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Abstract. The hyperstructures, born in 1934, are a generalization of

the operation by the hyper-operation or multivalued operation. In 1970,

the β∗ relation, called now fundamental, connects structures with cor-
responding hyperstructures. In 1990, a generalization on the properties

or axioms, which the hyper-operations fulfill, called weak properties, ap-

peared. So the Hv-structures were born. The study of hyperstructures,
especially of the weak ones, gives new topics in the field which have

numerous of applications in mathematics and other sciences. Here, we
present an overview of applications of Hv-structures.
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1. Hyperstructures and fundamental relations

F. Marty, in his pioneer paper in 1934, introduced the notion of Hypergroup.
Then, several generalizations appeared and were studied in depth. The largest
class of hyperstructures is the Hv-structures, named after T. Vougiouklis, in-
troduced in 1990, 4th AHA Congress [20], [22]. They satisfy the weak axioms
where the equality is replaced by the non-empty intersection. For definitions
and applications, see books and papers such as [1], [2], [3], [4], [5], [6], [10], [11],
[17], [19], [20], [21], [22], [23], [24], [37].
Definitions 1.1 A hyper-operation in a set H is called any map (·) : H×H →
P(H) − {∅}. A hyperstructure is called any set equipped with at least one
hyper-operation.

In a set with a hyper-operation (H, ·), weak associativity means

(x · y) · z ∩ x · (y · z) 6= ∅, ∀x, y, z ∈ H,

and weak commutativity means

x · y ∩ y · x 6= ∅, ∀x, y ∈ H.

A hyperstructure (H, ·) is called an Hv-semigroup if it is weakly associative,
and it is an Hv-group if, moreover, it is reproductive: x·H = H ·x = H,∀x ∈ H.
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The powers are defined in Hv-semigroups using the circle hyper-operation,
which is the union of all hyper-products, with all patterns of parentheses on
them.

Several general new definitions are given, first, for Hv-semigroups or Hv-
groups which are extended analogously to stricter Hv-structures [22], [30].
Definitions 1.2 Let (H, ·), (H, ∗) be Hv-semigroups. We call (·) smaller than
(∗), and (∗) greater than (·), if there exists an automorphism f of (H, ∗) for
which

x · y ⊆ f(x ∗ y), ∀x, y ∈ H.
We say that (H, ∗) contains (H, ·). A minimal Hv-group is one that does not
contain any Hv-group.
Little Theorem. Hyper-operations containing weakly associative or commu-
tative hyper-operations are weakly associative or weakly commutative, respec-
tively.

Large classes of Hv-structures, which are near to the corresponding struc-
ture, are defined as follows [19].
Definition 1.3 An Hv-structure is very-thin if all hyper-operations are oper-
ations except one, with all results singletons except one, which is a set with
more than one element.

The enumeration and classification ofHv-groups, as well as of allHv-structures,
defined in a set is complicated. We can see this even in sets with three ele-
ments. The number of Hv-groups with three elements, up to isomorphism, is
1.026.462. There are 7.926 abelian; the 1.013.598 are cyclic [10].

Hyperstructures are connected with the corresponding classical structures
by the fundamental relations. In 1970, M. Koskas introduced the relation β∗

in hypergroups [22]. In 1990, T. Vougiouklis introduced the relations γ∗ and
ε∗, for hyper-rings and hyper-vector spaces, respectively, by giving a new sort
of proof of the main theorem, and named all of the fundamentals. First, we
are referred to hypergroups [20], [22].
Definition 1.4 The fundamental relation β∗ inHv-groups is the smallest equiv-
alence such that the quotient is a group.

The main theorem for Hv-groups is the following:
Theorem 1.5 Let (H, ·) be an Hv-group and U be the set of finite products
with elements of H. Define the relation β in H by

xβy if and only if {x, y} ⊂ u, where u ∈ U,
then, β∗ is the transitive closure of β.
Proof. See [18], [20].

An element is called single if its fundamental class is a singleton.
If (G, ·) is a group and R any partition in G, then (G/R, ·) is an Hv-group

and (G/R, ·)/β∗ is the fundamental group.
A related method is the following:

Definition 1.6 Uniting elements is a method to obtain strong structures, in-
troduced by Corsini & Vougiouklis, using fundamental relations, as follows: Let
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G be a structure where a property d is not valid. Take a partition in G and
put in the same class all pairs for which d is not valid. G/d is an Hv-structure
and (G/d)/β∗ is a structure for which d is valid [3], [22].
Motivation: In classical algebra, we know that the quotient of a group by an
invariant subgroup is a group. In classical hyperstructures, the quotient of a
group by a subgroup is a hypergroup. Finally, the quotient of a group by any
partition is an Hv-group. It is clear that the number of ‘partitions’ is very
great compared to the numbers of invariant subgroups and subgroups; this is
the main reason for weak hyperstructures to admit many applications, even as
organized devices.

2. Weak hyperstructures

The main problem of classical hyperstructures was to give general defini-
tions for stricter hyperstructures such as hyper-rings, hyper-fields, hyper-vector
spaces, and hyper-Lie algebras. Therefore, only special classes of hyperstruc-
tures appeared in research, such as Krasner hyper-rings, canonical groups, and
polygroups. We overcome this problem in weak hyperstructures; thus, gener-
ally stricter weak hyperstructures are defined and new topics appeared, as well
[10], [22].
Definitions 2.1 The Hv-structure (R,+, ·) is an Hv-ring if both (+) and (·)
are weakly associative, (+) is reproductive, and (·) is weakly distributive to
(+):

x · (y + z) ∩ (x · y + x · z) 6= ∅, (x+ y) · z ∩ (x · z + y · z) 6= ∅, ∀x, y, z ∈ R.

A weak commutative Hv-group (M,+) is called an Hv-module over an Hv-
ring (R,+, ·) if there is an external hyper-operation

· : R×M → P(M)− {∅} : (a, x) 7→ a · x,

such that, ∀a, b ∈ R,∀x, y ∈M , we have

a·(x+y)∩(a·x+a·y) 6= ∅, (a+b)·x∩(a·x+b·x) 6= ∅, (a·b)·x∩a·(b·x) 6= ∅.

In order to define the Hv-vector space, we need an Hv-field instead of an
Hv-ring, which is defined later.

Recall that in 1990, T. Vougiouklis introduced the relations γ∗ and ε∗, giving
a new proof of the main theorem, and named all of them fundamentals [10],
[22].
Definition 2.2 The fundamental relations γ∗ and ε∗ in an Hv-ring and Hv-
vector space, respectively, are the smallest equivalences such that the quotient
is a ring and vector space, respectively.

The main theorems on the topic are analogous to the following:
Theorem 2.3 Let (R,+, ·) be an Hv-ring and U the set of all finite polynomials
of R. Define the relation γ in R by

xγy if and only if {x, y} ⊂ u, where u ∈ U,
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then, γ∗ is the transitive closure of γ.
Proof. A sort proof is the following: Let γ be the transitive closure of γ and
denote γ(a) the class of a. In R/γ the hyper-operations (⊕), (⊗) are defined
by

γ(a)⊕ γ(b) = {γ(c) : c ∈ γ(a) + γ(b)},
γ(a)⊗ γ(b) = {γ(d) : d ∈ γ(a) · γ(b)}, ∀a, b ∈ R.

Take elements a′ ∈ γ(a) and b′ ∈ γ(b). Then, we obtain that: a′γa means that
there are elements x1, . . . , xm+1 such that

x1 = a′, xm+1 = a, u1, . . . , um ∈ U, {xi, xi+1} ⊂ ui, i = 1, . . . ,m.

Similarly, b′γb means that: there are elements y1, . . . , yn+1 such that

y1 = b′, yn+1 = b, v1, . . . , vn ∈ U, {yj , yj+1} ⊂ vj , j = 1, . . . , n.

Thus, we obtain

{xi, xi+1}+ y1 ⊂ ui + v1, i = 1, . . . ,m− 1, xm+1 + {yj , yj+1} ⊂ um + vj ,
j = 1, . . . , n.

So, the ui + v1 = ti, i = 1, . . . ,m − 1, um + vj = tm+j−1, j = 1, . . . , n, are
polynomials of U .

Then, select elements z1, . . . , zm+n such that zi ∈ xi+y1, i = 1, . . . , n, zm+j ∈
xm+1 + yj+1, j = 1, . . . , n, from which we have {zk, zk+1} ⊂ tk, k = 1, . . . ,m+
n − 1. Consequently, any z1 ∈ x1 + y1 = a′ + b′ is γ equivalent to any
zm+n ∈ xm+1 + yn+1 = a+ b.

This proves that γ(a) ⊕ γ(b) is a singleton and we write γ(a) ⊕ γ(b) =
γ(c),∀c ∈ γ(a) + γ(b).

Similarly, γ(a)⊗ γ(b) = γ(d),∀d ∈ γ(a) · γ(b).
From the weak associativity and distributivity on R, we obtain the associa-

tivity and distributivity in R/γ∗, so R/γ∗ is a ring.
Let σ be an equivalence in R for which R/σ is a ring. Then, ∀a, b ∈ R, we

have

σ(a)⊕σ(b) = σ(c), ∀c ∈ σ(a)+σ(b) and σ(a)⊗σ(b) = σ(d), ∀d ∈ σ(a)·σ(b).

So, ∀a, b ∈ R and A ⊂ σ(a), B ⊂ σ(b),

σ(a)⊕ σ(b) = σ(a+ b) = σ(A+B), σ(a)⊗ σ(b) = σ(ab) = σ(A ·B).

By induction, extend the relations to finite sums and products. So, ∀u ∈ U and
∀x ∈ u, we have σ(x) = σ(u). Consequently, x ∈ γ(a) implies x ∈ σ(a),∀x ∈ R.
But σ is transitively closed, so x ∈ γ(a) implies x ∈ σ(a).

Therefore, γ is the smallest equivalence such that R/γ is a ring and γ = γ∗.
Now we can give the following general definition:

Definition 2.4 An Hv-ring (R,+, ·) is called an Hv-field if R/γ∗ is a field.
The elements of an Hv-field are called hyper-numbers or Hv-numbers.
Definition 2.5 The Hv-semigroup (H, ·) is called an h/v-group if H/β∗ is a
group.
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The h/v-group is a generalization of the Hv-group, where the new axiom
reproductive of classes is valid.

The general definition of an Hv-Lie algebra was given as follows [10], [14]:
Definition 2.6 Let (L,+) be an Hv-vector space over (F,+, ·), ϕ : F → F/γ∗

the canonical map, ωF = {x ∈ F : ϕ(x) = 0}, where 0 is zero of F/γ∗. Let ωL
be the core of ϕ′ : L→ L/ε∗. Consider the bracket hyper-operation

[, ] : L× L→ P(L) : (x, y) 7→ [x, y]

then L is called an Hv-Lie algebra over F if the following axioms are valid:
(L1) The bracket hyper-operation is bilinear:

[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅,
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,

∀x, x1, x2, y, y1, y2 ∈ L and ∀λ1, λ2 ∈ F
(L2) [x, x] ∩ ωL 6= ∅,∀x ∈ L
(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅,∀x, y ∈ L.
The fundamental relations give simple, but very useful, results:

Theorem 2.7 Let (H, ·) be an Hv-group and H/β∗ its fundamental group. If
H/β∗ is not commutative or not cyclic, then (H, ·) is not weakly commutative
or cyclic, respectively.
Definition 2.8 We call a raised very-thin Hv-field one that is obtained from
a ring by enlarging only one result and adding only one element, such that the
fundamental structure is a field.

3. Classes of Hv − structures
Several hyper-operations based on ordinary operations are defined and stud-

ied deeply. Interesting classes are the following [17], [22], [27]:
Definition 3.1 Let (G,.) be a groupoid, then ∀P ⊂ G, P 6= φ, the P-hyper -

product is defined:
P: x.P.y=(x.P ).y ∪ x.(P.y), ∀x, y,G.
Generalization: Let (G,.) be an abelian group, take P ⊂ G, | P |> 1. Define

a hyper-product (×P ) by

x×P y =

{
x · P · y = {x · h · y | h ∈ P} if x 6= e and y 6= e

x · y if x = e or y = e

We call this a Pe-hyper-product. (G,×P ) is an abelian Hv-group.
Definition 3.2 Let (G, ·) be a groupoid, then for any map f : G→ G, the

∂-hyper-product is defined by
x∂y = {f(x) · y, x · f(y)}, ∀x, y ∈ G.
If (·) is commutative, then (∂) is weak commutative.
The motivation for this definition is the map derivative where only the prod-

uct of functions can be used.
Let (A,+, ·) be an algebra on F and f : A→ A, a map. The ∂-hyper-product

on the Lie bracket [x, y] = x · y − y · x is defined by
x∂y = {f(x) ·y−f(y) ·x, f(x) ·y−y ·f(x), x ·f(y)−f(y) ·x, x ·f(y)−y ·f(x)}.
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Enlargements of structures are considered in the sense that we add elements
in some results. Useful enlargements in applications are those with known
fundamental structures. This can be achieved since, in the weak case, we use
the Little Theorem [25], [29], [30].

Definitions 3.3 We enlarge an operation if we add more elements to at
least one result. The obtained Hv-structure is called enlarged. The special
case is the enlarged very-thin.

The e-construction: Let (G, ·) be a group, e the unit, we define hyper-
products (⊗) by:
x⊗ y = {x · y, g1, g2, . . . }, ∀x, y ∈ G− {e}, and g1, g2, · · · ∈ G− {e}.
Then (G,⊗) is an Hv-group containing (G, ·), called an e-Hv-group.
Example. In quaternions
Q = {1,−1, i,−i, j,−j, k,−k}, with i2 = j2 = −1, i · j = −j · i = k, denote

i = {i,−i}, j = {j,−j}, k = {k,−k}.
We can define hyper-products (∗) by enlarging some results but remaining

in the same class. Thus, we can take results like (−1)∗k = k, k∗i = j, i∗j = k.
Then, in all those cases we obtain that (Q, ∗) is an e-Hv-group.

Remark. In a field (F,+, ·), if we enlarge any product a · b, by a⊗ b = {a ·
b, c}, c 6= a·b, or any sum a+b, by a⊕b = {a+b, c}, c 6= a+b, then we obtain the
fundamental fields, respectively, (F,+,⊗)/γ∗ ∼= {0} or (F,⊕, ·)/γ∗ ∼= {0}.

Therefore, there does not exist any non-degenerate enlarged Hv-field ob-
tained from a field.

The interesting cases come if we enlarge a ring in order to obtain an Hv-field
[29]:

Theorems 3.4 In the ring (Zn,+, ·) with n = m · s, if we enlarge 0 · m
by 0 ⊗m = {0,m}, then we obtain (Zn,+,⊗)/γ∗ ∼= (Zm,+, ·). If we enlarge
products as 2 ·m by setting 2 ⊗m = {2 ·m, 3 ·m}, then 0, 1 are scalars. If
n = p · s, where p is prime, and we enlarge 0 · p by 0 ⊗ p = {0, p}, then we
obtain the very-thin Hv-field (Zn,+,⊗).

In applications, small Hv-fields which satisfy additional axioms are used.
Thus, appropriate lists of all small Hv-fields derived from ordinary rings are
obtained. For example, we present a list of multiplicative Hv-fields which are
very-thin minimal, weak commutative and have scalar 0 and 1 [29], [30], [33]:

Constructions 3.5
(a) On (Z4,+, ·), the Hv-fields are isomorphic to 2⊗3 = {0, 2} or 3⊗2 = {0, 2},
we have (Z4,+,⊗)/γ∗ ∼= (Z2,+, ·), and fundamental classes: [0] = {0, 2},
[1] = {1, 3}.
(b) On (Z6,+, ·) the Hv-fields are isomorphic to 2⊗ 3 = {0, 3}, 2⊗ 4 = {2, 5},
3⊗4 = {0, 3}, 3⊗5 = {0, 3}, 4⊗5 = {2, 5}, we have (Z6,+,⊗)/γ∗ ∼= (Z3,+, ·),
and fundamental classes: [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5}.
(c) On (Z6,+, ·) the Hv-fields are isomorphic to 2 ⊗ 3 = {0, 2} or {0, 4},
2 ⊗ 4 = {0, 2} or {2, 4}, 2 ⊗ 5 = {0, 4} or {2, 4}, 3 ⊗ 4 = {0, 2} or {0, 4},
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3⊗ 5 = {3, 5}, 4⊗ 5 = {0, 2} or {2, 4}, we have (Z6,+,⊗)/γ∗ ∼= (Z2,+, ·), and
fundamental classes: [0] = {0, 2, 4}, [1] = {1, 3, 5}.

The helix-operations are weak hyper-operations defined on non-square ma-
trices on classical rings or fields [9], [15], [16], [35], [36].

Definitions 3.6 On a matrix A = (aij) ∈ Mm×n, s, t ∈ N, 1 ≤ s ≤ m,
1 ≤ t ≤ n, define the map helix-st
st : Mm×n →Ms×t : A→ Ast = (aij),
where aij = {ai+κs,j+λt | 1 ≤ i ≤ s, 1 ≤ j ≤ t, κ, λ ∈ N, i+κ·s ≤ m, j+λ·t ≤

n}.
(a) Let A = (aij) ∈ Mm×n, B = (bij) ∈ Mu×v, and s = min(m,u), t =
min(n, v). The helix-sum is
⊕ : Mm×n×Mu×v → P(Ms×t) : (A,B)→ A⊕B = Ast+Bst = (aij)+(bij) ⊂

Ms×t,
where (aij) + (bij) = {(cij) = (aij + bij) | aij ∈ aij and bij ∈ bij}.

(b) Let A = (aij) ∈ Mm×n, B = (bij) ∈ Mu×v, and s = min(n, u). The
helix-product is
⊗ : Mm×n×Mu×v → P(Mm×v) : (A,B)→ A⊗B = Ams·Bsv = (aij)·(bij) ⊂

Mm×v,
where (aij) · (bij) = {(cij) = (

∑
ait · btj) | aij ∈ aij and bij ∈ bij}.

The helix-sum is commutative and the helix-product is weak associative.
We study only matrices Mm×n where m < n, since there are analogous

results when m > n. Several sets of matrices are interesting for the helix-
product: A matrix A = (aij) ∈ Mm×n is an S-helix, if Amm is a set of upper
triangular matrices with diagonal entries singletons. An S-helix matrix is S0-
helix if the condition a11 · · · · · amm 6= 0 is valid. The set of S0-helix matrices
of type m × n is closed under the helix-product where the S0-helix matrix X
has inverses X−1, i.e., if Ic is the unit matrix, Ic ∈ X ⊗X−1 ∩X−1 ⊗X.

Example 3.7 Consider the matrices of the type 3 × 5 on real or complex
numbers or on any finite field. We take, in the 7th dimension case,

X =

x11 x12 x13 x11 x15
0 x22 x23 0 x22
0 0 x33 0 0

 , Y =

y11 y12 y13 y11 y15
0 y22 y23 0 y22
0 0 y33 0 0

 ,

so, we have

X ⊗ Y =

x11 {x12, x15} x13
0 x22 x23
0 0 x33

 ·
y11 y12 y13 y11 y15

0 y22 y23 0 y22
0 0 y33 0 0

 .

Then, denoting Cij the ij entry of the result, we have the non-zero results:



8 T. Vougiouklis

C11 = C14 = {x11 · y11},
C12 = {x11 · y12 + x12 · y22, x11 · y12 + x15 · y22},
C13 = {x11 · y13 + x12 · y23 + x13 · y33, x11 · y13 + x15 · y23 + x13 · y33},
C15 = {x11 · y15 + x12 · y22, x11 · y15 + x15 · y22},
C22 = C25 = {x22 · y22},
C23 = {x22 · y23 + x23 · y33},
C33 = {x33 · y33},

Therefore, the helix product is a set with cardinality up to 23.

4. Representations of Hv-groups

The Representation Theory of hypergroups was started by T. Vougiouklis
in the middle of the ’80s. At that time, it was a hard problem since there
was not a standard definition even for hyper-rings. The representations of Hv-
groups began immediately in 1990, together with the weak hyperstructures,
again by T. Vougiouklis [10], [22], [23], [26], [33]. The representations can be
achieved either by Hv-matrices or by generalized permutations [21], [23]. The
representation problem by Hv-matrices is the following [26], [33]:

Definitions 4.1 A matrix is called an Hv-matrix if it has entries from an
Hv-field (F,+, ·). The hyper-product of Hv-matrices A = (aij), B = (bij), of
type m × n, n × r, respectively, is defined as usual but it is a set of m × r
Hv-matrices:
A ·B = (aij) · (bij) = {C = (cij) | cij ∈

⊕∑
aik · bkj},

where (
⊕

) is the n-ary circle hyper-operation, which means the union of all
possible patterns of parentheses put for elements, on the hyper-sum.

Let (H, ·) be an Hv-group. An Hv-matrix representation on MF = {(aij) |
aij ∈ F} is called any map
T : H → MF : h 7→ T (h) such that T (h1 · h2) ∩ T (h1) · T (h2) 6=

∅, ∀h1, h2 ∈ H.
If T (h1 · h2) ⊆ T (h1) · T (h2) is valid, then T is called an inclusion represen-

tation, and is called faithful if it is one-to-one and T (h1 ·h2) = T (h1) ·T (h2) =
{T (h) | h ∈ h1 · h2}, ∀h1, h2 ∈ H.

The main theorem of the representations, which in fact connects structures
with hyperstructures, is the following [18], [22], [23].

Theorem 4.2 A necessary condition to have an inclusion representation T
of an Hv-group (H, ·) by n × n, Hv-matrices over the Hv-ring (R,+, ·) is the
following:
∀β∗(x), x ∈ H there must exist aij ∈ H, i, j ∈ {1, . . . , n} such that
T (β∗(a)) ⊆ {A = (a′ij) | a′ij ∈ γ∗(aij), i, j ∈ {1, . . . , n}}.
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Every inclusion representation T : H → MR : a 7→ T (a) = (aij) induces a
representation T ∗ of the fundamental group H/β∗ over the fundamental ring
R/γ∗, by setting
T ∗(β∗(a)) = [γ∗(aij)], ∀β∗(a) ∈ H/β∗,
where γ∗(aij) ∈ R/γ∗ is the ij entry of the matrix T ∗(β∗(a)).
The representation theory of Hv-structures needs special classes of Hv-

groups, Hv-fields, and Hv-vector spaces. On the other side, new classes and
objects in mathematics itself appeared which are interesting in the research.

On Hv-structures one can define several hyper-operations: Let M = Mm×n
be a module of m × n matrices over a ring R and P = {Pi : i ∈ I} ⊆ M . We
define a kind of a P -hyper-product P on M as follows
P : M ×M → P(M) : (A,B) 7→ A · P ·B = {A · P ti ·B : i ∈ I} ⊆M
where P t is the transpose of P . P is a bilinear Rees’ product where, instead

of one sandwich matrix, a set is used. P is strongly associative and inclusion
distributive to addition:
A · P · (B + C) ⊆ A · P ·B +A · P · C, ∀A,B,C ∈M
The Lie-Santilli admissible can be defined in Hv-structures, as well [8], [10]:
Definition 4.3 Let L be an Hv-vector space on (F,+, ·), ϕ : F → F/γ∗ the

canonical map with core ωF = {x ∈ F : ϕ(x) = 0}, 0 the zero of F/γ∗, ωL the
core of ϕ′ : L → L/ε∗. Take subsets R,S ∈ L, then a Lie-Santilli admissible
hyper-algebra is obtained by taking the Lie-bracket [, ]RS : L × L → P(L) :
[x, y]RS = (x ·R) · y − (y · S) · x

Special cases:

(a) Take only S, then [x, y]S = x · y − y · S · x,
(b) Take only R, then [x, y]R = x ·R · y − y · x.

The importance in the hyper case comes from Santilli admissible, since we
transfer this theory to representations in two ways: using either ordinary ma-
trices with a hyper-product, or hyper-matrices with an ordinary product.

The admissible on non-square matrices is defined as follows:
Definition 4.4 Let (L = Mm×n,+) be the Hv-vector space of m×n hyper-

matrices on (F,+, ·), ϕ : F → F/γ∗, the canonical map, ωF = {x ∈ F : ϕ(x) =
0}, and ωL the core of ϕ′ : L → L/ε∗. Take R,S ⊆ L, then we obtain a
Lie-Santilli admissible hyper-algebra with Lie bracket

[, ]RS : L× L→ P(L) : [x, y]RS = x ·Rt · y − y · St · x.
Notice that [x, y]RS = x·Rt ·y−y·St ·x = {x·rt ·y−y·st ·x | r ∈ R and s ∈ S}.
In hyper-matrix representations, results with small cardinality are needed.

Thus, small Hv-fields are used, obtained from structures enlarging one opera-
tion [10], [25], [29], [30], [33].

Example 4.5 Take the Hv-field (Z6,+, ·), with 2⊗4 = {2, 5}. Fundamental
classes [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5}, and (Z6,+,⊗)/γ∗ ∼= (Z3,+, ·).
Take the 2× 2 Hv-matrices on (Z6,+,⊗)(

1 Z6

0 4

)
.
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Thus, we have 6 elements:

c0 =

(
1 0
0 4

)
, c1 =

(
1 1
0 4

)
, c2 =

(
1 2
0 4

)
, c3 =

(
1 3
0 4

)
, c4 =(

1 4
0 4

)
, c5 =

(
1 5
0 4

)
.

We obtain the table:
⊗ c0 c1 c2 c3 c4 c5
c0 c0 c1 c2 c3 c4 c5
c1 c4 c5 c0 c1 c2 c3
c2 c2, c5 c0, c3 c1, c4 c2, c5 c0, c3 c1, c4
c3 c0 c1 c2 c3 c4 c5
c4 c4 c5 c0 c1 c2 c3
c5 c2 c3 c4 c5 c0 c1

The small Hv-structure (C,⊗), C = {b0, b1, b2, b3, b4, b5}, is an Hv-group,
where the reproductive on fundamental classes is valid. (⊗) is weak associative
as we can see

(c1 ⊗ c4)⊗ c2 = c2 ⊗ c2 = {c1, c4} and c1 ⊗ (c4 ⊗ c2) = c1 ⊗ c0 = c4.
Moreover, it is an interesting hyper-structure as we see some of its properties:

It is cyclic with generators c2 and c4; it has subgroups with one element {c0},
{c3}; c1, c3 are generators of the subgroup with 3 elements, given by the table

⊗ c1 c3 c5
c1 c5 c1 c3
c3 c1 c3 c5
c5 c3 c5 c1

5. Applications in Hadronic Mechanics

The most important application of Hv-structures is on the isotopy Lie-
Santilli theory, defined in the 1960s to solve Hadronic Mechanics problems.
The main object is the Hv-field corresponding to the isofield, introduced by
Santilli & Vougiouklis, which is described in the following [8], [10], [12], [13],
[14], [28], [33].

The Lie-Santilli isotopy is a lifting of the n-dimensional unit matrix of a nor-
mal theory into a nowhere singular, symmetric, positive-defined, n-dimensional
new matrix. The original theory is reconstructed to admit the new matrix as
a unit.

Definitions 5.1 (H, ·) is an e-hyperstructure if it contains a unique scalar
unit e, and all elements x have an inverse x−1: e ∈ x · x−1 ∩ x−1 · x.

(F,+, ·), where (+) is an operation, and (·) is a hyper-operation, is an e-
hyper-field if: (F,+) is an abelian group, (·) is weakly associative, (·) is weakly
distributive to (+), 0 is absorbing, 1 is scalar, and every element has a unique
inverse. The elements of (F,+, ·) are called e-hyper-numbers.

Moreover, we focus on Hv-fields on (Zn,+, ·), satisfying in iso-theory the
conditions:
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(1) very-thin minimal, (2) weak commutative, (3) 0, 1 scalars, (4) unique
inverses.

Thus, we enlarge the product putting one more element where we cannot
enlarge the result if it is 1 and we do not put 1 in the enlargement. It is clear
that this theory can be faced in Hv-structures because there are many axioms
to be valid.

According to Santilli iso-theory, on a field F = (F,+, ·), an iso-field F̂ =

F̂ (â, +̂, ×̂) is defined, with iso-numbers: â = a × 1̂, a ∈ F , 1̂ positive-defined
outside F , with the sum +̂, with unit 0, and ×̂ is a new product:

â×̂b̂ := â× T̂ × b̂, with 1̂ = T̂−1, ∀â, b̂ ∈ F̂
called iso-product, for which 1̂ is the left and right unit of F̂ ,
1̂×̂â = â× 1̂ = â, ∀â ∈ F̂
called iso-unit. The rest of the properties of a field are reformulated analo-

gously.
This theory is transferred to hyperstructures by replacing only the product

×̂ by a hyper-product including the old one. Two generalizations are used:
Definition 5.2 On an iso-field F̂ = F̂ (â, +̂, ×̂) we replace in the results of

the iso-product

â×̂b̂ = â× T̂ × b̂, where 1̂ = T̂−1

of T̂ by a set Ĥab = {T̂ , x̂1, x̂2, . . . }, x̂1, x̂2, · · · ∈ F̂ − {0̂, 1̂},
∀â×̂b̂ with â, b̂ /∈ {0̂, 1̂}.

If â or b̂ is equal to 0̂ or 1̂, then take Ĥab = {T̂}.
So, the new iso-hyper-product is

â×̂b̂ = â× Ĥab × b̂ = â× {T̂ , x̂1, x̂2, . . . } × b̂, ∀â, b̂ ∈ F̂ ,
and F̂ = F̂ (â, +̂, ×̂)b is an iso-Hv-field. The elements of F̂ are called

iso−Hv-numbers.
The most important case is the very-thin iso-Hv-field, where Ĥab = {T̂ , x̂}.
Definition 5.3 Take iso-field F̂ = F̂ (â, +̂, ×̂), â = a × 1̂, a ∈ F , with sum

+̂ and iso-product ×̂:

â×̂b̂ := â× T̂ × b̂, with 1̂ = T̂−1, ∀â, b̂ ∈ F̂ .
Let P̂ = {T̂ , p̂1, . . . , p̂s}, p̂1, . . . , p̂s ∈ F̂ − {0̂, 1̂}, define isoP-Hv-field, F̂ =

F̂ (â, +̂, ×̂P ), with ×̂P :

â×̂P b̂ :=

{
â× P̂ × b̂ = {â× ĥ× b̂ | ĥ ∈ P̂} if â 6= 1̂ and b̂ 6= 1̂

â× T̂ × b̂ if â = 1̂ or b̂ = 1̂.

The elements of F̂ are called isoP-Hv-numbers. Remark that if P̂ = {T̂ , p̂},
the inverses in isoP-Hv-fields are not unique.

In the next example, we apply the P-construction, with P̂ = {T̂ , p̂}, to
obtain an Hv-field.

Example 5.4 For Ẑ10 = Z10(â, +̂, ×̂), and if we take P̂ = {2̂, 7̂}, we have
the table:
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×̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂

0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂

1̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂

2̂ 0̂ 2̂ 8̂ 2̂ 6̂ 0̂ 4̂ 8̂ 2̂ 6̂

3̂ 0̂ 3̂ 2̂ 3̂, 8̂ 4̂ 0̂, 5̂ 6̂ 2̂, 7̂ 8̂ 4̂, 9̂

4̂ 0̂ 4̂ 6̂ 4̂ 2̂ 0̂ 8̂ 6̂ 4̂ 2̂

5̂ 0̂ 5̂ 0̂ 0̂, 5̂ 0̂ 0̂, 5̂ 0̂ 0̂, 5̂ 0̂ 0̂, 5̂

6̂ 0̂ 6̂ 4̂ 6̂ 8̂ 0̂ 2̂ 4̂ 6̂ 8̂

7̂ 0̂ 7̂ 8̂ 2̂, 7̂ 6̂ 0̂, 5̂ 4̂ 3̂, 8̂ 2̂ 1̂, 6̂

8̂ 0̂ 8̂ 2̂ 8̂ 4̂ 0̂ 6̂ 2̂ 8̂ 4̂

9̂ 0̂ 9̂ 6̂ 4̂, 9̂ 2̂ 0̂, 5̂ 8̂ 1̂, 6̂ 4̂ 2̂, 7̂

Then the fundamental classes are
[0̂] = {0̂, 5̂}, [1̂] = {1̂, 6̂}, [2̂] = {2̂, 7̂}, [3̂] = {3̂, 8̂}, [4̂] = {4̂, 9̂},
and the multiplicative table, excluding the zero class [0], is the following:

× [1] [2] [3] [4]
[1] [1], [2] [2], [4] [3], [1] [4], [3]
[2] [2], [4] [3] [4] [1]
[3] [3], [1] [4] [1] [2]
[4] [4], [3] [1] [2] [3]

Thus, Ẑ10 = Z10(â, +̂, ×̂) is an Hv-field.

6. Applications in Education and Arts

Hv-structures have many applications in other branches of mathematics and
sciences. These applications range from hadronic physics, iso-theory, leptons,
bio-mathematics, cryptography, and linguistics, to mention but a few. They are
related to fuzzy theory; so, they can be applicable in industry and production,
too. In books and papers [1], [2], [4], [5], [6], [7], [10], [11], [28], [34], [37], one
can find numerous applications.

An application of Hv-structures in physics, leptons, was faced by Davvaz.
The Standard Model is a theory to describe the elementary particles and the
interacting forces between them. On the set of Leptons, using their interactions
as a hyper-operation, we form the appropriate table from which we obtain an
Hv-group. In cases such as the multiplicative table of Leptons, where we have
a hyper-product, it is a hard job to check the associative or weak-associative
properties. To do this, we use computers and special programs. Such a program
was used to obtain that the set of Leptons is an Hv-group.
Hv-structures have applications in Biology, as one can see in the book [10].

These can be achieved in collaboration with biologists who point out the ob-
jects, as well as the reactions between them. The next step is to find appropriate
Hv-structures, and the final step is to find which of the properties these special
Hv-structures have can be applied. Among these applications, we present the
following:



From structures to weak hyperstructures – JMMR Vol. 15, No. 1 (2026) 13

Example 6.1 Take the set of all blood types people may have: H =
{O,A,B,AB}. Then take the operation (⊗), where ’in the blood types of
parents correspond to the types their child may have’. The (⊗) is a hyper-
product, as the research states, given by the table:

⊗ O A B AB
O O O, A O, B A, B
A O, A O, A O, A, B, AB A, B, AB
B O, B O, A, B, AB O, B A, B, AB

AB A, B A, B, AB A, B, AB A, B, AB

The weak associativity, not strong, is valid, as we can see in, for example,
(O ⊗ B) ⊗ AB = {O,B} ⊗ AB = {A,B,AB}, O ⊗ (B ⊗ AB) = O ⊗

{A,B,AB} = {O,A,B}.
Thus, (H,⊗) is an Hv-semigroup, and ({O,A},⊗), ({O,B},⊗) are hyper-

groups.
If we extend the blood types by using (+) and (-), then we have the set
H = {O+, O−, A+, A−, B+, B−, AB+, AB−},
on which we obtain again that (H,⊗) is an Hv-semigroup.
In teaching, education, art, and philosophy, there are several applications of

hyperstructures, which come from properties, mainly the weak ones, they have
[16], [32], [34].

In arts, we can see how a sculptor, taking a piece of marble, constructs a
statue. By using the chisel, he throws away all the useless pieces of marble.
Thus, he does exactly what mathematicians do in weak hyperstructures, with
the axioms, expel the useless hyperstructures. This is the same method which
we use in Lie-Santilli admissible theory.

We cannot find the fundamental classes in an analytic way since they depend
on all results of all hyper-operations. Thus, we need new proofs and special
elements. We need a special proof in order to discover the ’reason’ why we have
these results. Any relation uses even the last one result to determine its classes.
If there are special elements, as the singles, which are strictly formed and carry
inside them the relation, then these elements form the classes. We call this
procedure ’judging from the results proof’ and it looks like the ’reductio ad
absurdum’ proof [31], [32].

The main question in helix-operations is the following: Can we use the real
meaning of them in other sciences under similar circumstances? The helix-
product acts as follows: It replaces and shifts elements together with the corre-
sponding ones, treating them in the same way. This is a modulo-like procedure
and reminds us of the repetition in teaching or the motivo in music composi-
tions [9], [15].

In applications, especially in physics, researchers need strict and complicated
hyperstructures; thus, several wide classes were introduced even from examples.

Denote Eij the matrix with 1 in the ij entry and 0 elsewhere.
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Example 6.2 Take the 2× 2 upper triangular Hv-matrices on the Hv-field
(Z4,+,⊗) with 3⊗ 2 = {0, 2}.
In the set X = {a, a1, a2, a3, b, b1, b2, b3, c, c1, c2, c3, d, d1, d2, d3} with:

a = E11 + E22, a1 = E11 + E12 + E22, a2 = E11 + 2E12 + E22,

a3 = E11 + 3E12 + E22,

b = E11 + 3E22, b1 = E11 + E12 + 3E22, b2 = E11 + 2E12 + 3E22,

b3 = E11 + 3E12 + 3E22,

c = 3E11 + E22, c1 = 3E11 + E12 + E22, c2 = 3E11 + 2E12 + E22,

c3 = 3E11 + 3E12 + E22,

d = 3E11 + 3E22, d1 = 3E11 + E12 + 3E22, d2 = 3E11 + 2E12 + 3E22,

d3 = 3E11 + 3E12 + 3E22,

we have: (X,⊗) is a weak commutative Hv-group, fundamental classes a =
{a, a2}, a1 = {a1, a3}, b = {b, b2}, b1 = {b1, b3}, c = {c, c2}, c1 = {c1, c3},
d = {d, d2}, d1 = {d1, d3}, and there is the unit a, and every element has a
unique double inverse. The c2 is the right inverse to c and c2, and the d2 is the
right inverse to d and d2. (X,⊗) is not cyclic, since (X,⊗) is not cyclic.

7. Conclusions

On the way from structures to hyperstructures, the fundamental relations
are always used. The generalization of axioms to the corresponding weak ones
leads to the largest class of hyperstructures, the Hv-structures. The number of
Hv-structures defined on a set is extremely big; therefore, they admit a lot of
applications in applied sciences and in pure mathematics as well. In order to
find, in applied sciences, an appropriate model from weak hyperstructures, one
needs more axioms. This is the reason that the Hv-structures can give models
to strict and complex sciences such as hadronic mechanics and biology.

A numerous of sciences, ranging from physics up to medicine and DNA,
ask from Hv-structures mathematical models. Some of them are very hard
projects and need the collaboration of several scientists. On the other side,
new concepts and structures appeared in mathematics themselves, such as the
e-hyperstructures, which are very interesting to be studied.
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