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Abstract. In this paper, we introduce a generalized measure of extropy
based on k-records and study its properties. We show that several exist-

ing extropies, such as survival, negative cumulative, past and weighted

extropy are special cases of this generalized measure of extropy. We also
propose a dynamic generalized measure of extropy based on k-records

which includes residual extropy, dynamic survival extropy and weighted

dynamic survival extropy. A generating function is discussed using this
generalized extropy measure, using which we provide different extropy

and entropy measures. Some important properties of generalized extropy

of k-records and generating function are derived. We use simulation to
assess the bias and mean squared error of the estimator of the generalized

extropy and compute its values for real data.

Keywords: Generalized extropy, Generating function, Survival extropy,

Weighted extropy.
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1. Introduction

Extropy, in a broad sense, is a term used to describe a theoretical measure
of a system’s intelligence, order, or complexity. It is often considered as the
opposite or counterpoint to entropy, which measures the degree of disorder
or randomness in a system. While entropy tends to increase over time in
closed systems, the concept of extropy imagines a tendency toward increased
order or organization. The idea of extropy is often associated with discussions
about the future of intelligent life, technological progress, and the potential for
systems to evolve towards higher levels of complexity and organization. It’s
used in speculative discussions about the trajectory of advanced civilizations
and the possibilities for continued growth and improvement. Extropy of a
non-negative random variable X that is absolutely continuous with probability
density function (pdf) fX(x) is defined by [14] as the complementary point of
entropy of [23]. This measure is defined as follows

J(X) = −1

2

∫ ∞
0

f2
X(x)dx.
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[19] introduced extropy based on survival function F̄X(x) called survival ex-
tropy and considered its dynamic form. Moreover, [20] defined the weighted
extropy and the weighted residual extropy with weight x. [7] defined weighted
survival extropy with weight w(.) ≥ 0. [24] proposed negative cumulative ex-
tropy with cumulative distribution function (cdf) FX(x) and [7] defined its
weighted state.

In many real situations, the uncertainty of a random phenomenon may be
related to the past. Therefore [12] suggested a measure called past extropy as

J̃t(X) = − 1

2F 2
X(t)

∫ t

0

f2
X(x)dx,

and [20] proposed its weighted state with weight x.
In many real life situations, the next highest or next lowest value of the

variable under study is of great importance and this can be a basis for studying
information measures such as record values and k-records arising from a random
sample. The concept of k-records was introduced in [5].

Suppose {Xi, i = 1, 2, ..., n} is a sequence of independent and identically dis-
tributed (iid) random variables and Xp:q is the pth order statistic in a random
sample of size q. For a positive integer k, TUn(k) for n = 1, 2, ... are denoted

the times at which upper k-record values occur and are defined by TU1(k) = k

and, for n ≥ 2, by TUn(k) = min{j; j > TUn−1(k), Xj > XTU
n−1(k)

−k+1:TU
n−1(k)

}.
Moreover, {Un(k) = XTU

n(k)
−k+1:TU

n(k)
} are defined as the sequence of upper k-

record values. If the parent distribution is absolutely continuous with survival
function F̄ and pdf f , then the pdf of the nth upper k-record value, Un(k), is
given by (see [2])

(1) fn(k)(x) =
kn

Γ(n)
[− ln F̄X(x)]n−1[F̄X(x)]k−1f(x), n = 1, 2, ...

Similarly, we can define the lower k-records. For a positive integer k, TLn(k)

for n = 1, 2, ... are denoted the times at which lower k-record values oc-
cur and are defined by TL1(k) = k and TLn(k) = min{j; j > TLn−1(k), Xj <

XTL
n−1(k)

−k+1:TL
n−1(k)

}. Then, we define the sequence of lower k-records denoted

by Ln(k) as {Ln(k) = XTL
n(k)
−k+1:TL

n(k)
}. If the parent distribution is absolutely

continuous with cdf F and pdf f , then the pdf of nth lower k-record value,
Ln(k), is given by (see [1])

(2) fn(k)(x) =
kn

Γ(n)
[− lnFX(x)]n−1[FX(x)]k−1f(x), n = 1, 2, ...

[9, 10] proposed residual extropy and past extropy based on k-records. Also,
they [11] gave a characterization result of symmetric distribution using ex-
tropy of nth upper k-record value and nth lower k-record value. [3] suggested
weighted extropies of order statistics and k-record values. [8] defined weighted
extropy of ranked set sampling. Generalized extropy in a general case based
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on k-records that covers other extropies has not been introduced so far. We
define a generalized extropy and study its properties based on k-records and
show all of its special cases in Section 2. In Section 3, we introduce dynamic
generalized extropy based on both upper and lower k-records. Then, we derive
its properties and illustrate some special cases. In Section 4, we discuss a gen-
erating function using generalized extropy of k-records and obtain some of its
properties. In Section 5 Based on a simulation study, we evaluated the perfor-
mance of the estimator of the generalized extropy by examining its bias and
mean squared error (MSE) for sample sizes of 20, 30, and 50. Furthermore, we
applied the proposed estimator to real-world data to demonstrate its practical
applicability and compute its. Finally, we make some concluding remarks in
Section 6.

2. generalized extropy based on k-records

In this section, we introduce generalized extropy measure. Several extropy
measures are special cases of this proposed measure.

Definition 2.1. Let {Xi, i = 1, 2, ..., n} be a sequence of iid random variables
with pdf f and cdf F and φfn(k)

be a weight function. Then, we define the

generalized extropy (GEX) of nth upper k-record value, denoted by GJ(Un(k)),
as

(3) GJ(Un(k)) = −1

2

∫ ∞
0

φfn(k)
(x)fn(k)(x)dx,

where fn(k)(x) is pdf of the upper k-record values given in (1).

We note that the weight function φfn(k)
must satisfy measurability, inte-

grability, and support alignment conditions to ensure the well-definedness and
applicability of the proposed extropy measures. As a special case, put k = 1
and n = 1, then, the expression in (3) is

GJ(X) = −1

2

∫ ∞
0

φf (x)fX(x)dx.

We show that the GEX in (3) covers the above mentioned extropies based on
k-records with special choices of φfn(k)

.

First, [14] obtains with φfn(k)
(x) = fn(k)(x), the survival extropy [19], with

a choice of φfn(k)
(x) =

∫ x
0
F̄n(k)(t)dt where F̄n(k) is the survival function of

the upper k-record values. With a choice of φfn(k)
(x) =

∫ x
0
w(t)F̄n(k)(t)dt, we

have weighted survival extropy [7]. With a choice of φfn(k)
(x) = −

∫ x
0

(1 +

Fn(k)(t))dt, GJ(Un(k)) reduces to the negative cumulative extropy of [24] based

on k-records. With φfn(k)
(x) = −

∫ x
0
w(t)(1 + Fn(k)(t))dt, we have introduced

extropy [7]. Furthermore, the weighted extropy [20], with φfn(k)
(x) = xfn(k)(x)

is simply achieved. The special cases of GJ(Un(k)) discussed here are all listed
in Table 1.
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Table 1. Special cases of GEX based on k-records

Extropy Measure authors φfn(k)
(x)

Extropy [14] fn(k)(x)

Survival extropy [19]
∫ x

0
F̄n(k)(t)dt

Weighted Survival extropy [7]
∫ x

0
w(t)F̄n(k)(t)dt

Negative cumulative extropy [24] −
∫ x

0
(1 + Fn(k)(t))dt

Weighted Negative cumulative extropy [7] −
∫ x

0
w(t)(1 + Fn(k)(t))dt

Weighted extropy [20] xfn(k)(x)

In the following theorem, we derive an expression for the GEX of nth upper
k-record value.

Theorem 2.2. Let {Xi, i ≥ 1} be a sequence of iid random variables with cdf
F and pdf f . Let Un(k) denote the nth upper k-record value of the sequence
{Xi}. The GEX of Un(k) is given by

(4) GJ(Un(k)) = −1

2
E
[
φfn(k)

(
F−1(1− e−Vn)

)]
,

where Vn has the gamma distribution with parameters n and k.

Proof. Substituting (1) in (3), we get

GJ(Un(k)) = − kn

2Γ(n)

∫ ∞
0

φfn(k)
(x)[− ln F̄ (x)]n−1[F̄ (x)]k−1f(x)dx.

Using the transformation − ln F̄ (x) = u, we get

GJ(Un(k)) = − kn

2Γ(n)

∫ ∞
0

φfn(k)

(
F−1(1− e−u)

)
un−1e−ukdu

= −1

2
E
[
φfn(k)

(
F−1(1− e−Vn)

)]
.

Hence the theorem. �

Example 2.3. Let {Xi, i ≥ 1} be a sequence of iid random variables with a
common distribution U(0, 1). Let U∗n(k) denote the nth upper k-record value
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arising from the sequence {Xi, i ≥ 1}. Then, we obtain

GJ(U∗n(k)) = −1

2

∫ 1

0

φf∗
n(k)

(x)
kn

Γ(n)
[− ln(1− x)]n−1(1− x)k−1dx

= −1

2
E
(
φf∗

n(k)
(1− e−Vn)

)
,

where Vn has the gamma distribution with parameters n and k.

Example 2.4. Let {Xi, i ≥ 1} be a sequence of iid random variables having
common exponential distribution with pdf f(x) = θe−θx, x > 0 and cdf F (x) =
1 − e−θx, x > 0. We have F−1(x) = − 1

θ ln(1 − x) and suppose φfn(k)
(x) =

xfn(k)(x). We have

φfn(k)

(
F−1(1− e−u)

)
=

kn

Γ(n)
une−ku.

Then, we get

GJ(Un(k)) = −1

2
E
[
φfn(k)

(
F−1(1− e−Vn)

)]
= − Γ(2n)

22n+1Γ2(n)
.

Further, we state the following theorem for the GEX of nth lower k-records.
The proof is not included since it is similar to that of Theorem 2.2.

Theorem 2.5. Within the framework of Theorem 2.1, Let Ln(k) denote its nth
lower k-record value. Then, the GEX of Ln(k) is given by

(5) GJ(Ln(k)) = −1

2
E
[
φfn(k)

(
F−1(e−Vn)

)]
,

where Vn has the gamma distribution with parameters n and k.

For deriving the properties of GEX of the nth upper and lower k-records,
we state the definition of dispersive, usual stochastic and likelihood ratio order
defined in [21].

Definition 2.6. Let X and Y be two non-negative random variables with
distribution functions F and G, pdf f and g, survival functions F̄ and Ḡ,
respectively. The random variable X is said to be less than or equal to Y ,

(1) in the dispersive ordering, denoted by X ≤disp Y , if g(G−1(α)) ≤
f(F−1(α)) for all α ∈ (0, 1),

(2) in usual stochastic (st) ordering, denoted by X ≤st Y , if F̄ (α) ≤ Ḡ(α)
for every α ≥ 0,

(3) in the likelihood ratio order, denoted by X ≤lr Y , if f(α)
g(α) is decreasing

in α ≥ 0.

It is well known that X ≤lr Y ⇒ X ≤st Y and X ≤st Y if and only if
E[ϕ(X)] ≤ E[ϕ(Y )] for all increasing functions ϕ.
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Theorem 2.7. Let X and Y be two non-negative random variables with dis-
tribution functions F and G, respectively and with probability density functions
f and g, respectively.
(a) If φfn(k)

is increasing in x, φfn(k)
(x) ≥ φgn(k)

(x) and X ≤disp Y , then

GJ(UXn(k)) ≤ GJ(UYn(k)).

(b) If φfn(k)
is increasing in x, φfn(k)

(x) ≤ φgn(k)
(x) and X ≥disp Y , then

GJ(UXn(k)) ≥ GJ(UYn(k)).

Proof. (a) Using Theorem 3.B.13(b) of [21], X ≤disp Y implies that X ≥st Y .
So we have F−1(1 − e−Vn) ≥ G−1(1 − e−Vn) for 0 < 1 − e−Vn < 1. Hence
under the hypothesis of the theorem it follows that φfn(k)

(F−1(1 − e−Vn)) ≥
φfn(k)

(G−1(1 − e−Vn)) ≥ φgn(k)
(G−1(1 − e−Vn)). The proof then follows from

(4).
(b) On similar arguments as in part (a), the result follows. �

Example 2.8. Let X and Y be two non-negative random variables. For n =
k = 1, φf (x) =

∫ x
0
F̄ (t)dt, φg(x) =

∫ x
0
Ḡ(t)dt. X ≤disp Y implies that X ≥st

Y , so F̄ (x) ≥ Ḡ(x) for every x ≥ 0 and we have φf (x) ≥ φg(x). Thus,
GJ(X) ≤ GJ(Y ).

Example 2.9. Let X and Y be two non-negative random variables. For n =
k = 1, φf (x) = xf(x), φg(x) = xg(x), GJ(X) and GJ(Y ) are the weighted
extropies and we have

GJ(X) = −1

2

∫ ∞
0

xf2(x)dx = −1

2

∫ 1

0

F−1(u)f(F−1(u))du.

Now, X ≤disp Y implies f(F−1(u)) ≥ g(G−1(u)) and F−1(u) ≥ G−1(u) for
0 < u < 1. Thus, GJ(X) ≤ GJ(Y ) which is presented as a Corollary in [8].

First, in the following lemma we present a complete orthogonal system.
(see [6])

Lemma 2.10. A complete orthogonal system for the space L2(0,∞) is given
by a sequence of Laguerre functions

ϕn(x) =
1

n!
e−

x
2Ln(x), n ≥ 0,

where Ln(x) is the Laguerre polynomial defined as the sum of coefficients of
e−x in the nth derivative of xne−x, that is,

Ln(x) = ex
dn

dxn
(xne

−x
).

The completeness of Laguerre functions in L2(0,∞) means that if f ∈ L2(0,∞)
and ∀n ≥ 0,

∫∞
0
f(x)e−

x
2Ln(x)dx

= 0 implies f is zero almost everywhere.
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Theorem 2.11. Assuming that the function φ is one-to-one, the variables X
and Y with the survival functions F̄ and Ḡ belong to the same location family
of distributions if and only if

(6) GJ(UYn(k)) = GJ(UXn(k))

Proof. The necessity is obvious. For the sufficient part, from GJ(UYn(k)) =

GJ(UXn(k)), we have∫ ∞
0

φfn(k)

(
F−1(1− e−u)

)
un−1e−ukdu

=

∫ ∞
0

φgn(k)

(
G−1(1− e−u)

)
un−1e−ukdu.

Thus we have∫ ∞
0

[
φfn(k)

(
F−1(1− e−u)

)
− φgn(k)

(
G−1(1− e−u)

)]
un−1e−ukdu = 0.

The above expression can be rewritten as∫ ∞
0

[
φfn(k)

(
F−1(1− e−u)

)
− φgn(k)

(
G−1(1− e−u)

)]
(e

u
2−uk)e−

u
2 Ln(u)du = 0.

Using Lemma (2.10), we get

φfn(k)

(
F−1(1− e−u)

)
= φgn(k)

(
G−1(1− e−u)

)
.

By setting v = 1− e−u, we have

φfn(k)

(
F−1(v)

)
= φgn(k)

(
G−1(v)

)
.

Hence, we conclude F−1(v) = G−1(v), because of the common support of the
variables X and Y , the desired result follows. �

The following theorem shows the effect of monotone transformations on the
GEX of k-record values. Let the variable X have its cdf and pdf as F and f ,
respectively.

Theorem 2.12. Let X be a non-negative random variable and let Y = Φ(X)
where Φ is a strictly increasing function with Φ(0) = 0 and Φ(∞) = ∞, with

pdf g(y) = f(Φ−1(y))

Φ′ (Φ−1(y))
and cdf G(y) = F (Φ−1(y)), where Φ

′
is the derivative of

function Φ. Then, the GEX of the nth upper k-record value corresponding to
Y is given by

(7) GJ(UYn(k)) = −1

2
E
[
φgn(k)

(
Φ(F−1(1− e−Vn))

)]
.

Here, Vn has the gamma distribution with parameters n, k and gn(k)(y) is as

gn(k)(y) =
kn

Γ(n)
[− ln F̄ (Φ−1(y))]n−1F̄ (Φ−1(y))k−1 f(Φ−1(y))

Φ′(Φ−1(y))
.
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Proof. Using the transformations x = Φ−1(y) and − ln F̄ (x) = u, it follows
easily from the proof of Theorem 2.2. �

Example 2.13. Let non-negative random variable X have an exponential dis-
tribution with the pdf and cdf

f(x) = λe−λx, F (x) = 1− e−λx.

If Y = X2 with pdf and cdf respectively g(y) = λe−λ
√
y

2
√
y and G(y) = 1− e−λ

√
y,

we obtain the GEX of Y for n, k = 1, φg(y) = g(y) as

GJ(Y ) = −λ
2

4
.

3. Dynamic GEX based on k-records

This section deals with the definition of dynamic generalized extropy in
two parts including generalized residual extropy (GREX) and generalized past
extropy (GPEX) based on k-records. We will express some of the properties of
dynamic generalized extropy.

Definition 3.1. Under the assumptions of Theorem 2.2, we define the GREX
of nth upper k-record value, denoted by GJt(Un(k)), as

(8) GJt(Un(k)) = − 1

2F̄ 2
n(k)(t)

∫ ∞
t

φtfn(k)
(x)fn(k)(x)dx.

If n = 1 and k = 1, the equation (8) is as follows

GJt(X) = − 1

2F̄ 2(t)

∫ ∞
t

φtf (x)f(x)dx.

We show (8) reduces to the residual extropy of [16], the dynamic survival ex-
tropy and weighted dynamic survival extropy of [18, 19] based on k-records
for some specific choices of φtfn(k)

(.). With φtfn(k)
(x) = fn(k)(x), we have

GJt(Un(k)) = − 1
2F̄ 2
n(k)

(t)

∫∞
t
f2
n(k)(x)dx that it is the same as the residual ex-

tropy. With a choice of φtfn(k)
(x) =

∫ x
t
F̄n(k)(u)du, we have the dynamic

survival extropy of [19]. For the weighted dynamic survival extropy of [18], we
choose φtfn(k)

(x) =
∫ x
t
uF̄n(k)(u)du.

Definition 3.2. Assuming the conditions stated in Theorem 2.2, we define
the generalized past extropy (gpex) of nth upper k-record value, denoted by

GJ̃t(Un(k)), as

(9) GJ̃t(Un(k)) = − 1

2F 2
n(k)(t)

∫ t

0

φtfn(k)
(x)fn(k)(x)dx.
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The gpex in (9) covers some extropies based on k-records with special
choices of φtfn(k)

(.). The past extropy proposed by [12] that for k-records

presented by [10], with a choice of φtfn(k)
(x) = fn(k)(x), we get GJ̃t(Un(k)) =

− 1
2F 2
n(k)

(t)

∫ t
0
f2
n(k)(x)dx. With choice of φtfn(k)

(x) =
∫ t
x
Fn(k)(u)du, we get the

dynamic cumulative extropy introduced by [13]. The weighted dynamic cumu-

lative extropy defined by [18] based on k-records, with φtfn(k)
(x) =

∫ t
x
uFn(k)(u)du,

we have GJ̃t(Un(k)) = − 1
2F 2
n(k)

(t)

∫ t
0
uF 2

n(k)(u)du. The results are listed in Table

2.
Now, we have expressed the GREX of k-record values as the product of the

Table 2. Special cases of dynamic generalized extropy based
on k-records

Extropy Measure authors φtfn(k)
(x)

residual extropy [16] fn(k)(x)

dynamic survival extropy [19]
∫ x
t
F̄n(k)(u)du

weighted dynamic survival extropy [18]
∫ x
t
uFn(k)(u)du

past extropy [12] fn(k)(x)

dynamic cumulative extropy [13]
∫ t
x
Fn(k)(u)du

weighted dynamic cumulative extropy [18]
∫ t
x
uFn(k)(u)du

GREX extropy of k-records arising from uniform distribution and the ratio of
two expectations of a truncated gamma distributed random variable.

Lemma 3.3. Let {Xi, i ≥ 1} be a sequence of iid random variables with a
common distribution U(0, 1). Let U∗n(k) denote the nth upper k-record value

arising from the sequence {Xi, i ≥ 1}. Then the GREX of U∗n(k) is given by

(10) GJt(U∗n(k)) = − Γ(n)

2Γ(n,−k ln(1− t))
E
[
φtf∗

n(k)
(1− e−Vn)

]
,

where f∗n(k) is the pdf of U∗n(k) and Vn ∼ γ− ln(1−t)(n, k) where γt(α, λ) is the

left truncated gamma distribution with pdf

ht(x) =
λα

Γ(α, λt)
xα−1e−λx, x > t > 0, α, λ > 0,

and Γ(., .) is the upper incomplete gamma function given by
Γ(a, x) =

∫∞
x
ua−1e−udu, a, x > 0.
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Proof. Substituting (1) in (8), we have GJt(U∗n(k)) =

= − knΓ2(n)

2Γ2(n,−k ln(1− t))Γ(n)

∫ 1

t

φtf∗
n(k)

(x)[− ln(1− x)]n−1[1− x]k−1dx

= − knΓ(n)

2Γ2(n,−k ln(1− t))

∫ ∞
− ln(1−t)

φtf∗
n(k)

(1− e−u)un−1e−ukdu.

The desired result follows by integrating the above equation. �

In the following theorem, we formulate the GREX of upper k-records arising
from any continuous distribution in terms of the GREX of upper k-records
arising from U(0, 1).

Theorem 3.4. In accordance with the assumptions of Theorem 2.2, the GREX
of Un(k) is given by

(11) GJt(Un(k)) = GJF (t)(U
∗
n(k))

E
[
φtfn(k)

(
F−1(1− e−Vn)

)]
E
[
φtf∗

n(k)
(1− e−Vn)

] .

Here, U∗n(k) denote the nth upper k-record value arising from U(0, 1) and Vn ∼
γ− ln F̄ (t)(n, k).

Proof. Substituting (1) in (8), we get

GJt(Un(k)) = − knΓ(n)

2Γ2(n,−k ln F̄ (t))

∫ ∞
t

φtfn(k)
(x)[− ln F̄ (x)]n−1[F̄ (x)]k−1f(x)dx

Using the transformation − ln F̄ (x) = u, we get

GJt(Un(k)) = − knΓ(n)

2Γ2(n,−k ln F̄ (t))

∫ ∞
− ln F̄ (t)

φtfn(k)

(
F−1(1− e−u)

)
un−1e−ukdu,

= − Γ(n)

2Γ(n,−k ln F̄ (t))
E
[
φtfn(k)

(
F−1(1− e−Vn)

)]
.(12)

According to Lemma 3.3, the result follows. �

In the following examples, we apply Theorem 3.4 and Lemma 3.3 to obtain
GREX with various φtfn(k)

(x).

Example 3.5. Under the assumptions of Theorem 2.2, let φtfn(k)
(x) = fn(k)(x),

hence, using Lemma 3.3, we obtain GJt(U∗n(k)) = − k2n

2(2k−1)2n−1

Γ(2n−1,−(2k−1) ln(1−t))
Γ2(n,−k ln(1−t))

and using Theorem 3.4, we get

GJt(Un(k)) = − k2n

2(2k − 1)2n−1

Γ(2n− 1,−(2k − 1) ln F̄ (t))

Γ2(n,−k ln F̄ (t))
E
[
f
(
F−1(1− e−Vn)

)]
= GJF (t)(U

∗
n(k))E

[
f
(
F−1(1− e−Vn)

)]
,

where Vn ∼ γ− ln F̄ (t)(2n− 1, 2k − 1).
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Example 3.6. Subject to the assumptions of Theorem 2.2, let φtfn(k)
(x) =∫ x

t
F̄n(k)(u)du, we obtain φtfn(k)

(
F−1(1− e−v)

)
in (11) as

φtfn(k)

(
F−1(1− e−v)

)
=

∫ v

− ln F̄ (t)

Γ(n, kz)

Γ(n)
e−zf−1

(
F−1(1− e−z)

)
dz.

We get

GJt(U∗n(k)) = − Γ(1,− ln(1− t))
2Γ2(n,−k ln(1− t))

E
[
Γ2(n,Zk)

]
,

where Z ∼ γ− ln(1−t)(1, 1) and we have

GJt(Un(k)) = − 1

2Γ2(n,−k ln F̄ (t))

∫ ∞
− ln F̄ (t)

Γ2(n, zk)e−zf−1
(
F−1(1− e−z)

)
dz

= − Γ(1,− ln F̄ (t))

2Γ2(n,−k ln F̄ (t))
E
[
Γ2(n,Zk)f−1

(
F−1(1− e−Z)

)]
,

where Z ∼ γ− ln F̄ (t)(1, 1), Thus

GJt(Un(k)) = GJF (t)(U
∗
n(k))

E

[
Γ2(n,Zk)f−1

(
F−1(1−e−Z)

)]
E

[
Γ2(n,Zk)

] .

Further, we state the following theorem for the GREX of nth lower k-records.
The proof is not included since it is similar to that of Theorem 3.4.

Lemma 3.7. Let {Xi, i ≥ 1} be a sequence of iid random variables with a
common distribution U(0, 1). Let L∗n(k) denote the nth lower k-record value

arising from the sequence {Xi, i ≥ 1}. Then the GREX of L∗n(k) is given by

GJt(L∗n(k)) = − Γ(n)

2ρ(n,−k ln t)
E
[
φtf∗

n(k)
(e−Vn)

]
,

where ρ(a, x) is the lower incomplete gamma function given by
ρ(a, x) =

∫ x
0
ua−1e−udu; a, x > 0.

Theorem 3.8. Assuming the conditions stated in Theorem 2.5, the GREX of
Ln(k) is given by

(13) GJt(Ln(k)) = GJF (t)(L
∗
n(k))

E
[
φtfn(k)

(
F−1(e−Vn)

)]
E
[
φtf∗

n(k)
(e−Vn)

] .

Here, L∗n(k) denote the nth lower k-record value arising from U(0, 1) and Vn ∼
%− lnF (t)(n, k) that %t(α, λ) is the right truncated gamma distribution with pdf

ht(x) =
λα

ρ(α, λt)
xα−1e−λx, t > x > 0, α, λ > 0.

Definition 3.9. A random variable X is said to have increasing (decreasing)
generalized residual extropy, if and only if GJt(Un(k)) is increasing (decreasing)
in t.
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Figure 1. Comparison lower (upper) bound and GREX for
various cases of φtfn(k)

The following theorem provides a lower (upper) bound for GREX of records.

Theorem 3.10. If Un(k) have increasing (decreasing) GREX, then GJt(Un(k)) ≥

(≤) A(t)
4F̄ 2
n(k)

(t)rn(k)(t)
−

φtfn(k)
(t)

4F̄n(k)(t)
for all t > 0, where rn(k)(t) is the hazard rate

function and A(t) =
∫∞
− ln F̄ (t)

φ́tfn(k)

(
F−1(1− e−u)

)
kn

Γ(n)u
n−1e−ukdu.

Proof. Differentiating GJt(Un(k)) with respect to t, we get

d

dt
GJt(Un(k)) =

F̄ 2
n(k)(t)

(
1
2φ

t
fn(k)

(t)fn(k)(t)− 1
2A(t)

)
+ 2F̄ 3

n(k)(t)fn(k)(t)GJt(Un(k))

F̄ 4
n(k)(t)

=

1
2φ

t
fn(k)

(t)rn(k)(t)

F̄n(k)(t)
−

1
2A(t)

F̄ 2
n(k)(t)

+ 2GJt(Un(k))rn(k)(t),

and the result follows. �

For the exponential distribution with λ = 0.5, n = 5 and various cases of
φtfn(k)

, the lower (upper) bound and GREX are obtained and is displayed in

Figure 1.

Lemma 3.11. If Z = aX + b, where a and b are constants, then GJt(UZn(k)) =

GJ t−b
a

(UXn(k)).

Proof. We get F̄ aX+b
n(k) (t) = F̄Xn(k)(

t−b
a ) and using (8), the result follows. �

Theorem 3.12. Let X and Y be two non-negative random variables with dis-
tribution functions F and G respectively and with probability density functions
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f and g respectively.
(a) If φtfn(k)

is increasing in x, φtfn(k)
(x) ≥ φtgn(k)

(x) and X ≤disp Y , then

GJt(UXn(k)) ≤ GJt(U
Y
n(k)).

(b) If φtfn(k)
is increasing in x, φtfn(k)

(x) ≤ φtgn(k)
(x) and X ≥disp Y , then

GJt(UXn(k)) ≥ GJt(U
Y
n(k)).

Proof. Since X ≤disp Y , we have X ≥st Y , then F−1(1 − e−Vn) ≥ G−1(1 −
e−Vn) for 0 < F (t) < 1 − e−Vn < 1 and we have φtfn(k)

(F−1(1 − e−Vn)) ≥
φtgn(k)

(G−1(1− e−Vn)), hence,

GJt(UXn(k)) = − Γ(n)

2Γ(n,−k ln F̄ (t))
E
[
φtfn(k)

(
F−1(1− e−Vn)

)]
≤ − Γ(n)

2Γ(n,−k ln Ḡ(t))
E
[
φtgn(k)

(
G−1(1− e−Vn)

)]
= GJt(UYn(k)).

Similarly, we can prove (b). �

Theorem 3.13. Let X be a non-negative random variable and let Y = Φ(X)
where Φ is a strictly increasing function with Φ(t) = t and Φ(∞) = ∞, with

probability density function g(y) = f(Φ−1(y))

Φ′ (Φ−1(y))
and cumulative distribution func-

tion G(y) = F (Φ−1(y)). Then, the generalized residual extropy of the nth upper
k-record value corresponding to Y is given by

GJt(UYn(k)) = − Γ(n)

2Γ(n,−k ln F̄ (t))
E
[
φtgn(k)

(
Φ(F−1(1− e−Vn))

)]
.

Here, Vn ∼ γ− ln F̄ (t)(n, k) and gn(k)(y) is as

gn(k)(y) =
kn

Γ(n)
[− ln F̄ (Φ−1(y))]n−1F̄ (Φ−1(y))k−1 f(Φ−1(y))

Φ′(Φ−1(y))
.

4. Generating Function

Now, We define the generating function related to GEX measures discussed
in the previous sections.

Definition 4.1. Provided that the assumptions of Theorem 2.2 hold, we define
a generating function for the GEX of Un(k) as

(14) GFGEX(Un(k)) = −1

2

∫ ∞
0

e
αφfn(k)

(x)
fn(k)(x)dx.

the above function is a function in terms of α.

Differentiating (14) with respect to α, we get

d

dα
GFGEX(Un(k)) = −1

2

∫ ∞
0

φfn(k)
(x)e

αφfn(k)
(x)
fn(k)(x)dx.
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Now, by setting α = 0 in the above expression, we get the GEX measure in
(3). Therefore, We refer to it as GEX of order 1. Higher-order derivatives of
the generating function with respect to the shape parameter α naturally lead
to higher-order generalized extropies, thus capturing progressively deeper lay-
ers of informational complexity within the distribution of k-records. Through
this differentiation process, we introduce a generalized extropy (GEX) frame-
work that, even in the particular case when n = k = 1, subsumes several
well-established entropy measures previously proposed in the literature. This
demonstrates a meaningful theoretical connection between the GEX model and
the entropy structure, revealing the versatility of the generating function in en-
coding both distributional and informational characteristics. Furthermore, as
supported by developments in information theory, generating functions have
been effectively employed for probability densities to derive various informa-
tion measures. This reinforces the role of the generating function not only as
a probabilistic tool but also as a foundational device for entropy analysis. The
generalized extropies of order 2 are as follows

d2

dα2
GFGEX(Un(k))|α=0 = −1

2

∫ ∞
0

[φfn(k)
(x)]2fn(k)(x)dx.

Therefore, The generalized extropies of order β is as follows

(15)
dβ

dαβ
GFGEX(Un(k))|α=0 = −1

2

∫ ∞
0

[φfn(k)
(x)]βfn(k)(x)dx.

We define (15) as the information generating function IGFβ(Un(k)). Differen-
tiating IGFβ(Un(k)) with respect to β and setting β = 0, we obtain

(16)
d

dβ
(IGFβ(Un(k)))|β=0 = −1

2

∫ ∞
0

lnφfn(k)
(x)fn(k)(x)dx.

For the choice of n = 1, k = 1 and φf (x) = f(x)
2
, (16) reduces to the Shannon

entropy [23]. If n = 1, k = 1, φf (x) = e
α−1

√
1

(1−fα−1(x))2 , (16) reduces to

the generalized Tsallis entropy of order α [25] and if φf (x) = F̄ (x)
2F̄ (x)
f(x) , we

have cumulative residual entropy of [17]. We define (16) as generalized entropy
(GEN).

In the following, we show that the underlying distributions can be uniquely
determined by a location change using the equality in generating function for
the GEX of k-record values and study some properties of the generating func-
tion for the GEX. The proof is not included since it is similar to the previous
sections.

Theorem 4.2. Assuming that the function φ is one-to-one, the variables X
and Y with the survival functions F̄ and Ḡ belong to the same location family
of distributions if and only if

GFGEX(UYn(k)) = GFGEX(UXn(k))
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Proof. The proof is similar to Theorem 2.11. �

Theorem 4.3. Let X be a non-negative random variable and let Y = Φ(X)
where Φ is a strictly increasing function with Φ(0) = 0 and Φ(∞) =∞, with pdf

g(y) = f(Φ−1(y))

Φ′ (Φ−1(y))
and cdf G(y) = F (Φ−1(y)). Then, the generating function

for the GEX of the nth upper k-record value corresponding to Y is given by

(17) GFGEX(UYn(k)) = −1

2
E
[
e
αφgn(k)

(
Φ(F−1(1−e−Vn ))

)]
.

Here, Vn has the gamma distribution with parameters n, k.

Theorem 4.4. Let X and Y be two non-negative random variables with dis-
tribution functions F and G respectively and with probability density functions
f and g respectively.
a) If φfn(k)

is increasing in x, φfn(k)
(x) ≥ φgn(k)

(x) and X ≤disp Y , then

GFGEX(UXn(k)) ≤ GFGEX(UYn(k)). b) If φfn(k)
is increasing in x, φfn(k)

(x) ≤
φgn(k)

(x) and X ≥disp Y , then GFGEX(UXn(k)) ≥ GFGEX(UYn(k)).

Proof. Substituting (1) in (14), we obtain

GFGEX(Un(k)) = − 1
2E
[
e
αφfn(k)

(F−1(1−e−Vn )]
. Since α > 0 and the exponential

function is increasing, the proof follows from Theorem 2.7. �

In the following, we define generating function related to the GREX mea-
sures.

Definition 4.5. Given the premises outlined in Theorem 2.2, we define a
generating function for the GREX of nth upper k-record value as

GF t
GREX(Un(k)) = − 1

2F̄ 2
n(k)(t)

∫ ∞
t

e
αφtfn(k)

(x)
fn(k)(x)dx.

Differentiating the above equation with respect to α and considering α = 0,
we get the GREX measure.

Theorem 4.6. In accordance with the assumptions of Theorem 2.2, we obtain
a generating function for the GREX of Un(k) as

GF t
GREX(Un(k)) = − Γ(n)

2Γ(n,−k ln F̄ (t))
E
[
e
αφtfn(k)

(F−1(1−e−Vn ))
]
,

where Vn ∼ γ− ln F̄ (t)(n, k).

Proof. The proof is similar to the Theorem 3.4. �

Similarly, the information generating function of Un(k) is as

(18) IGF tβ(Un(k)) = − Γ(n)

2Γ(n,−k ln F̄ (t))
E
[
[φtfn(k)

(F−1(1− e−Vn))]β
]
.
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Differentiating IGF tβ(Un(k)) with respect to β and setting β = 0, the general-

ized residual entropy (GREN) obtains as

GEN t(Un(k)) = − Γ(n)

2Γ(n,−k ln F̄ (t))
E
[

ln
(
φtfn(k)

(F−1(1− e−Vn))
)]
.(19)

In the following examples, we illustrate (18) and (19) for various cases.

Example 4.7. Let {Xi, i ≥ 1} be a sequence of iid random variables with a
common distribution U(0, 1). Then, we get

IGF tβ(Un(k)) = − Γ(n)

2Γ(n,−k ln(1− t))
E
[
φtfn(k)

(1− e−Vn)]β
]
.

Example 4.8. Let φtfn(k)
(x) = fn(k)(x), we have: IGF tβ(Un(k)) =

= −Γ1−β(n)kn(β+1)Γ(n(β + 1)− β,−(kβ + k − β) ln F̄ (t))

2Γ2(n,−k ln F̄ (t))(kβ + k − β)n(β+1)−β E
[
fβ(F−1(1− e−Vn))

]
,

where Vn ∼ γ− ln F̄ (t)(n(β + 1)− β, kβ + k − β).

Example 4.9. Let n = 1, k = 1 and φtf (x) = f(x), we obtain

GREN t(X) = − 1

2F̄ 2(t)

∫ ∞
t

f(x) ln(f(x))dx.

Example 4.10. Let φtfn(k)
(x) = fn(k)(x), we get: GREN t(Un(k)) =

= − Γ(n)

2Γ(n,−k ln F̄ (t))

×
[
n ln k + (n− 1)E(lnVn)− (k − 1)E(Vn) + E(ln f(F−1(1− e−Vn)))− ln Γ(n)

]
,

where Vn ∼ γ− ln F̄ (t)(n, k) and E(Vn) = Γ(n+1,−k ln F̄ (t))
kΓ(n,−k ln F̄ (t))

.

5. Application with real data

The estimation of generalized extropy plays a crucial role in quantifying
uncertainty and information content, especially in situations where the clas-
sical entropy or extropy measures may not fully capture the distributional
nuances. Generalized extropy extends the original concept by incorporating
flexible weighting schemes or power parameters, thereby allowing a broader
class of distributions and behaviors to be analyzed. Accurate estimation of
this measure enables researchers to study its mathematical properties such as
non-negativity, continuity, and maximality and their implications in practical
applications like model selection, goodness-of-fit testing, and statistical learn-
ing. According to Table 1, the estimates of the generalized extropy (GEX) in
equation (3) for each specific case of the function φfn(k)

(x) are presented based

on the approach proposed by [26].
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• case 1. If φ1,fn(k)
(x) = fn(k)(x),

ĜJ(Un(k)) = − 1

2N

k2n

Γ(n)2

N∑
i=1

[
− ln

(
1− i

N + 1

)]2(n−1)

[
1− i

N + 1

]2(k−1)
2m

N(X(i+m) −X(i−m))
.

• case 2. If φfn(k)
(x) =

∫ x
0
F̄n(k)(t)dt,

ĜJ(Un(k)) = − 1

2N

N∑
j=1

{
(1− j

N + 1
)k
n−1∑
i=0

(−k ln(1− j
N+1 ))i

i!

}2

N(X(j+m) −X(j−m))

2m
.

• case 3. If φfn(k)
(x) =

∫ x
0
w(t)F̄n(k)(t)dt and w(t) = t,

ĜJ(Un(k)) = − 1

2N

N∑
j=1

Xj

{
(1− j

N + 1
)k
n−1∑
i=0

(−k ln(1− j
N+1 ))i

i!

}2

N(X(j+m) −X(j−m))

2m
.

• case 4. If φfn(k)
(x) = −

∫ x
0

(1 + Fn(k)(t))dt,

ĜJ(Un(k)) =
1

2N

N∑
j=1

{
1−G2[− ln(1− j

N + 1
)]

}
N(X(j+m) −X(j−m))

2m
,

where G is the gamma cdf with parameters n, k.
• case 5. If φfn(k)

(x) = −
∫ x

0
w(t)(1 + Fn(k)(t))dt and w(t) = t,

ĜJ(Un(k)) =
1

2N

N∑
j=1

Xj

{
1−G2[− ln(1− j

N + 1
)]

}
N(X(j+m) −X(j−m))

2m
.

• case 6. If φfn(k)
(x) = xfn(k)(x),

ĜJ(Un(k)) = − k2n

2NΓ2(n)

N∑
j=1

Xj(1−
j

N + 1
)2(k−1)

(
− ln(1− j

N + 1
)

)2(n−1)

2m

N(X(j+m) −X(j−m))
.

There is a window size m which is less than
√
N and X(1), X(2), . . . , X(N) are

order statistics based on X1, . . . , XN . When i < m, then X(i−m) = X(1),
and if i > N −m, then X(i+m) = X(N). According to the lines of the proof

provided by [26] , we find that the Vasicek-type estimator of extropy, ĜJ(Un(k)),
converges in probability to the true extropy, as n,m → ∞, and m

n → 0. This
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limit relation provides a guideline for selecting appropriate values of m. To
evaluate the statistical properties of the proposed estimator, a Monte Carlo
simulation study with 10,000 replications was conducted. In each replication,
samples of sizes N = 20, 30, 50 and n = 3, k = 2 were generated from the
distributions provided below. The estimator of interest was then computed for
each sample. Finally, to assess the accuracy and efficiency of the estimator,
the bias and mean squared error (MSE) were calculated based on the results

from the replications. Among the values of m ranging from 1 to
√
N , the

value that results in the smallest bias and MSE is selected. The results are
presented in Tables 3-5. The results indicate that, as the sample size increases,
both the bias and the MSE decrease across all estimators. This confirms the
consistency and improved performance of the estimators with a larger sample
size. For the different values of φ, the optimal window size m tends to increase
with the sample size for φ1,f3(2)

(x), φ3,f3(2)
(x), φ5,f3(2)

(x), φ6,f3(2)
(x), and it is

approximately proportional to
√
N . In contrast, for φ2,f3(2)

(x) and φ4,f3(2)
(x),

the optimal window size remains nearly constant at a value of 1 across all
sample sizes. This behavior is consistent across all distributions considered,
where the optimal values of m exhibit little variation, especially for φ2,f3(2)

(x)

and φ4,f3(2)
(x).

(1) Exponential distribution: f(x) = θe−θx, θ > 0, x > 0. Denoted by
Exp(θ).

(2) Gamma distribution: f(x) = 1
Γ(θ)x

θ−1e−x, θ > 0, x > 0. Denoted

by Γ(θ).

(3) Weibull distribution: f(x) = θxθ−1e−x
θ

, θ > 0, x > 0. Denoted by
W (θ).

(4) Uniform distribution: f(x) = 1, 0 ≤ x ≤ 1. Denoted by U(0, 1).

(5) Half-Normal distribution: f(x) =
√

2
π e
− x2

2 , x > 0. Denoted by

HN .

(6) Chen distribution: F (x) = 1 − e2(1−ex
θ

), θ > 0, x > 0. Denoted by
CH(θ).

(7) Modified Extreme Value distribution: F (x) = 1 − e 1
θ (1−ex), θ >

0, x > 0. Denoted by MEV (θ).

(8) Log-normal distribution: f(x) = 1
θx
√

2π
e−

(ln x)2

2θ2 , θ > 0, x > 0. De-

noted by LN(θ).

The use of real data in estimating extropy is essential for evaluating the
practical performance, robustness, and applicability of the proposed estima-
tors under realistic conditions. We now provide the GEX estimates computed
using the observed real-world data. Dataset 1 is taken from [4]. This dataset
represents the vinyl chloride data obtained from clean-up gradient monitor-
ing wells. This dataset has been fitted very well by exponential distribution
(see [4], [22])
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Table 3. Bias and MSE of the GEX estimator for N =
20, n = 3 and k = 2

distribution
Exp(3) Exp(0.5) Γ(2) Γ(1) LN(0.5) χ2(1)

Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m)
φ1,f3(2)

(x) 0.1381 0.0805(4) 0.0230 0.0024(4) 0.0353 0.0046(4) 0.0482 0.0091(4) 0.0772 0.0272(3) 0.0355 0.0068(4)

φ2,f3(2)
(x) 0.0023 0.0017(2) 0.0130 0.0611(1) 0.1210 0.0495(1) 0.0081 0.0156(1) 0.1866 0.0415(1) 0.0512 0.0320(1)

φ3,f3(2)
(x) 0.0084 0.0005(4) 0.3037 0.6810(4) 0.1248 0.2413(2) 0.0769 0.0427(4) 0.0061 0.0108(4) 0.1515 0.1260(4)

φ4,f3(2)
(x) 0.0097 0.0073(2) 0.0671 0.2600(2) 0.0785 0.1123(2) 0.0202 0.0648(2) 0.1608 0.0483(1) 0.1183 0.1839(2)

φ5,f3(2)
(x) 0.0054 0.0046(4) 0.2573 6.2761(4) 0.0526 1.4817(4) 0.0275 0.3597(4) 0.0095 0.0829(4) 0.0659 1.5374(4)

φ6,f3(2)
(x) 0.3115 0.1122(3) 0.2276 0.3682(4) 0.1615 0.0569(4) 0.1000 0.0230(3) 0.4391 2.5662(3) 0.0675 0.0120(4)

distribution
W (1.5) HN U(0, 1) CH(1.6) MEV (0.6)

Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m)

φ1,f3(2)
(x) 0.0907 0.0249(4) 0.0956 0.0235(4) 0.4423 0.3472(4) 0.3503 0.2349(4) 0.0474 0.0254(4)

φ2,f3(2)
(x) 0.0481 0.0091(1) 0.0177 0.0062(1) 0.0235 0.0021(1) 0.0367 0.0030(1) 0.2084 0.0479(1)

φ3,f3(2)
(x) 0.0220 0.0089(4) 0.0223 0.0074(4) 0.0003 0.0005(4) 0.0065 0.0004(4) 0.2208 0.0543(4)

φ4,f3(2)
(x) 0.0329 0.0178(1) 0.0064 0.0142(1) 0.0252 0.0019(1) 0.0408 0.0038(1) 0.2842 0.0883(2)

φ5,f3(2)
(x) 0.0013 0.0446(4) 0.0021 0.0327(4) 0.0013 0.0005(4) 0.0004 0.0008(3) 0.3916 0.1694(4)

φ6,f3(2)
(x) 0.3716 0.1684(3) 0.3469 0.1484(3) 0.9489 1.0535(4) 0.7651 0.6607(3) 0.5789 0.3869(3)

Table 4. Bias and MSE of the GEX estimator for N =
30, n = 3 and k = 2

distribution
Exp(3) Exp(0.5) Γ(2) Γ(1) LN(0.5) χ2(1)

Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m)

φ1,f3(2)
(x) 0.0585 0.0298(5) 0.0104 0.0009(5) 0.0161 0.0016(5) 0.0201 0.0033(5) 0.0327 0.0100(5) 0.0155 0.0027(5)

φ2,f3(2)
(x) 0.0017 0.0011(1) 0.0083 0.0406(1) 0.1012 0.0338(1) 0.0026 0.0100(1) 0.1753 0.0354(1) 0.0362 0.0201(1)

φ3,f3(2)
(x) 0.0059 0.0003(5) 0.2168 0.4063(5) 0.0868 0.1495(5) 0.0525 0.0246(5) 0.0081 0.0069(5) 0.1053 0.0682(5)

φ4,f3(2)
(x) 0.0136 0.0048(1) 0.0422 0.1766(1) 0.0588 0.0709(2) 0.0388 0.0435(1) 0.1511 0.0375(1) 0.1071 0.1217(1)

φ5,f3(2)
(x) 0.0110 0.0035(4) 0.2323 4.5876(5) 0.0516 1.0991(5) 0.0248 0.2730(5) 0.0021 0.0617(5) 0.1495 1.1740(5)

φ6,f3(2)
(x) 0.2590 0.0721(4) 0.1363 0.3304(5) 0.0991 0.0562(5) 0.0516 0.0078(5) 0.3613 0.0459(5) 0.0432 0.0113(5)

distribution
W (1.5) HN U(0, 1) CH(1.6) MEV (0.6)

Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m)

φ1,f3(2)
(x) 0.0434 0.0085(5) 0.0484 0.0084(5) 0.3019 0.1595(5) 0.2142 0.0869(4) 0.0451 0.0242(2)

φ2,f3(2)
(x) 0.0391 0.0063(1) 0.0109 0.0042(1) 0.0162 0.0014(1) 0.0260 0.0018(1) 0.2004 0.0418(5)

φ3,f3(2)
(x) 0.0150 0.0058(5) 0.0160 0.0048(4) 0.0002 0.0003(5) 0.0074 0.0003(5) 0.2209 0.0528(4)

φ4,f3(2)
(x) 0.0237 0.0114(2) 0.0009 0.0093(2) 0.0165 0.0011(1) 0.0297 0.0023(1) 0.2076 0.0877(1)

φ5,f3(2)
(x) 0.0036 0.0319(5) 0.0065 0.0241(5) 0.0000 0.0004(5) 0.0039 0.0006(5) 0.3088 0.1686(5)

φ6,f3(2)
(x) 0.2967 0.0988(4) 0.2790 0.0879(4) 0.8279 0.7652(5) 0.6539 0.4537(4) 0.4903 0.2577(4)

Dataset 1: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0,
0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.
Dataset 2, originally published by [15], consists of 50 observations representing
the number of thousands of cycles to failure for electrical appliances in a life
testing experiment. [27] demonstrated that the Chen distribution provides a
good fit for modeling this dataset.

Dataset 2: 0.014, 0.034, 0.059, 0.061, 0.069, 0.08, 0.123, 0.142, 0.165, 0.21,
0.381, 0.464, 0.479, 0.556, 0.574, 0.839, 0.917, 0.969, 0.991, 1.064, 1.088, 1.091,
1.174, 1.27, 1.275, 1.355, 1.397, 1.477, 1.578, 1.649, 1.702, 1.893, 1.932, 2.001,
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Table 5. Bias and MSE of the GEX estimator for N =
50, n = 3 and k = 2

distribution
Exp(3) Exp(0.5) Γ(2) Γ(1) LN(0.5) χ2(1)

Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m)
φ1,f3(2)

(x) 0.0126 0.0122(7) 0.0019 0.0003(7) 0.0039 0.0006(7) 0.0050 0.0014 (7) 0.0035 0.0037(7) 0.0026 0.0012(7)

φ2,f3(2)
(x) 0.0008 0.0007(1) 0.0028 0.0240(2) 0.0802 0.0209(1) 0.0007 0.0059(1) 0.1602 0.0288(1) 0.0203 0.0112(1)

φ3,f3(2)
(x) 0.0035 0.0002(7) 0.1262 0.2072(7) 0.0563 0.0849(7) 0.0310 0.0128(7) 0.0094 0.0041(7) 0.0604 0.0314(7)

φ4,f3(2)
(x) 0.0112 0.0027(1) 0.0402 0.0997(2) 0.0420 0.0423(2) 0.0322 0.0246(1) 0.1409 0.0288(1) 0.0747 0.0681(1)

φ5,f3(2)
(x) 0.0108 0.0024(5) 0.2403 3.0207(7) 0.0384 0.7319(7) 0.0181 0.1930(7) 0.0011 0.0373(7) 0.1431 0.8225(7)

φ6,f3(2)
(x) 0.2225 0.0514(7) 0.1624 0.2939(7) 0.0158 0.0540(7) 0.0153 0.0022(7) 0.3052 0.0288(7) 0.0278 0.0111(7)

distribution
W (1.5) HN U(0, 1) CH(1.6) MEV (0.6)

Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m) Bias MSE(m)
φ1,f3(2)

(x) 0.0140 0.0029(7) 0.0175 0.0028(7) 0.1897 0.0633(7) 0.1260 0.0321(7) 0.0377 0.0183(2)

φ2,f3(2)
(x) 0.0273 0.0035(1) 0.0075 0.0026(2) 0.0098 0.0008(1) 0.0157 0.0009(1) 0.2014 0.0445(7)

φ3,f3(2)
(x) 0.0093 0.0033(7) 0.0099 0.0028(7) 0.0001 0.0002(7) 0.0084 0.0002(7) 0.2177 0.0499(7)

φ4,f3(2)
(x) 0.0149 0.0066(1) 0.0004 0.0054(2) 0.0100 0.0006(1) 0.0202 0.0013(1) 0.1240 0.0780(7)

φ5,f3(2)
(x) 0.0350 0.0207(5) 0.0090 0.0158(7) 0.0001 0.0002(7) 0.0024 0.0004(7) 0.3172 0.1611(7)

φ6,f3(2)
(x) 0.2488 0.0662(7) 0.2320 0.0577(6) 0.7290 0.5671(7) 0.5833 0.3507(6) 0.4330 0.1941(6)

Table 6. Estmation of the GEX for Dataset 1

N = 34 φ1,f3(2)
(x) φ2,f3(2)

(x) φ3,f3(2)
(x) φ4,f3(2)

(x) φ5,f3(2)
(x) φ6,f3(2)

(x)

Estimation of the GEX -0.0897(5) -0.9199(1) -1.3780 (5) 1.9951(1) 4.6632(5) -0.2363(5)

2.161, 2.292, 2.326, 2.337, 2.628, 2.785, 2.811, 2.886, 2.993, 3.122, 3.248, 3.715,
3.79, 3.857, 3.912, 4.1.

Table 7. Estimation of the GEX for Dataset 2

N = 50 φ1,f3(2)
(x) φ2,f3(2)

(x) φ3,f3(2)
(x) φ4,f3(2)

(x) φ5,f3(2)
(x) φ6,f3(2)

(x)

Estimation of the GEX -0.1592(7) -0.9104(1) -1.0077(7) 1.4732(1) 2.2510(7) -0.3979(6)

6. Conclusion

In this paper, we presented a generalized measure of extropy and a dy-
namic generalized measure of extropy based on k-records. Several theorems
and properties are also presented. We have shown that several existing extropy
measures, such as survival, negative cumulative, dynamic survival extropy and
weighted dynamic survival extropy are spacial cases of this generalized extropy
measures. Further, we have presented generating function to obtain general-
ized measures of higher order. Using this generating function, we established
different extropy and entropy measures. Finally, we conducted a Monte Carlo
simulation study to evaluate the bias and MSE of the estimator of the GEX.
Additionally, the estimator values for six specific cases of the φfn(k)

(x) were
calculated using real data.
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