolerances, and for σ = 0.5, simulated samples by 10000 iteration was generated
by diffenernt sample sizes values from 3 to 4000 for symmetric tolerance and
from 3 to 9000 for asymmetric case. For values of the sample size that apply
to equation (44), the same number is assumed to be appropriate sample size.
Otherwise, this value is obtained by linear interpolation between the two closest
numbers smaller and larger amounts of the desired value, with the probability
value between the two related probability values. The results are tabulated in
tables 14 and 15.
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Table 10. Comparison among the previous PCIs and the new
indices for asymmetric functional tolerance and yij = 3.6+ 2.4xi +
εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 0.52) true value 0.40350 0.31934 0.40330 0.31900

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.39955 0.31870 0.39933 0.31834
(0.02931&0.00134) (0.02160&0.00074) (0.02927&0.00134) (0.02157&0.00073)

50 0.40172 0.31914 0.40151 0.31880
(0.02095&0.00069) (0.01542&0.00038) (0.02092&0.00069) (0.01540&0.00038)

100 0.40238 0.31905 0.40217 0.31872
(0.01478&0.00034) (0.01087&0.00019) (0.01476&0.00034) (0.01086&0.00018)

200 0.40291 0.31916 0.40272 0.31883
(0.01043&0.00017) (0.00765&0.00009) (0.01042&0.00017) (0.00764&0.00009)

ε ∼ N(0, 0.82) true value 0.33253 0.29670 0.33236 0.29634

sample size 25 0.32683 0.29487 0.32664 0.29445
(0.03281&0.00167) (0.02888&0.00131) (0.03277&0.00167) (0.02884&0.00130)

50 0.32989 0.29600 0.32971 0.29561
(0.02352&0.00087) (0.02072&0.00068) (0.02349&0.00086) (0.02069&0.00068)

100 0.33094 0.29610 0.33077 0.29572
(0.01662&0.00043) (0.01464&0.00034) (0.01660&0.00043) (0.01462&0.00034)

200 0.33172 0.29637 0.33154 0.29600
(0.01174&0.00022) (0.01033&0.00017) (0.01173&0.00022) (0.01031&0.00017)

8. Illustrative Example

In this section, the new proposed index is engaged for a real data set of indus-
trial springs collected by Shi et al. [20]. The quality of the industrial spirings
can be characterized by a functional relationship between spirings elasticity
and length. According to Hooke’s law, when the spring has reached a state of
equilibrium, its elasticity is a simple linear profile of the amount by which the
free end of the spring is displaced (when it is not stretched), that is length.

Independent variable has 6 levels by fixed values as 11, 12.5, 13.5, 15, 16,
and 17 in centimeter. The lower and upper specification limits of the elastic-
ity at each level of the length are provided in Table 16. To have asymmtric
tolerance related to this servey, it is supposed to target value of each level is
as Ti = 2LSLi + USLi/3; i = 1, 2, ...., 6, as presented in Table 16. Based
on these values, the functional specification limits and target lines are ob-
tained as LSLY (X) = 5.5377− 0.3223X, USLY (X) = 4.8190− 0.2464X, and
TY (X) = 5.2980− 0.2970X.

Values of the elasticity of 9 springs in newton at different lengths are mea-
sured from the in-control process and shown in Table 17.
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Table 11. Comparison among the previous PCIs and the new
indices for asymmetric functional tolerance and yij = 3.6+ 2.4xi +
εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 1.02) true value 0.29244 0.27979 0.29231 0.27943

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.28633 0.27685 0.28618 0.27641
(0.03285&0.00168) (0.03144&0.00154) (0.03282&0.00167) (0.03140&0.00154)

50 0.28959 0.27858 0.28944 0.27818
(0.02358&0.00087) (0.02264&0.00081) (0.02356&0.00087) (0.02260&0.00080)

100 0.29075 0.27890 0.29061 0.27852
(0.01668&0.00044) (0.01603&0.00040) (0.01667&0.00044) (0.01601&0.00040)

200 0.29158 0.27931 0.29144 0.27894

(0.01179&0.00022) (0.01132&0.00020) (0.01178&0.00022) (0.01131&0.00020)

ε ∼ N(0, 1.22) true value 0.25893 0.26272 0.25882 0.26237

sample size 25 0.25277 0.25856 0.25265 0.25812
(0.03227&0.00161) (0.03269&0.00166) (0.03224&0.00162) (0.03266&0.00166)

50 0.25603 0.26091 0.25592 0.26053
(0.02320&0.00084) (0.02361&0.00088) (0.02319&0.00084) (0.02358&0.00087)

100 0.25722 0.26152 0.25711 0.26115
(0.01643&0.00042) (0.01675&0.00044) (0.01642&0.00042) (0.01674&0.00044)

200 0.25806 0.26209 0.25795 0.26173
(0.01162&0.00021) (0.01184&0.00022) (0.01161&0.00021) (0.01183&0.00021)

To check the normality of the springs lengths of collected sample data at
each level, Anderson-Darling test is applied and the p-values are obtained as
0.7361, 0.5956, 0.2047, 0.9443, 0.2879, and 0.3516, respectively. Since all the
p-values are greater than 0.05, it can be concluded that the data in each level
are likely to follow normal distribution, at 95% significant level.

The reference line based on the least squaere error estimation is obtained
as Y (X) = 5.2340 − 0.2952X, and MSE is measured to be 0.00456. The
specification limits and target lines as well as the reference line are drawn in
Figure 6.

To calculate the capability index C ′′′pp.g(profile), set the springs lengths as
approximately 11, approximately 12.5, approximately 13.5, approximately 15,
approximately 16, and approximately 17, with the following membership func-
tions as shown in Figure 6.

x̃1 =

{
11.75−x

0.75 ; 11 ≤ x < 11.75,

0; otherwise.
x̃6 =

{
x−16.5

0.5 ; 16.5 < x ≤ 17,

0; otherwise.
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Table 12. Comparison among the previous PCIs and the new
indices for asymmetric functional tolerance and yij = 3.3+ 2.3xi +
εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 0.52) true value 1.26913 1.22678 1.26900 1.22629

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 1.21893 1.17154 1.21865 1.17253
(0.08459&0.01072) (0.08519&0.01083) (0.08465&0.01074) (0.08436&0.01064)

50 1.24406 1.20116 1.24384 1.20181
(0.05561&0.00477) (0.05494&0.00465) (0.05563&0.00477) (0.05447&0.00457)

100 1.25627 1.21634 1.25609 1.21678
(0.03800&0.00225) (0.03699&0.00215) (0.03800&0.00225) (0.03675&0.00212)

200 1.26288 1.22436 1.26273 1.22468
(0.02655&0.00110) (0.02578&0.00104) (0.02655&0.00110) (0.02569&0.00104)

ε ∼ N(0, 0.82) true value 0.79543 0.77514 0.79540 0.77501

sample size 25 0.76368 0.73638 0.76354 0.73695
(0.05642&0.00487) (0.05569&0.00457) (0.05646&0.00488) (0.05526&0.00450)

50 0.77958 0.75597 0.77949 0.75632
(0.03767&0.00221) (0.03539&0.00192) (0.03769&0.00221) (0.03517&0.00189)

100 0.78722 0.76607 0.78716 0.76627
(0.02591&0.00105) (0.02353&0.00087) (0.02592&0.00105) (0.02341&0.00086)

200 0.79142 0.77142 0.79138 0.77155
(0.01813&0.00052) (0.01619&0.00041) (0.01814&0.00052) (0.01613&0.00041)

x̃2 =


x−11.75

0.75 ; 11.75 ≤ x < 12.5,
13−x
0.5 ; 12.5 ≤ x < 13,

0; otherwise.

x̃3 =


x−13
0.5 ; 13 ≤ x < 13.5,

14.25−x
0.75 ; 13.5 ≤ x < 14.25,

0; otherwise.

x̃4 =


x−14.25

0.75 ; 14.25 ≤ x < 15,
15.5−x

0.5 ; 15 ≤ x < 15.5,

0; otherwise.

x̃5 =


x−15.5

0.5 ; 15.5 ≤ x < 16,
16.5−x

0.5 ; 16 ≤ x < 16.5,

0; otherwise.
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Table 13. Comparison among the previous PCIs and the new
indices for asymmetric functional tolerance and yij = 3.3+ 2.3xi +
εij

Cpmk(profile) C′′′pp(profile) Cpmk.g(profile) C′′′pp.g(profile)

ε ∼ N(0, 1.02) true value 0.63676 0.62171 0.63674 0.62164

Ĉpmk(profile) Ĉ′′′pp(profile) Ĉpmk.g(profile) Ĉ′′′pp.g(profile)

(MAE&MSE) (MAE&MSE) (MAE&MSE) (MAE&MSE)

sample size 25 0.61126 0.58933 0.61115 0.58978
(0.04749&0.00350) (0.04543&0.00303) (0.04752&0.00350) (0.04510&0.00299)

50 0.62404 0.60548 0.62398 0.60574
(0.03211&0.00161) (0.02871&0.00126) (0.03212&0.00161) (0.02854&0.00124)

100 0.63012 0.61381 0.63008 0.61396
(0.02219&0.00077) (0.01899&0.00056) (0.02219&0.00077) (0.01890&0.00056)

200 0.63351 0.61823 0.63348 0.61832
(0.01553&0.00038) (0.01301&0.00026) (0.01553&0.00038) (0.01297&0.00026)

ε ∼ N(0, 1.22) true value 0.53082 0.51882 0.53081 0.51878

sample size 25 0.50950 0.49080 0.50942 0.49117
(0.041890&0.00274) (0.03857&0.00218) (0.04191&0.00274) (0.03830&0.00215)

50 0.52020 0.50466 0.52015 0.50488
(0.02864&0.00128) (0.02424&0.00090) (0.02864&0.00128) (0.02410&0.00088)

100 0.52524 0.51184 0.52521 0.51196
(0.01987&0.00062) (0.01596&0.00040) (0.01988&0.00062) (0.01589&0.00039)

200 0.52808 0.51563 0.52806 0.51570
(0.01392&0.00031) (0.01089&0.00018) (0.01392&0.00031) (0.01086&0.00018)
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Figure 6. Lines of spring production data (a) and member-
ship functions plots of fuzzy values of the springs lengths (b).
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Table 14. Minimum sample sizes required based on the APE
criterion for symmetric functional tolerance and yij = 3+2xi+
εij , and differnet levels of confidence.

1 − α APE0

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

0.80 1196 565 318 200 142 104 86 71 55 46
0.85 1584 706 400 258 179 132 101 87 73 58

0.90 2017 914 516 332 231 172 131 105 91 79
0.95 2914 1215 721 465 322 241 185 146 119 101

0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.110

0.80 41 36 31 26 23 20 19 18 16 14
0.85 48 44 39 35 30 25 23 21 19 17

0.90 66 53 48 44 40 36 31 25 24 20

0.95 91 82 73 62 50 47 44 40 37 29

0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200

0.80 12 11 10 9 9 8 8 8 7

0.85 14 13 12 10 10 9 9 9 8
0.90 18 15 14 13 11 10 10 10 9

0.95 23 20 18 15 14 13 12 10 10

The Ĉ ′′′pp.g(profile) is obtained as 1.76651. Since this value is greater than
1, it is concluded that the process is capable.

9. Conclusion

In this article a new capability index C
′′′

pp(profile) was introduced based
on the functional scheme to assess the capability of simple linear profile and
then, by setting levels of explanatory variable as fuzzy numbers and applying
functional scheme, two more new indices Cpmk.g(profile) and C

′′′

pp.g(profile)
were proposed.

Simulation scheme was engaged to investigate the performance of the pro-
posed indices and compare them with the latest existing one, in terms of mean
absolute error (MAE) and mean square error (MSE). Results showed that the

index C
′′′

pp.g(profile) performs the best in estimating the process capability.
Since determination sample size is an important issue in estimating the pro-

cess capability, a method based on the absolute percentage error (APE) was
presented to derive the optimal sample size.

In the present paper, the new indices were derived under the assumption
that the values of response and explanatory variables and specification limits
are crisp values. In some processes, data and information possess non-statistical
uncertainties, so fuzzy set theory should be employed to deal with them. This
subject will be investigated in the future inquiries.
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Table 15. Minimum sample sizes required based on the APE
criterion for asymmetric functional tolerance and yij = 3.4 +
2.4xi + εij , and differnet levels of confidence.

1 − α APE0

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

0.80 3394 1465 836 533 372 268 202 162 133 110
0.85 4200 1837 955 677 466 345 254 201 166 138

0.90 5532 2501 1383 886 610 442 344 272 217 178
0.95 8018 3572 1918 1252 887 636 493 385 317 258

0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.110

0.80 94 84 74 64 53 47 43 40 36 28
0.85 116 100 91 81 72 62 52 48 44 37

0.90 149 131 114 99 91 83 75 68 58 47

0.95 211 186 162 142 125 109 98 93 87 74

0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200

0.80 23 20 17 15 13 11 10 9 8

0.85 31 25 21 19 16 14 13 11 10
0.90 42 36 30 24 21 19 16 14 14

0.95 60 49 44 40 34 28 24 21 19

Table 16. Specification limits and target value of springs
elasticity for each level of springs length

X

11 12.5 13.5 15 16 17

LSLi 1.9923 1.5089 1.1866 0.7031 0.3808 0.0585

USLi 2.1086 1.7390 1.4926 1.1230 0.8766 0.6302

Ti 2.0311 1.5856 1.2886 0.8431 0.5461 0.2491
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