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Abstract. In recent years, various goodness-of-fit tests have been devel-
oped to identify the underlying distribution of failure data. In this paper,
we extend the application of such tests to evaluate the adequacy of imper-
fect maintenance models for engineering systems. Specifically, we investi-
gate and compare three types of test statistics: those based on martingale
residuals, the probability integral transform, and varentropy—a concept
derived from information theory. The null hypothesis assumes that the
failure times follow the ARA∞ model with a power law process (PLP)
as the initial hazard rate. To evaluate the performance of the proposed
tests, we conduct extensive simulation studies under different alternative
maintenance models (e.g., ARA1, ARA∞–Log Linear Process(LLP)) and
varying parameter settings. Our findings show that the power of the tests
varies depending on the nature of the alternatives, and varentropy-based
statistics outperform others under certain conditions. Finally, we ap-
ply the proposed methods to a real dataset (Ambassador vehicle failure
times) to assess their practical relevance. The results confirm the validity
of the fitted model and demonstrate the usefulness of varentropy-based
approaches for detecting subtle deviations in maintenance patterns.
Keywords: Bootstrap, Goodness-of-fit test, Imperfect maintenance, Re-
pairable systems, Varentropy.
2020 MSC : 62G10, 62N05.

1. Introduction
Reliability studies often involve systems with high replacement costs, making

maintenance essential for their continuous operation. Maintenance significantly
affects a system’s reliability, and understanding its impact is crucial. Two
primary maintenance models are commonly used: minimal repair and complete
repair.

Minimal repair assumes that after maintenance, the system’s hazard rate
(the probability of failure) remains unchanged, effectively leaving it “as bad
as old.” In contrast, complete repair restores the system to an “as good as
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new” condition, resetting its hazard rate. However, reality often lies between
these extremes. Imperfect maintenance acknowledges that while maintenance
improves a system’s performance, it may not fully restore it to its original state.
The system’s hazard rate after imperfect maintenance falls between the “as bad
as old” and “as good as new” states.

In this context, understanding and assessing the effectiveness of mainte-
nance models becomes essential. This research focuses on a repairable system
under imperfect repair, emphasizing corrective maintenance, where repairs are
conducted after a system failure, followed by restarting the system. The study
specifically investigates the sequence of failures or corrective maintenance times
within a system and evaluates the goodness-of-fit for several maintenance mod-
els.

This article examines several maintenance models, such as ARA1 (Arith-
metic Reduction of Age 1), ARA∞ (Arithmetic Reduction of Age Infinity),
QR (Quasi-Renewal), EGP (Extended Geometric Process) and BP (Brown–
Proschan).
The incomplete maintenance model comprises two components:

• Initial Hazard Rate: Describes the inherent wear of the system before
any maintenance.

• Effect of Maintenance: If the system’s hazard rate remains unchanged
after maintenance, the model is considered ’as bad as old,’ and the
counting process follows a non-homogeneous Poisson process with haz-
ard rate λt = l(t) for t ≥ 0, where l(t) is the system’s initial hazard
rate.

Typically, the first failure time is assumed to follow a Weibull distribution,
resulting in the initial intensity being that of a Power Law Process (PLP), given
by l(t) = abtb−1 where a > 0 and b > 0, for t ≥ 0. In practice, the intensity of
a Log-Linear Process (LLP) is also considered, expressed as l(t) = exp(a+ bt)
where a, b ∈ R, for t ≥ 0. Maintenance can also restore the system to an “as
good as new” state, in which case the times between successive failures are
identically distributed and independent, and the counting process is a renewal
process with hazard rate λt = l(t − TNt−

) for t ≥ 0. Now, we present an
overview of some known imperfect repair models, where their hazard functions
of the proposed imperfect repair after the repair actions are in Table 1.

• ABAO (As Bad As Old [12]): The system’s hazard rate remains un-
changed after maintenance.

• AGAN (As Good As New [30]): The system’s hazard rate is reset to
its initial state after maintenance. The TNt−

is the last time before the
most recent repair time.

• BP (Brown–Proschan [7]): After each failure, with probability p, a
perfect repair is performed, and with probability 1 − p, a minimal
repair is performed. In Table 1, Ck’s are independent and identically
distributed random variables with a Bernoulli distribution parameter
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p such that Cr = 1 if the r-th repair is complete and Cr = 0 if the r-th
repair is minimal.

• QR (Quasi-Renewal [30]): The times between failures follow a geomet-
ric process influenced by the system’s aging or rejuvenation. q > 0 is a
parameter that determines the effect of the repair.

• EGP (Extended Geometric Process [6]): A generalized version of the
QR model with varying intervals between failures, where {gi}{i∈N} is
an increasing sequence of positive real numbers such that g1 = 0 and
limi→∞ gi = ∞.

• ARA∞ (Arithmetic Reduction of Age Infinity [15]): The virtual age
model with infinite memory is multiplied from the beginning to time
t. Maintenance reduces the effective age by a repair factor ρ ≤ 1. The
repair factor, or ρ, is a parameter that determines the efficiency of
maintenance.

• ARA1 (Arithmetic Reduction of Age 1 [15]): The virtual age model
with memory one is multiplied by a factor in each interval. Maintenance
reduces the effective age by a fixed proportion ρ. The repair factor, or
ρ, is a parameter that determines the efficiency of maintenance.

Table 1. Hazard rate functions for different imperfect repair
models.

Model Hazard Rate Function
ABAO λt = l(t)
AGAN λt = l(t− TNt−

)

BP λt = l(t− TNt−
+
∑Nt−

j=1 (
∏Nt−

k=j [1− Ck])(Tj − Tj−1))

QR λt = q−Nt− l(q−Nt− (t− TNt−
))

EGP λt = q−gi l(q−gi(t− TNt−
))

ARA∞ λt = l(t− ρ
∑Nt−−1

j=0 (1− ρ)jTNt−−j)

ARA1 λt = l(t− ρTNt−
)

Figures 2 and 1 illustrate the intensity plots for models ARA∞ and ARA1,
respectively. Both figures use an initial Weibull distribution with parameters
(1, 3) and a repair factor of 0.2. The models are plotted for 7 failure times. A
critical aspect of reliability analysis is evaluating whether observed data aligns
with a specific model. Goodness-of-fit tests play a crucial role in this process,
particularly in the context of imperfect maintenance models. These tests help
check if the chosen model fits the observed data well. Traditional goodness-
of-fit tests, such as those described by D’Agostino and Stephens [13], aim to
transform data into a state where it is identically distributed and independent.
Techniques like conditional probability integral transforms (Gaudoin [18]) and
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Figure 1. Plot of the failure intensity for ARA∞ model.

Figure 2. Plot of the failure intensity for ARA1 model.

sequential transforms (Crétois et al. [11]) fall into this category. Other ap-
proaches have been proposed by Park and Kim [24], Zhao and Wang [31], and
Lindqvist and Rannestad [22].

Lindqvist et al. [21] and Liu et al. [23] developed methods for goodness-of-fit
tests in imperfect maintenance models, focusing on transforming failure times
into uniform random variables. However, these studies lacked simulation-based
performance evaluations. Chauvel et al. [8] introduced goodness-of-fit tests
using parametric bootstrap for examining imperfect maintenance models.

Incorporating recent advancements, Varentropy has demonstrated growing
significance across diverse research fields. For instance, Saha and Kayal [26]
proposed a weighted (residual) varentropy framework and showcased its effec-
tiveness in various applied contexts, while Leonenko et al. [20] developed a novel
estimation method for varentropy based on nearest neighbor graphs, enhancing
its applicability in high-dimensional settings. Furthermore, Alizadeh Noughabi
and Shafaei Noghabi [4] applied varentropy estimators to develop goodness-of-
fit tests for the Gumbel distribution, demonstrating favorable power properties.
Additionally, Alizadeh Noughabi [3] introduced varentropy estimators for con-
structing tests of uniformity, which performed well against various alternatives.
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These studies collectively highlight the increasing interest and utility of Varen-
tropy in enhancing the robustness and applicability of both predictive models
and goodness-of-fit tests across diverse research areas.

This paper aims to demonstrate that test statistics based on martingale
residuals, probability integral transform, and varentropy outperform those pro-
posed by Chauvel et al. [8] in terms of power. This is evidenced through a
detailed comparison and analysis of various test results. The findings suggest
that these statistics are particularly effective at detecting patterns and changes
in data.

The research employs simulations to generate synthetic data from different
models and evaluate the performance of the statistics. The simulation results
underscore the superior ability of these statistics to detect changes and patterns
under various conditions.

In the second section, the importance of goodness-of-fit tests in reliability
analysis was discussed and various methods were introduced. The third sec-
tion detailed the simulation methodology used to evaluate the performance of
proposed statistics. The fourth section presented the results, showing the su-
perior power of the proposed methods. Finally, the fifth section concluded that
the proposed statistics are effective tools for detecting patterns and changes in
data.

2. Parametric Bootstrap Goodness-of-Fit Analysis
The imperfect maintenance model is characterized by its hazard rate func-

tion, defined as:

P = {λ(θ) | θ ∈ Θ ⊂ Rd}

where θ represents the model parameter. Our goal is to assess whether P is an
appropriate model for the observed data T1, . . . , Tn. The goodness-of-fit test is
formulated as:

H0 : λ ∈ P versus H1 : λ /∈ P.

We aim to reject the null hypothesis when the test statistic falls within the
critical region, determined using the exact or asymptotic distribution quantiles
of the statistic under H0. Therefore, we seek a test statistic that quantifies
the discrepancy between the data and the model, allowing us to determine the
distribution of the statistic under H0.

Bootstrap Methods: Chauvel et al. [8] proposed two families of goodness-
of-fit tests based on martingale residuals and probability integral transforms.
For each test, the quantiles of the statistics under H0 are calculated using
parametric bootstrap methods.

Bootstrap methods, introduced by Efron [17], are part of a larger class of
resampling methods. The general idea behind these methods is that observa-
tions contain all the information about their distribution without making any
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additional assumptions. For more information on bootstrap, refer to Tibshi-
rani and Efron [28] and Davison and Hinkley [14]. Chauvel et al. [8] fitted a
parametric model to the data and used parametric bootstrap goodness-of-fit
tests derived from the method developed by Stute et al. [27] for identically
distributed and independent random variables.

Suppose W (θ̂) represents the test statistic. Under the null hypothesis H0,
W (θ̂) is derived from the dataset T1, . . . , Tn, which originates from a point
process characterized by the hazard rate λ(θ). A point process describes data
as a collection of irregular and random points within a specified region (Vere-
Jones and Daley, [29]). Our objective is to obtain times that are identically
distributed and independent of W (θ̂) to compute empirical quantiles. Since
the parameter θ is unknown, we estimate it with θ̂ and simulate identically
distributed and independent times T ∗

1 , . . . , T
∗
n from a point process with hazard

rate λ(θ̂). For each sample of times, the maximum likelihood estimator θ∗ and
the test statistic W ∗(θ̂) can be computed. The similarity between θ and θ̂
implies that we expect minimal differences between the empirical quantiles of
W (θ̂) and W ∗(θ̂).

General Bootstrap Method: The general bootstrap method for applying
the test is outlined in the following steps:

1. Calculate the Estimate: Determine the maximum likelihood estimate θ̂
within the class of models P and compute the statistic W (θ̂) using the dataset
T1, . . . , Tn.
2. Bootstrap Sampling:
• For i = 1 to L:
• Generate bootstrap samples T ∗

n,1, . . . , T
∗
n,i under the model with hazard rate

λ(θ̂) ∈ P .
• Calculate the maximum likelihood estimate θ̂i

∗
from the bootstrap samples

T ∗
n,1, . . . , T

∗
n,i within the model P .

• Compute the bootstrap test statistic Wi = Wi(θ̂
∗
i ) from the bootstrap sam-

ples and the estimate θ̂i
∗
.

3. Hypothesis Testing: Compare the observed test statistic W (θ̂) with the em-
pirical quantiles of order 1−α derived from the bootstrap statistics W ∗

1 , . . . ,W
∗
L.

Based on this comparison, decide whether to reject the null hypothesis H0 at
the significance level α.
All simulations and analyses have been conducted using the R programming
software.

2.1. Tests Based on Martingale Residuals. Consider the residuals M̂ =
d − ê, which calculate the difference between what we observed and what we
expected during the period the system was at risk. Positive values mean the
system failed earlier than expected, and negative values mean the system lasted
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longer than expected. The stochastic process M = (Mt)t≥0 where

E(M(t)) = 0, ∀t,
E[M(t)|M(s)] = M(s), ∀s < t.

is known in statistics as a martingale (Andersen et al. [5]). Now, suppose
Λ = (Λt)t≥0 represents the cumulative hazard rate of the process N, such that
Λt =

∫ t

0
λsds for t ≥ 0. The process M = (Mt)t≥0 defined as M = N − Λ is a

zero-mean martingale. Thus, N is close to Λ in the sense that we expect their
difference to be zero. In the hypotheses, the hazard rate has a parametric form
and is represented as λ(θ) = (λt(θ))t≥0 for θ ∈ Θ ⊂ Rd. The cumulative hazard
rate is Λ(θ) and the corresponding martingale is M(θ) = N−Λ(θ). In practice,
the parameter θ is unknown and the cumulative hazard rate is estimated from
T1, ..., Tn. Suppose θ̂ is the maximum likelihood estimator of θ. The random
variables M̂1, ..., M̂n are defined as:

M̂i = NTi − ΛTi(θ̂), i ∈ {1, ..., n},

which are referred to as martingale residuals (Cook and Lawless [9]). It is
anticipated that N closely approximates Λ(θ).
The first group of goodness-of-fit tests is based on the discrepancy between
N and Λ(θ). These tests reject the validity of the model if the two processes
diverge significantly. Chauvel et al. [8] introduced three test statistics based
on martingale residuals. The first is a Kolmogorov-Smirnov type statistic:

(1) KSm(θ̂) = sup
i=1,...,n

|M̂i| = sup
i=1,...,n

|i− ΛTi
(θ̂)|.

The second is a Cramér-von Mises type statistic as:

(2) CvMm(θ̂) = −1

3

n∑
i=1

{(i− 1− ΛTi
(θ̂))3 − (i− 1− ΛTi−1

(θ̂))3}.

The third is an Anderson-Darling type statistic:

ADm(θ̂) =
1

(n+ 1)

n∑
i=2

{(i− 1)2 log (
ΛTi(θ̂)

ΛTi−1(θ̂)
)(3)

− (n+ 2− i)2 log (
n+ 1− ΛTi(θ̂)

n+ 1− ΛTi−1(θ̂)
)}

+ (n+ 1) log (1− ΛT1
(θ̂)

n+ 1
)− n.

The distribution of test statistics under the null hypothesis does not follow
standard distributions and may be parameter-dependent. Consequently, their
quantiles need to be determined using parametric bootstrap methods. If the
values of the statistics in (1) to (3) exceed their parametric bootstrap quantiles,
the null hypothesis is rejected.
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2.2. Tests Based on Probability Integral Transform. The second cate-
gory of tests relies on the random variables ΛTi+1(θ)−ΛTi(θ) for i = 0, . . . , n−1.
Under the null hypothesis H0, these variables are identically distributed and
independent, following a standard exponential distribution (Cook and Law-
less [9]). For i = 0, . . . , n − 1, let F (·|Ti; θ) be the reliability function of the
failure time Ti+1 − Ti conditional on Ti = (T1, T2, . . . , Ti), then

F (a|Ti; θ) = P (Ti+1 − Ti > a|Ti; θ) = exp(−ΛTi+a(θ) + ΛTi
(θ)), a ≥ 0.

We introduce the variables Ui(θ) = F (Ti+1 − Ti|Ti; θ) for i = 0, . . . , n− 1. Un-
der the null hypothesis H0 : λ ∈ V , the Ui variables are identically distributed
and independent, following a standard uniform distribution. This transforma-
tion of failure times is commonly known as the probability integral transform.
It involves applying a cumulative distribution function to a random variable
(D’Agostino and Stephens [13]). In probability theory, this transformation
demonstrates that data values modeled as random variables from any con-
tinuous distribution can be converted into random variables with a standard
uniform distribution. When the cumulative distribution function is conditional
on past values, it is referred to as the Rosenblatt transform (Rosenblatt [25]),
also known as the conditional probability integral transform.
The second type of goodness-of-fit tests relies on the conditional probability
integral transform of the inter-failure times. If there is a lack of fit, the uni-
formity assumption will no longer hold. In practice, θ is estimated, and the
Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling test statistics
are used to test the uniformity of U0(θ̂), . . . , Un−1(θ̂) (Chauvel et al. [8]). The
test statistics are as follows:

KSu(θ̂) =
√
nmax{ max

i=1,...,n
(
i

n
− U(i−1)(θ̂)), max

i=1,...,n
(U(i−1)(θ̂)−

i− 1

n
)}.(4)

CvMu(θ̂) =

n∑
i=1

(U(i−1)(θ̂)−
2i− 1

2n
)2 +

1

12n
.(5)

ADu(θ̂) = −n− 1

n

n∑
i=1

(2i− 1){log(U(i−1)(θ̂)) + log(1− U(i−1)(θ̂))}.(6)

where U(0)(θ̂), . . . , U(n−1)(θ̂) are the order statistics of Ui(θ̂). If the values of
the statistics in (4) to (6) exceed their parametric bootstrap quantiles, the null
hypothesis is rejected.

2.3. Proposed Tests Based on Varentropy. Previous studies have utilized
varentropy as a tool for testing the goodness-of-fit of data to specific probability
distributions. In this work, we extend the application of varentropy-based test
statistics to assess the suitability of imperfect maintenance models. Specifi-
cally, we explore the potential of these statistics in identifying whether the
transformed data follow a uniform distribution, which is a key step in model
validation via the probability integral transform. Varentropy is a measure of
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the variability or dispersion in the informational content of a random variable.
It provides deeper insights into the uncertainty structure of data beyond tradi-
tional entropy measures. For a continuous random variable T with a probability
density function f , the varentropy of T is given by:

Var[log(f(t))] =
∫ +∞

−∞
f(t)(log(f(t)))2dt−

(∫ +∞

−∞
f(t) log(f(t))dt

)2

Alizadeh Noughabi and Shafaei Noughabi [4] proposed the following test sta-
tistics based on varentropy:

(7) V Vmn =
1

n

n∑
i=1

(
log2(U(i+m) − U(i−m))

)
−

(
1

n

n∑
i=1

log(U(i+m) − U(i−m))

)2

and
(8)

V Emn =
1

n

n∑
i=1

(
log2

(
rim/n

U(i+m) − U(i−m)

))
−

(
1

n

n∑
i=1

log

(
rim

n

1

U(i+m) − U(i−m)

))2

Ebrahimi et al. [16] introduced the coefficient ri as follows:

ri =


1 + i−1

m 1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m,

1 + n−i
m n−m+ 1 ≤ i ≤ n.

In these statistics, m = [
√
n + 0.5] and if i +m > n, then i +m = n. Also, if

i−m < 1, then i−m = 1
Here, U(i) denotes the i-th order statistic of the transformed data Ui, obtained
through the probability integral transform. The parameter m defines a window
size around each data point and is chosen to balance bias and variance in the
estimation process.
To avoid invalid indexing when i is near the dataset boundaries, the conditions
i + m > n and i − m < 1 are handled by setting i + m = n and i − m = 1,
respectively. This ensures that the window remains within valid bounds and
the statistics are well-defined throughout the data range.

3. Simulation Methodology
To assess the performance of the test statistics, we applied them to a large

number of simulated datasets. The power of a test is estimated by the per-
centage of times the null hypothesis is rejected. First, we need to ensure that
the significance level of the tests is well-maintained. The empirical level is the
percentage of times H0 is rejected when data are simulated under H0. The
empirical level should be close to the theoretical level α. When data are sim-
ulated under a different model, the rejection percentage should be as high as
possible.
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We assumed the significance level of the test to be α = 0.05. The null
hypothesis corresponds to the imperfect maintenance model ARA∞ (Kijima
Type II model) with an initial hazard rate PLP. This model is denoted by
ARA∞ − PLP . More precisely, we have:

H0 : λ ∈ P =

{
ab(t− ρ

Nt−−1∑
j=0

(1− ρ)jTNt−−j)
b−1, t ≥ 0, a > 0, b ≥ 1, 0 ≤ ρ ≤ 1

}
,

H1 : λ /∈ P.

The power of the test is calculated by simulating data from models that are
not described by the null hypothesis H0. For assessing the maintenance effect,
we selected the following models: ARA1, ARA∞, BP , QR, and EGP . For the
ARA models, we used ρ ∈ {0.2, 0.8}, representing low and strong maintenance
effects, respectively. For the BP model, we selected p ∈ {0.2, 0.8}, and for the
QR model, q ∈ {0.8, 0.9, 0.95}. When q approaches 1, the counting process
behaves like a renewal process. For the EGP model, q ∈ {0.8, 0.9, 0.95} and
gi = i− 1 or gi =

√
i− 1 for i ∈ {1, . . . , n}.

For the initial hazard rate, we first selected a PLP with a scale parameter a =
0.05 and a shape parameter b ∈ {1.5, 2, 2.5, 3}. We also considered the initial
hazard rate LLP with a = −5 and b ∈ {0.005, 0.01, 0.05, 0.1}. To generate data
from the ARA1, ARA∞, QR, and EGP models, we used the VAM package
developed at the LJK laboratory in Grenoble, available in the R programming
language. For generating data from the BP model, we employed the algorithm
introduced by Augustin and Pena [1].

For each model, we simulated M = 1000 datasets, each consisting of n = 30
time points. The parameters were estimated using the maximum likelihood
method under the constraints b ≥ 1 and ρ ∈ [0, 1]. These constraints ensure
that the system is deteriorating and maintenance is effective. To evaluate the
quantiles of the statistical distributions, we generated L = 1000 bootstrap
samples.

4. Results and Discussion
For examining the Type 2 error, we first considered the hypothesis ARA∞−

PLP against the hypothesis ARA∞ − PLP . Table 2 presents the empirical
levels, which are close to the theoretical level α = 0.05.
When data are simulated under the ARA1 −PLP model, the test powers are

generally low. According to Table 3, for ρ = 0.2 and b = {1.5, 2}, the highest
power is achieved by the test statistic V Emn. When ρ = 0.2 and b = 2.5,
the highest power is achieved by the test statistics V Emn and V Vmn. When
ρ = 0.2 and b = 3, the highest power is achieved by the test statistics V Emn

and KSv. For ρ = 0.8 and b = 1.5, the highest power is achieved by the test
statistic CvMm. When ρ = 0.8 and b = 2, the highest power is achieved by the
test statistic ADm. When ρ = 0.8 and b = 2.5, the highest power is achieved
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Table 2. Actual error rates of the tests for ARA∞ − PLP
model.

ρ 0.2 0.8
b 1.5 2 2.5 3 1.5 2 2.5 3

KSm 0.059 0.057 0.061 0.049 0.056 0.055 0.051 0.051
CvMm 0.050 0.035 0.052 0.046 0.064 0.056 0.049 0.065
ADm 0.050 0.038 0.039 0.047 0.060 0.056 0.057 0.056
KSv 0.061 0.066 0.055 0.067 0.053 0.048 0.045 0.052
Cvmv 0.054 0.065 0.060 0.060 0.042 0.048 0.041 0.061
ADv 0.049 0.071 0.059 0.062 0.042 0.042 0.043 0.052
V Vmn 0.055 0.059 0.050 0.051 0.062 0.051 .053 0.046
V Emn 0.041 0.054 0.053 0.051 0.054 0.049 0.048 0.053

Table 3. Power of the tests for the ARA∞ − PLP model
against the ARA1 − PLP Model.

ρ 0.2 0.8
b 1.5 2 2.5 3 1.5 2 2.5 3

KSm 0.035 0.026 0.026 0.019 0.128 0.086 0.013 0.040
CvMm 0.033 0.031 0.030 0.019 0.158 0.113 0.020 0.040
ADm 0.049 0.052 0.053 0.050 0.126 0.114 0.073 0.031
KSv 0.064 0.057 0.044 0.065 0.041 0.054 0.092 0.130
Cvmv 0.065 0.062 0.062 0.058 0.034 0.049 0.103 0.153
ADv 0.065 0.055 0.059 0.048 0.041 0.038 0.077 0.109
V Vmn 0.067 0.064 0.065 0.064 0.060 0.061 0.106 0.064
V Emn 0.069 0.066 0.065 0.065 0.061 0.063 0.107 0.061

by the test statistics V Emn. When ρ = 0.8 and b = 3, the highest power
is achieved by the test statistics CvMv. Based on the stated results, it can
be said that the test statistics based on varentropy perform better when the
alternative hypothesis is ARA1 − PLP .

When data are simulated under the ARA∞ − LLP model, the test powers
are generally low. According to Table 4, for ρ = 0.2 and b = 0.005, the highest
power is achieved by the test statistics V Emn, V Vmn, ADv, KSv, and ADm.
When ρ = 0.2 and b = {0.01, 0.05}, the highest power is achieved by the test
statistic ADm. When ρ = 0.2 and b = 0.1, the highest power is achieved by
the test statistics V Emn and V Vmn. For ρ = 0.8 and b = {0.005, 0.01, 0.05},
the highest power is achieved by the test statistic V Emn. When ρ = 0.8 and
b = 0.1, the highest power is achieved by the test statistic ADv. Based on
the stated results, it can be said that the test statistics based on varentropy
perform better when the alternative hypothesis is ARA∞ − LLP .
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Table 4. Power of the tests for the ARA∞ − PLP model
against the ARA∞ − LLP model. (a = −5).

ρ 0.2 0.8
b 0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1

KSm 0.050 0.031 0.035 0.049 0.039 0.058 0.035 0.049
CvMm 0.049 0.043 0.044 0.042 0.039 0.046 0.048 0.052
ADm 0.054 0.081 0.075 0.065 0.039 0.068 0.055 0.048
KSv 0.054 0.059 0.057 0.048 0.065 0.056 0.076 0.078
Cvmv 0.052 0.051 0.061 0.051 0.091 0.060 0.084 0.092
ADv 0.054 0.058 0.061 0.052 0.078 0.059 0.098 0.109
V Vmn 0.054 0.063 0.059 0.068 0.093 0.070 0.098 0.093
V Emn 0.054 0.069 0.061 0.068 0.095 0.072 0.099 0.099

When data are simulated under the QR−PLP model, the power of the tests

Table 5. Power of the tests for the ARA∞ − PLP model
against the QR model.

b 1.5 2 2.5
q 0.8 0.9 0.95 0.8 0.9 0.95 0.8 0.9 0.95

KSm 0.582 0.963 0.556 0.854 1 0.637 0.952 1 0.672
CvMm 0.504 0.975 0.435 0.864 1 0.641 0.963 1 0.658
ADm 0.691 0.994 0.634 0.939 1 0.741 0.989 1 0.789
KSv 0.039 0.043 0.027 0.045 0.030 0.027 0.050 0.029 0.019
Cvmv 0.036 0.039 0.025 0.047 0.033 0.026 0.065 0.021 0.016
ADv 0.027 0.027 0.025 0.043 0.035 0.034 0.052 0.024 0.017
V Vmn 0.056 0.063 0.053 0.094 0.065 0.064 0.098 0.065 0.066
V Emn 0.054 0.062 0.055 0.096 0.066 0.064 0.095 0.065 0.064

generally increases as b increases, while keeping q constant. As q approaches 1,
the model becomes more similar to the renewal process model, resulting in a
decrease in the power of all tests. Tests based on martingale residuals are signif-
icantly more powerful than those based on entropy and the probability integral
transform. Referring to Table 5, for q = {0.8, 0.9, 0.95} and b = {1.5, 2, 2.5},
the test statistic ADm, which is based on martingale residuals, demonstrates
the highest power among the test statistics.
When data are simulated under the EGP−PLP model, the power of the tests

generally increases as b increases, while keeping q constant. As q approaches
1, the model becomes more similar to the renewal process model, leading to a
decrease in the power of all tests. Tests based on martingale residuals are signif-
icantly more powerful than those based on entropy and the probability integral
transform. Referring to Table 6, for q = {0.8, 0.9, 0.95} and b = {1.5, 2, 2.5},
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Table 6. Power of the tests for the ARA∞ − PLP model
against the EGP model.

b 1.5 2 2.5
q 0.8 0.9 0.95 0.8 0.9 0.95 0.8 0.9 0.95

KSm 0.265 0.107 0.069 0.428 0.115 0.075 0.537 0.161 0.080
CvMm 0.237 0.064 0.049 0.401 0.073 0.049 0.520 0.116 0.047
ADm 0.421 0.114 0.072 0.691 0.181 0.089 0.855 0.266 0.082
KSv 0.045 0.048 0.061 0.059 0.043 0.048 0.047 0.038 0.042
Cvmv 0.041 0.040 0.057 0.056 0.035 0.059 0.041 0.040 0.041
ADv 0.040 0.041 0.050 0.047 0.032 0.052 0.043 0.043 0.042
V Vmn 0.065 0.065 0.066 0.056 0.054 0.060 0.077 0.062 0.059
V Emn 0.067 0.062 0.065 0.055 0.054 0.061 0.081 0.064 0.060

the test statistic ADm, which is based on martingale residuals, demonstrates
the highest power among the test statistics.
When data are generated from the BP − PLP model, we have the following

Table 7. Power of the tests for the ARA∞ − PLP model
against the BP model.

p 0.2 0.8
b 1.5 2 2.5 3 1.5 2 2.5 3

KSm 0.035 0.018 0.031 0.029 0.030 0.040 0.038 0.032
CvMm 0.033 0.027 0.026 0.031 0.031 0.045 0.034 0.034
ADm 0.052 0.042 0.038 0.042 0.052 0.046 0.040 0.039
KSv 0.054 0.059 0.059 0.070 0.065 0.061 0.034 0.042
Cvmv 0.049 0.055 0.055 0.076 0.064 0.063 0.040 0.063
ADv 0.056 0.058 0.059 0.071 0.064 0.059 0.036 0.060
V Vmn 0.056 0.058 0.059 0.071 0.064 0.059 0.036 0.060
V Emn 0.054 0.062 0.065 0.068 0.065 0.063 0.038 0.061

results: If ρ = 0.2 and b = 1.5, the test statistics ADv (based on the probability
integral transform) and V Vmn (based on varentropy) have the highest power.
If ρ = 0.2 and b = {2, 2.5}, the test statistic V Emn has the highest power. If
ρ = 0.2 and b = 3, the test statistic Cvmv (based on the probability integral
transform) has the highest power. If ρ = 0.8 and b = 1.5, the test statistic KSv

(based on the probability integral transform) has the highest power. If ρ = 0.8
and b = 2, the test statistics Cvmv (based on the probability integral trans-
form) and V Emn (based on varentropy) have the highest power. If ρ = 0.8
and b = 2.5, the test statistics ADm and Cvmv have the highest power. If
ρ = 0.8 and b = 3, the test statistic Cvmv has the highest power. Based on
the results and conditions presented, it appears that if data are generated from
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the BP − PLP model, the tests based on the probability integral transform
generally perform better in most conditions.

5. Application to Real-World Data
To validate the effectiveness of our proposed goodness-of-fit tests, we applied

them to the AMC dataset, which includes 18 failure times for Ambassador ve-
hicles used by the Ohio state government. This dataset has been widely used
in reliability studies, particularly in Bayesian analysis, making it a suitable
benchmark for evaluating the performance of our tests.
Sources of the data: These failure times are based on a dataset that has
been studied in various reliability research articles, including the work of Ahn,
Chae, and Clark [2], and more recently in Bayesian analyses by Guilda and
Pulcini [19] and Corset et al. [10]. This set of data has been utilized as a stan-
dard example in numerous reliability modeling studies.
We examined the ARA∞ − PLP model using three distinct approaches: Mar-
tingale residuals, integral probability transforms, and varentropy-based test
statistics. A total of eight different test statistics were applied to assess the
model’s goodness-of-fit. The estimated parameter values and corresponding
p-values for each test statistic are presented in Table 8.

Table 8. Results of Varentropy-Based Tests on AMC Dataset

Parameter Estimated Value
â 2.11× 10−11

b̂ 3.58
ρ̂ 0.25
Test Statistic P-Value
KSm 0.264
CvMm 0.145
ADm 0.174
KSv 0.198
Cvmv 0.197
ADv 0.187
V Vmn 0.129
V Emn 0.134

Considering the results presented in Table 8, the p-values associated with
all test statistics unequivocally support the acceptance of the null hypothe-
sis, thereby lending strong credence to Model ARA∞ − PLP as the superior
representation. Specifically, the absence of statistically significant evidence to
reject the null hypothesis across all tests suggests that Model ARA∞ − PLP
provides a more accurate and robust characterization of the underlying phe-
nomenon compared to alternative formulations.
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6. Conclusion
In this study, we evaluated the goodness-of-fit for the ARA∞ −PLP model

using several alternative hypotheses, including ARA1, ARA∞ − LLP , QR,
EGP , and BP . The null hypothesis was the ARA∞ − PLP model. Our key
contribution lies in the introduction and application of varentropy-based test
statistic (V Emn) to detect deviations from imperfect maintenance models a
methodological direction not previously addressed in the literature. Simulation
results demonstrate that while V Emn shows high sensitivity under specific
alternatives such as ARA1 and ARA∞–LLP, it does not dominate across all
scenarios. In contrast, the martingale-based ADm test outperforms in settings
like QR and EGP , and Cvmv is optimal for the BP model. These findings
emphasize the importance of tailoring the choice of test statistic to the expected
pattern of deviation. In cases where no specific alternative is hypothesized,
a combination of V Emn and ADm is recommended. The findings from this
study highlight that selecting different tests based on the type of alternative
hypothesis can significantly improve the detection of patterns and changes in
data, thereby enhancing the performance of reliability analysis.
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