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Abstract. In recent years, due to the increasing growth of technology
and new technologies, data is obtained in more complex structures as the

main component in analysis. One of these complex structures is tensors.

Therefore, in order to answer this need (analysis of data with tensor struc-
ture), it is necessary to expand statistical concepts and methods in the

field of data with tensor structure. On the other hand, in reality, we may

also encounter skew data. Therefore, in this article, we have introduced
the skew normal tensor distribution and obtained some of its important

statistical properties. Subsequently, we employed the EM algorithm to

obtain maximum likelihood estimates of the parameters and assessed their
accuracy through simulation studies. Finally, we have shown the effec-

tiveness of the obtained estimators with real data.

Keywords: Kronecker-separable covariance, Multidimensional array, Ten-

sor, Skew-distributions, EM algorithm, Image learning.
2020 MSC : 62H10, 70G45, 62H12.

1. Introduction

In the last decade, data has been obtained in increasingly complex struc-
tures. One of these complex structures is multidimensional or tensor data.
In other words, a tensor is a multi-dimensional (multi-dimensional or multi-
component) array, where each component represents a vector of observations.
More formally, the Nth order tensor is an element of the multiplication of the
N vector space of tensors, each of which has its own coordinates. Of course,
this concept of tensors should not be confused with tensors in physics and
engineering such as stress tensors, [13], which are generally called tensor fields
in mathematics [6].

Given that complex data structures have become commonplace across var-
ious applied research fields, there is a growing need to develop and expand
theoretical concepts for analyzing high-dimensional data. In order to answer
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this need, we extended statistical concepts from the field of random vectors
(multivariate) to random matrices, now they should be extended to random
tensors, which are actually an extension of matrix data.

The expansion of this concept has been used and investigated by many
researchers in the fields of chemometrics, image measurement, face recognition
and psychometrics. In this context, we refer the reader to [9] and [14] and the
references mentioned in them.

What can be inferred from these articles is that statistical methods that
preserve the structure of tensors are very important because converting tensor
data into a vector or matrix leads to the loss of some information. A good
work, especially focusing on the need to go from a matrix distribution to a
tensor distribution, is presented in [4]. They argue why a vector analysis of a
complex dataset that actually requires a tensor analysis and the use of a tensor
distribution can lead to wrong or inefficient conclusions. In proportion to the
widespread use of the concept of tensors in various fields, but limited statis-
tical research related to tensor distributions, probabilistic properties and the
problem of estimation have not grown in the same proportion. Of course, in
recent years, researchers have conducted research in this regard, including [14]
which is related to the analysis of tensor type data to multilinear/tensor normal
distribution and also [1], using [14] concepts, was able to generalize it to tensor
elliptical distributions, or [8] calculated the Stein-type risk estimator when the
errors follow a tensor elliptic distribution. Of course, these researches are also
in the field of symmetric distributions, although it is relatively good mathe-
matically, but the assumption of symmetry is often violated. In addition, there
may be outliers in the data, which can be problematic, and more importantly,
the data structure in the real world can be skewed. Therefore, the study of
the tensor distributions in this field can be useful, but currently, according to
our knowledge, there has been limited research related to these distributions,
we can refer to [7] in which, they presented four tensor distributions that can
be considered as generalizations of their variable matrix counterparts and are
able to model skewness and kurtosis, as well as [11] who studied a regression
model in which the response are of the type of skew tensor data. In recent
years, the development of tensor-based statistical models has attracted increas-
ing attention. However, the extension of well-known distributions to the tensor
domain—particularly the skew normal distribution—has not been thoroughly
investigated. To address this gap, in this paper, we focus on the tensor variate
skew normal distribution (TVSN) in order to expand the concept of tensor
distributions, given the central role of the normal distribution in statistical
modeling and inference. The rest of the article is organized as follows. Section
2 introduces the TVSN distribution along with some symbols that help in sim-
plifying the calculations, also some features of the TVSN distribution, such as
the density function, expectation and variance and the characteristic function
are given. In section 3, parameter estimation using EM algorithm is discussed.
Simulation and analysis of observed data is presented in section 4. In section
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5, a real example is presented and using the results obtained in section 3, we
discuss the efficiency of the model presented in the paper.

2. Model

In this section, while recalling the basic concepts of tensors and the tensor
variate normal (TVN) distribution, we introduce the TVSN distribution and
establish some of its properties.

2.1. Background and preliminaries. A Tensor is introduced as a multidi-
mensional array; a kth order tensor is an array with k dimensions, denoted by

X ∈ R×
k
j=1pj . The order of a tensor is the number of dimensions, also known as

ways or modes; which we have shown here with k. The pj is the marginal di-
mension of the jth mode (j = 1, 2, . . . , k). The (i1, i2, . . . , ik)th element of the
tensor X is denoted by xi1,i2,...,ik where ij = 1, 2, . . . , pj and j = 1, 2, . . . , k. In
addition, by fixing some indices of the tensor, it is possible to reach the tensor
of lower order. In particular, with this work, a tensor can be converted into
a matrix or vector, making explicit calculations more facile, denoted by X, x
respectively. See [9] and [5] for further discussion of these concepts.

The vectorial representation of a tensor, makes the related inference much
simpler. Let vec(X ) denote the vectorization of tensor X = (xi1i2...ik), accord-
ing to the definition of [9] given by

x = vec(X ) =

p1∑
i1=1

· · ·
pk∑
ik=1

xi1i2...ike
1
i1 ⊗ · · · ⊗ e

k
ik
,

=
∑
Ip

xi1i2...ike
p
1:k,(1)

where ekik , e
k−1
ik−1, . . . , e

1
i1

are the unit basis vectors (a p-vector with 1 in the

jth position, and 0 elsewhere) of size pk, pk−1, ..., p1, respectively, ep1:k =

e1
i1
⊗ . . . ⊗ ekik , where ⊗ denotes the Kronecker product, Ip is the index set

defined as Ip = {i1, . . . , ik : 1 ≤ ij ≤ pj , 1 ≤ j ≤ k}.
In [14], the authors concentrated on the estimation of a Kronecker struc-

tured covariance matrix of order three (k = 3), the so called double separable
covariance matrix, generalizing the work of [15], for multilinear normal (MLN)
distribution. Further, let

(2) p∗j:l =

l∏
i=j

pi and p+
j:l =

l∑
i=j

pi,

with the special cases

(3) p∗ = p∗1:k and p+ = p+
1:k

respectively. When there is no ambiguity, we shall drop the dimension from
the basis vectors and write ep1i1 as ei1 , and epi1:ik

as ei1:ik , etc.
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Let T p denote the space of all vectors x = vec(X ), where X is a tensor of
order k, i.e., T p = {x : x =

∑
Ip
xi1i2...ike

p
1:k}. Note that this tensor space is

described using vectors. However, we can define tensor spaces using matrices.
This is given in the following definition.

Definition 2.1. Let

(i) T pq = {X : X =
∑
Ip∪Iq

x1,...,ik,j1,...,jle
p
1:k(eq1:l)

′}, where

Iq = {j1, . . . , jl : 1 ≤ ji ≤ pi, 1 ≤ i ≤ l}
(ii) T pq⊗ = {X ∈ T pq : X = X1 ⊗ . . .⊗Xk, Xi : pi × qi}
(iii) T p⊗ = {X ∈ T pp⊗ : X = X1 ⊗ . . .⊗Xk, Xi : pi × pi}

In the following, we will introduce the normal tensor (TVN) distribution and
present the probability density function (pdf) and its characteristic function
(cf), which we will use in the next topic. For more information about this
distribution, we refer the reader to [14] and [12].

Definition 2.2. A tensor random variable U ∈ Rp1×...×pk has standard ten-
sor normal distribution when all the elements of U are independent standard

normal distribution. Thus, X = M + JU ; Σ
1
2
1 , . . . ,Σ

1
2

k K has a TVN distri-
bution denoted by X ∼ TV N (M,Σ1, . . . ,Σk), where the positive definite

matrix Σk = Σ
1
2

kΣ
1
2

k models the dependence structure on the kth-mode and

JU ; Σ
1
2
1 , . . . ,Σ

1
2

k K is the Tucker product between U and Σ
1
2
1 , . . . ,Σ

1
2

k (see [5]). In

this case, vec(X ) = vec(M)+Σ
1
2

1:kvec(U) has the multivariate normal distribu-
tion, with location vector µ = vec(M) and positive definite dispersion matrix
Σ = Σ1:k = Σ1 ⊗ . . .⊗Σk.

Under the assumptions of definition 2.2 the pdf and the cf of the TVN
distribution are given as

(4) fX (x) = (2π)
−p∗
2

(
k∏
i=1

∣∣Σi

∣∣ −p∗(2pi)

)
exp
{
− 1

2
(x− µ)′Σ−1

1:k(x− µ)
}
,

where x,µ ∈ T p, Σ−1
1:k = (Σ1 ⊗ . . .⊗Σk)

−1
= Σ−1

1 ⊗. . .⊗Σ−1
k ,

∏k
i=1

∣∣Σi

∣∣ −p∗(2pi) =(∣∣Σ1

∣∣−p∗p1 )− 1
2

×
(∣∣Σ2

∣∣−p∗p2 )− 1
2

×. . .×
(∣∣Σk

∣∣−p∗pk )− 1
2

=
∣∣Σ1⊗Σ2⊗. . .⊗Σk

∣∣− 1
2 =∣∣Σ∣∣− 1

2 and p∗ is defined in (3).

(5) ϕX (t) = E[exp{it′x}] = exp[it′µ− 1

2
t′Σ1:kt], t ∈ T p.

2.2. Characterizing the TVSN distribution. In this subsection, we intro-
duce the tensor-variate skew-normal distribution (TVSN) and establish some
of its properties.
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The methodology behind our definition of TVSN distribution stems from
the fact that the difference between vector-variate skew-normal and TVSN lies
in the structure of the parameter space generated by the location vector µ,
dispersion (scatter) matrix Σ1:k and skewness vector δ.

Definition 2.3. A random variable X is said to have a TVSN distribution
of order k, with location vector µ ∈ T p, positive definite dispersion matrix
Σ = Σ1:k ∈ T p⊗ and skewness vector δ ∈ T p, denoted by X ∼ SNp(µ,Σ, δ), if

(6) x = µ+ Σ
1
2

1:ku,

Where p = (p1, . . . , pk) and the elements of u ∈ T p are independent skew-
normal distributed.

Proposition 2.4. Suppose that X has the tensor variate normal standard dis-
tribution and w has the univariate half normal distribution, independently of
X , then the density function of the TVSN distribution of order k, denoted by
U ∼ SNp(0, I1:k, δ) with the following characterization

u =
x+ δw√
1 + δ′δ

,

is given as

fU (u) = 2(2π)−
p∗
2 exp{−1

2
u′u}Φ(δ′u).

or in short

(7) fU (u) = 2φp(u; 0, I1:k)Φ(δ′u).

Where p∗ = p∗1:k =
∏k
i=1 pi, u,x, δ ∈ T p, I1:k ∈ T p⊗, φ(· · · ) represents the pdf

of the TVSN distribution and Φ(· · · ) represents the distribution function of a
univariate standard normal distribution.

Proof. Since X has the tensor variate normal standard distribution and w has
the univariate half normal distribution we have

fX ,W (x, w) =
2

2π
(2π)(−p∗/2)exp

{
.− 1

2
x′x− w

2
.

}
.

So, we can write: fU,W (u, w) =

= 2
2π (2π)(−p∗/2)

√
1 + δ′δexp{− 1

2 (
√

1 + δ′δu− δw)′(
√

1 + δ′δu− δw)− w
2 },

= 2
2π (2π)(−p∗/2)

√
1 + δ′δexp{− 1

2 (1 + δ′δ)(w − δ′u√
1+δ′δ

)2}exp{− 1
2u
′u},

Therefore, the marginal distribution of u is

fU (u) =

∫ ∞
0

f(u, w)dw,

= 2φp(u; 0, I1:k)Φ(δ′u),
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where p∗ = p∗1:k =
∏k
i=1 pi, u,x, δ ∈ T p, I1:k ∈ T p⊗ , φ(· · · ) represents the pdf

of the TVN distribution and Φ(· · · ) represents the distribution function of a
univariate normal distribution. �

There are many other types of TVSN distribution. (7) represents what
arguably is the simplest option involving a modulation factor of Gaussian type
operating on a tensor variate normal base density.

Theorem 2.5. The density function of the TVSN distribution (Definition 2.3)
is given as

(8) fX (x) = 2φp(x;µ,Σ1:k)Φ
(
δ′
(
Σ
− 1

2

1:k (x− µ)
))

.

where φp(x;µ,Σ1:k) represents the pdf of the tensor variate normal distribu-
tion and Φ(· · · ) represents the distribution function of a univariate normal
distribution.

Proof. Let U ∼ TVSNp(0, I1:k, δ) be a tensor variate standard skew normal
distribution. According to Proposition 2.4, the probability density function
(pdf) of U is given by

fU (u) = 2φp(u; 0, I1:k) Φ(δ>u),

where φp(·) denotes the pdf of the tensor variate normal distribution with
identity covariance structure, and Φ(·) is the cumulative distribution function
of the univariate standard normal distribution.

Now consider a general tensor variate skew normal random variable X ∼
TVSNp(µ,Σ1:k, δ). Define the linear transformation

u = Σ
−1/2
1:k (x− µ), equivalently, x = Σ

1/2
1:k u+ µ.

Since this is a linear transformation and x,µ ∈ T p, the Jacobian determinant
of the transformation is ∣∣∣∣∂x∂u

∣∣∣∣ =
∣∣∣Σ1/2

1:k

∣∣∣ = |Σ1:k|1/2.

Therefore, using the change of variables formula, the pdf of x becomes

fX (x) = fU (Σ
−1/2
1:k (x− µ)) · |Σ−1/2

1:k |.

Substituting the known expression for fU gives

fX (x) = 2φp(Σ
−1/2
1:k (x− µ); 0, I1:k) Φ(δ>Σ

−1/2
1:k (x− µ)) · |Σ−1/2

1:k |.

Using the identity

φp(Σ
−1/2
1:k (x− µ); 0, I1:k) · |Σ−1/2

1:k | = φp(x;µ,Σ1:k),

we obtain

fX (x) = 2φp(x;µ,Σ1:k) Φ(δ>Σ
−1/2
1:k (x− µ)).

This completes the proof. �
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2.2.1. Moments, characteristic function and cumulants.

Theorem 2.6. Let x ∼ SNp(µ,Σ, δ), where x ∈ T p. The characteristic
function of x is

ϕX (t) = 2[exp(it′µ+
1

2
t′Σ1:kt)]Φ(λ′Σ

1
2

1:kit), t ∈ T p(9)

and the cumulant generating function is

kX (t) = Ln [ϕX (t)]

= Ln(2) + it′µ+
1

2
t′Σ1:kt+ Ln[Φ(λ′Σ

1
2

1:kit)], t ∈ T p,(10)

where λ = (1 + δ′δ)−
1
2 δ, δ ∈ T p.

Proof. Let u = vec(U) ∼ SNp(0, I1:k, δ). So,

ϕU (t) = E[exp(it′u)],

=

∫
Rp

exp(it′u)f(u)du,

= 2

∫
(2π)−

p∗
2 exp{−1

2
(u− it)′(u− it)}exp{1

2
t′t}Φ(δ′u)du.

By making the transformation z = u− it, we get

ϕU (t) = 2exp
{t′t

2

}∫
(2π)

−p∗
2 exp{−1

2
z′z}Φ

(
δ′(z + it)

)
dz,

= 2exp
{t′t

2

}
E
{

Φ
(
δ′(z + it)

)}
,

= 2exp
{t′t

2

}
Φ
[ δ′it

(1 + δ′δ)
1
2

]
.(11)

The last equality is obtained using Lemma 5.2 in [3].
Now, using equations (6) and (11), we get the desired result. �

To compute moments, we need a suitable differential operator (matrix deriv-
ative). Let Y ∈ T pq be a function of X ∈ T rs, with their vectorized versions
y and x, defined as

y =
∑
i1:ik1

∑
j1:jk2

yi1:ik1 j1:jk2
e
q(1:k2)
j1:jk2

⊗ e
p(1:k1)
i1:ik1

,

x =
∑

m1:mk3

∑
n1:nk4

xm1:mk3n1:nk4
es(1:k4)
n1:nk4

⊗ er(1:k3)
m1:mk3

,

respectively. Then, dY
dX = dy

dx =
(12)

=
∑
i1:ik1

∑
j1:jk2

∑
m1:mk3

∑
n1:nk4

∂yi1:ik1 j1:jk2

∂xm1:mk3n1:nk4

(
es(1:k4)
n1:nk4

⊗ er(1:k3)
m1:mk3

)(
e
q(1:k2)
j1:jk2

⊗ e
p(1:k1)
i1:ik1

)′
.
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Higher order derivatives may be defined recursively, i.e.,

(13)
dkY

dXk
=

d

dX

dk−1Y

dXk−1
.

Theorem 2.7. The mean tensor and covariance matrix of random tensor x ∼
SNp(µ,Σ, δ), where x ∈ T p are given by

E(x) = µ+
2√
2π
γ.

var(x) = Σ1:k −
2

π
γ′γ.

where γ = Σ
1
2

1:k

(
1 + δ′δ

)− 1
2 δ.

Proof. Applying (12) to ϕ(t), and evaluating the derivatives at t = 0, the
desired result is obtained. �

If we intend to present a multivariate density or distribution function through
a multivariate skew normal distribution, there exist expansions where multivari-
ate densities or distribution functions, multivariate cumulants and multivariate
Hermite polynomials will appear in the formulas. Finding explicit expressions
for the Hermite polynomials of low order will be the final topic of this subsec-
tion.

Definition 2.8. The matrix H (x,µ,Σ) is called multivariate Hermite poly-
nomial of order k for the vector µ and the matrix Σ > 0, if it satisfies the
equality:

dkfX (x)

dxk
= (−1)kH (x,µ,Σ) fX (x), k = 0, 1, · · · ,

where dk

dxk
is given by (13), and fX (x) is the pdf (8).

The explicit formulas for the first two Hermite polynomials will be given in
the next theorem.

Theorem 2.9. Let x ∼ SNp(µ,Σ, δ), where x ∈ T p. The Hermite polynomi-
als, H (x,µ,Σ), k = 0, 1, 2, are of the form:

(i) H0 (x,µ,Σ) = 1,

(ii) H1 (x,µ,Σ) = (x− µ)
′
Σ−1 − δ

′
Σ−

1
2 ζ
(
δ
′
Σ−

1
2 (x− µ)

)
,

(iii) H2 (x,µ,Σ) = Σ−1 (x− µ) (x− µ)
′
Σ−1

−Σ−1 − 2Σ−1 (x− µ) δ
′
Σ−

1
2 ζ
(
δ
′
Σ−

1
2 (x− µ)

)
−Σ−1δδ

′
(x− µ) δ

′
Σ−

1
2 ζ
(
δ
′
Σ−

1
2 (x− µ)

)
.

where ζ(x) = φ(x)
Φ(x) .
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Hermite polynomials have wide-ranging applications in mathematics, statis-
tics, physics, and numerical analysis. In probability, they are used in Edgeworth
and Gram-Charlier expansions to refine normal approximations and model de-
viations from normality. They are essential in Gaussian quadrature for numer-
ical integration and appear in quantum mechanics, describing wavefunctions of
harmonic oscillators. In signal processing, they assist in noise reduction and
signal approximation, while in machine learning, they aid in feature engineering
and capturing non-linear relationships. Additionally, Hermite polynomials are
employed in financial mathematics for option pricing and risk analysis, making
them indispensable tools in both theoretical and practical domains.

2.2.2. Marginal and conditional distributions. In the sequel, we find the mar-
ginal and conditional distributions. For this purpose, suppose that the tensor

X is partitioned as X =

(
Xr1
Xr2

)
, over the rth mode so that

xr1 = vec(Xr1) = M r1x,(14)

xr2 = vec(Xr2) = M r2x,(15)

where

M r1 =
∑
Ir1

e
p(1:r−1)
i1:ir−1

⊗ emi1 ⊗ e
p(r+1:k)
ir+1:k

(
epi1:ik

)′
,(16)

M r2 =
∑
Ir1

e
p(1:r−1)
i1:ir−1

⊗ epr−mir−m ⊗ e
p(r+1:k)
ir+1:k

(
epi1:ik

)′
,(17)

with their respective index sets

Ir1 = {i1, · · · , ik : 1 ≤ it ≤ pt, t = 1, · · · , r − 1, r + 1, · · · , k, 1 ≤ ir ≤ m},
Ir2 = {i1, · · · , ik : 1 ≤ it ≤ pt, t = 1, · · · , r − 1, r + 1, · · · , k,m+ 1 ≤ ir ≤ pr}.

Theorem 2.10. Suppose that x ∼ SNp(0,Σ, δ). Let xr1 , xr2 be as defined in

(14) and (15), respectively, δ =

(
δ1

δ2

)
and Σr =

(
Σr

11 Σr
12

Σr
21 Σr

22

)
. Then

x1 = vec(X1) ∼ SNr1(0,Σr
11, δ1(2)),

where

δ1(2) =
(
1 + δ′r2Σ

r
2.1δr2

)− 1
2

(
δr1 + Σr−1

11 Σr
12δr2

)
,

where

(18) Σr−1

11 = (Σr
11)
−1
, Σr

2.1 = Σr
22 −Σr

21 (Σr
11)
−1

Σr
12.

Proof. First, we find the joint density of x = (x′
r1 ,x

′
r2)
′
. since

(
Σr

11 Σr
12

Σr
21 Σr

22

)−1

=

(
(Σr

11)−1 + (Σr
11)−1Σr

12(Σr
2.1)−1Σr

21(Σr
11)−1 −(Σr

11)−1Σr
12(Σr

2.1)−1

−(Σr
2.1)−1Σr

21(Σr
11)−1 (Σr

2.1)−1

)
,
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where Σr
2.1 is given in equation (18). Also |Σr

11||Σ
r
2.1| = |Σ

r
22||Σ

r
1.2| hence

fXr1 ,Xr2 (xr1 ,xr2) =

2φr1
(
xr1 ,µr1 ,Σ

r
11

)
φr2
(
xr2 ,µr2 ,Σ

r
2.1

)
Φ (δ′r1xr1 + δ′r2xr2)

fXr1 ,Xr2 (xr1 ,xr2) =

2φr1 (xr1 ,0,Σ
r
11)φr2 (xr2 ,µ2.1,Σ

r
2.1) Φ

(
δr
′

2.1 (xr2 − µr2.1) + δr1.1xr1

)
where δr2.1 = δr2 , δr1.1 = δr1 + Σr−1

11 Σr
12δr2 , µr2.1 = Σr

21Σ
r−1

11 xr1 and

δr
′

2.1 (xr2 − µr2.1) + δr1.1xr1 = δ′r1xr1 + δ′r2xr2 ,
Now by integrating the joint density over xr2 and using Lemma 5.2 in [3],

we get the marginal density, and the proof is complete.

fXr1 (xr1) =

∫
Rr2

fXr1 ,Xr2 (xr1 ,xr2) dx2

= 2φr1
(
xr1 ,µr1 ,Σ

r
11

)
E
[
Φ
(
δ′
r
2.1 (xr2 − µr2.1) + δr1.1xr1

)]
= 2φr1

(
xr1 ,µr1 ,Σ

r
11

)
Φ
[(

1 + δ′r2.1Σ
r
2.1δ

r
2.1

)− 1
2 δr1.1xr1

]
.

�

Corollary 2.11. Under the assumptions of theorem 2.10 the conditional den-
sity of x2|x1 is as follows

fX2|X1
(x2|x1) =

1

Φ∗(τ2.1)
φr2 (xr2 ,µ

r
2.1,Σ

r
2.1) Φ

[
δr
′

2.1 (xr2 − µr2.1) + τ r2.1

]
,

where

µr2.1 = Σr
21Σ

−1r

11 xr1 ,

Σr
2.1 = Σr

22 −Σr
21(Σr

11)−1Σr
12,

δr1.1 = δr1 + Σ−1r

11 Σr
12δr2 ,

δr2.1 = δr2 ,

τ r2.1 = δr
′

1.1xr1 ,

Φ∗(τ2.1) = Φ
[(

1 + δ′r2.1Σ
r
2.1δ

r
2.1

)− 1
2 τ r2.1

]
.

Proof. Using the law of obtaining conditional density and the joint and mar-
ginal densities obtained from theorem 2.10, the proof is complete. �

At the end of this section, we state the following theorem in which several
interesting special cases can be investigated by choosing A appropriately.

Theorem 2.12. Let x ∼ SNp(µ,Σ, δ), where x ∈ T p, and let A ∈ T qp⊗ be
nonsingular. Then,

Ax ∼ SNq (µA,ΣA, δA) ,

Where µA = Aµ, ΣA ∈ T q⊗ = AΣA′ and δA = Σ
1
2

A

(
A−1

)′
Σ

1
2 δ.
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Proof. Put y = vec (Y) = Ax ∈ T q. Using of transformation technique,

fY (y) = |A|−1fX
(
A−1y

)
= 2 (2π)

− q
∗
2 |AΣA′|− 1

2 exp

[
−1

2
(y −Aµ)

′
(AΣA′)

−1
(y −Aµ)

]
×Φ

[
δ′Σ−

1
2A−1 (y −Aµ)

]
.

And the proof is complete. �

3. Parameter Estimation via EM Algoritheorem

Assume that there are n independent tensor observations X = (X1, · · · ,Xn),
from fX (x), with vector representation x = (x1,x2, · · · ,xn). Let θ be the
parameter vector that consists of µ,Σ1, ...,Σk and δ, (or λ). In this section
we consider the maximum likelihood estimation of θ based on x1,x2, ...,xn and
provide an EM algorithm in a closed form.
Writing the cdf Φ in (7) as the integral of its pdf φ leads to the following
representation of the Skew Normal distribution
(19)

f(x,µ,Σ1, ...,Σk, δ) = 2

∫ ∞
0

φp(x,µ,Σ1, ...,Σk, δ)φ(u− δ′Σ−
1
2

1:k (x− µ))du,

where p = (p1, ..., pk),Σ1:k = Σ1 ⊗ ... ⊗Σk. This suggests introducing a non
negative random variable or a latent variable U such that the joint density
function is just the integrand in (19), i.e.,

f(x, u) = 2φp(x,µ,Σ1, ...,Σk, δ)φ(u− δ′Σ−
1
2

1:k (x− µ))I(u > 0).

By definition, the conditional distribuion of U given X = x is

f(u|x) =
φ(u− λ′(x− µ))

Φ(λ′(x− µ))
I(u > 0),

where λ = Σ
− 1

2

1:k δ. So, we can write the conditional mean as

(20) E(U |x,θ) = λ′(x− µ) +
φ(λ′(x− µ))

Φ(λ′(x− µ))
.

Let (xi, ui), i = 1, ..., n be the complete data, where xi and ui are considered
as incomplete observed and missing data, respectively. The complete data
log-likelihood function for θ = (µ,Σ1, ...,Σk, δ(λ)) is given by
(21)

lc(θ) = C−n
k∑
i=1

p∗

2pi
log|Σi|−

1

2

n∑
i=1

(xi−µ)′Σ−1
1:k(xi−µ)−1

2

n∑
i=1

(ui−λ′(xi−µ)),

where C is a constant that does not depend on the parameters. We proceed by
using an ECM algorithm described below.
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• Initialization: Initialize the parameters µ, Σj for j = 1, . . . , p and δ
(or λ).

• E Step: The expected value of the complete data log-likelihood lc(θ)with
respect to the conditional distribution of the missing data ui given the

observed data xi and the current estimate of the parameter θ̂
(m)

at
the iteration mth is

Q(θ|θ̂
(m)

) = E(lc(θ)|x, θ̂
(m)

)

= C − n
k∑
i=1

p∗

2pi
log|Σi| −

1

2

n∑
i=1

(xi − µ)′Σ−1
1:k(xi − µ)

− 1

2

n∑
i=1

(E(Ui|xi, θ̂
(m)

)− λ′(xi − µ))2.

• CM Step: By maximizing Q(θ|θ̂
(m)

) over θ, drive θ̂
(m+1)

which are
given by
(1) Update µ

µ̂(m+1) = x̄− (Σ̂
(m)

1:k )
1
2 δ̂

(m)
c(δ̂

(m)
)

1

n

n∑
i=1

a(θ̂
(m)
|xi),

where c(δ) = (1 + δ′δ)−1 and a(θ|xi) = E(Ui|xi,θ) in (20).

(2) Update Σj , j = 1, ..., k,

Σ̂
(m+1)

j =
pj
np∗

n∑
i=1

(xi(j) − µ̂
(m+1)
j )′ ⊗d 6=j (Σ̂

(m)

d )−1(xi(j) − µ̂
(m+1)
j ),

also Σ̂
(m+1)

= Σ̂
(m+1)

1:k = 1
n

∑n
i=1(xi− µ̂(m+1))′(xi− µ̂(m+1)). As

was discussed in [2] and [7] for parameter estimation in the matrix
variate case, and in [16] for the order k case, the estimates of Σk

are unique only up to a multiplicative constant. Indeed, if we let

Σ̃(k) =
1

σ(k),11
Σ(k), k = 2, ..., p,

where σ(k),11 is the first entry in Σk and

Σ̃(1) =

p∏
k=2

σ(k),11Σ(1), p

then
p⊗
k=1

Σ̃(k) =

p⊗
k=1

Σ(k),
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and therefore the likelihood is unchanged. So the estimate of the
Kronecker product would be unique.

(3) Update δ = Σ
− 1

2

1:k λ,

δ̂
(m+1)

= (Σ̂
(m+1)

1:k )−
1
2

1

n

n∑
i=1

a(θ̂
(m)
|xi)(xi − µ̂(m+1)).

The iterations of the EM algorithm is repeated until the desired con-
vergence criteria is achieved. A discussion of the computational
complexity of the proposed EM algorithm is particularly pertinent in
high-dimensional settings, where several challenges may arise. As the
dimensionality of the data increases, both the E-step and M-step of
the EM algorithm become computationally expensive. This can lead
to excessive memory usage and significantly longer execution times.
Moreover, the algorithm may converge slowly or become trapped in
local optima, which affects the quality and efficiency of the results. To
address these and other computational challenges, several optimiza-
tion strategies can be considered. Regularization techniques such as
penalties can help prevent overfitting and improve numerical stabil-
ity. Also, parallelization techniques leveraging multi-core processors
or GPUs can substantially improve the scalability of the algorithm in
large-scale applications.

4. A simulation study

To evaluate the performance of the estimators considered in the previous
section for varying samples sizes, we consider the tensor variate skew normal
distribution and generate random samples of size n = 100, 150, 200 with 1000
replications from the SNp(µ,Σ1:k, δ) where p = (2, 2, 2),p = (3, 3, 3),p =
(8, 8, 8),p = (10, 10, 10) and Σi = Ip, i = 1, 2, 3, p = (2, 2, 2);
Also

µ::1 =

[
0.5 1.0
−0.5 0.5

]
,µ::2 =

[
1.0 −0.5
0.5 1.0

]
; δ::1 =

[
0.5 0.7
1.0 0.5

]
, δ::2 =

[
0.7 1.0
0.5 0.7

]
.

Note that for generating a sample tensor from the tensor variate skew normal
distribution, we can use package rTensor in R software.
Finally, as initial values for the EM algorithm, we use the sample mean tensor
µ0 = 1

n

∑n
i=1 xi, the sample covariance matrix and the moment estimator of δ

in [?] as Σ0
j =

pj
np∗

∑n
i=1(xi(j) − µ0

j )
′(xi(j) − µ0

j ), δ
0 =

(
1
n

∑n
i=1(xi−µ0)3

( 4
π−1)
√

2
π

) 1
3

.

Also, we consider the convergence criterion maxr∈1,...,d|θ(m+1)
r −θ(m)

r | < 10−2,
where d is the size of θ.
The results, contain the average bias and the mean squared error of the esti-
mates, are reported in Tables 1,2 and 3 for µ, δ and Σj , j = 1, · · · , p respec-
tively. It can be seen from these Tables that, by increasing the sample size (n),
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the absolute value of the average bias and the mean squared error of the MLE
decrease for each component of θ, thus verifying the consistency property of
the MLE, which states that as the sample size grows, the estimates produced
by MLE converge in probability to the true parameter values. Moreover, the
performance is better for lower values of p∗. This suggests that when the num-
ber of parameters being estimated (or the dimensionality of the data) is lower,
the estimates are more accurate, resulting in lower bias and MSE. This could
be due to reduced complexity and less chance of overfitting when fewer param-
eters are involved.
Relative error is a measure of the uncertainty or inaccuracy of a measurement
compared to the true value. It is expressed as a fraction or percentage of the
true value, providing a normalized way to assess the size of the error in relation
to the actual quantity being measured. The formula for calculating relative

error is ‖V̂ −V ‖F‖V ‖F , where ‖.‖F is the Frobenius matrix norm,V̂ is the estimated

parameter value, and V is the true parameter value used to generate the sim-
ulated data. Relative error is particularly useful in scientific and engineering
contexts, as it allows for the comparison of errors across different scales and
units. A smaller relative error indicates a more precise measurement, while a
larger relative error suggests greater uncertainty. We use the relative error in
Figures 1 and 2 to determine how close the estimated model parameters are to
the true parameters and visualize that the performance improves as the sample
size increases. Moreover, the performance is better for lower values of p∗. In
other words larger tensors result in elevated relative errors.

Figure 1. Relative Error for µ (left) and δ (right)

5. Image Analysis

We now observe an analysis of red-green-blue (RGB) images. These images
come in the form three color intensity matrices (red, green, and blue), on
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Table 1. Average bias and MSE for µ

(p1, p2, p3) Component
Bias MSE

n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

(2,2,2)

µ111 0.3574 0.3561 0.3546 0.1374 0.1325 0.1304
µ211 0.5555 0.5581 0.5584 0.3161 0.3163 0.3153
µ121 0.7027 0.7010 0.6999 0.4991 0.4955 0.4927
µ221 0.3561 0.3554 0.3578 0.1358 0.1330 0.1326
µ112 0.5588 0.5592 0.5622 0.3198 0.3176 0.3196
µ212 0.7033 0.7048 0.7024 0.4996 0.5007 0.4959
µ122 0.3564 0.3576 0.3585 0.1363 0.1347 0.1332
µ222 0.5626 0.5607 0.5589 0.3240 0.3194 0.3157

(3,3,3)

µ111 0.3530 0.3509 0.3540 0.1348 0.1301 0.1312
µ211 0.5487 0.5475 0.5458 0.3088 0.3051 0.3027
µ311 0.6867 0.6808 0.6779 0.4770 0.4674 0.4629
µ121 0.3552 0.3542 0.3492 0.1367 0.1325 0.1276
µ221 0.5499 0.5447 0.5462 0.3097 0.3023 0.3028
µ321 0.6828 0.6820 0.6736 0.4721 0.4693 0.4569
µ131 0.3583 0.3534 0.3518 0.1383 0.1322 0.1297
µ231 0.5525 0.5548 0.5458 0.3129 0.3131 0.3028
µ331 0.6833 0.6811 0.6741 0.4722 0.4679 0.4575
µ112 0.3541 0.3523 0.3527 0.1349 0.1306 0.1296
µ212 0.5548 0.5478 0.5497 0.3157 0.3052 0.3063
µ312 0.6913 0.6894 0.6839 0.4832 0.4790 0.4706
µ122 0.3539 0.3526 0.3530 0.1349 0.1305 0.1296
µ222 0.5517 0.5503 0.5515 0.3121 0.3077 0.3082
µ322 0.6935 0.6901 0.6868 0.4858 0.4798 0.4746
µ132 0.3511 0.3566 0.3577 0.1323 0.1341 0.1333
µ232 0.5538 0.5510 0.5515 0.3140 0.3085 0.3082
µ332 0.6948 0.6885 0.6864 0.4881 0.4777 0.4740
µ113 0.3603 0.3541 0.3568 0.1390 0.1314 0.1325
µ213 0.5554 0.5557 0.5544 0.3162 0.3134 0.3107
µ313 0.7001 0.6976 0.6938 0.4948 0.4902 0.4840
µ123 0.3575 0.3526 0.3565 0.1367 0.1307 0.1319
µ223 0.5564 0.5551 0.5558 0.3168 0.3135 0.3126
µ323 0.6987 0.6935 0.6948 0.4930 0.4843 0.4854
µ133 0.3521 0.3543 0.3528 0.1331 0.1321 0.1293
µ233 0.5561 0.5548 0.5512 0.3174 0.3126 0.3078
µ333 0.6993 0.6928 0.6921 0.4939 0.4833 0.4815

Figure 2. Relative Error for Σ1,Σ2,Σ3 and Σ1:3
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Table 2. Average bias and MSE for δ

(p1, p2, p3) Component
Bias MSE

n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

(2,2,2)

δ111 -0.4980 -0.4914 -0.4950 0.2508 0.2444 0.2480
δ211 -0.9830 -0.9773 -0.9731 0.9682 0.9572 0.9489
δ121 -1.9580 -1.9495 -1.9463 3.8348 3.8017 3.7889
δ221 -0.4972 -0.4947 -0.4946 0.2498 0.2475 0.2475
δ112 -0.9802 -0.9774 -0.9745 0.9627 0.9572 0.9516
δ212 -1.9613 -1.9536 -1.9503 3.8479 3.8174 3.8044
δ122 -0.4956 -0.4917 -0.4939 0.2482 0.2446 0.2467
δ222 -0.9822 -0.9769 -0.9731 0.9666 0.9563 0.9486

(3,3,3)

δ111 -0.4971 -0.4983 -0.4985 0.2481 0.2492 0.2494
δ211 -0.9917 -0.9909 -0.9918 0.9843 0.9826 0.9845
δ311 -1.9826 -1.9820 -1.9823 3.9314 3.9289 3.9304
δ121 -0.4971 -0.4986 -0.4989 0.2482 0.2496 0.2498
δ221 -0.9932 -0.9899 -0.9916 0.9873 0.9807 0.9839
δ321 -1.9808 -1.9824 -1.9825 3.9243 3.9308 3.9312
δ131 -0.4973 -0.4976 -0.4985 0.2483 0.2485 0.2494
δ231 -0.9899 -0.9926 -0.9908 0.9806 0.9859 0.9825
δ331 -1.9818 -1.9825 -1.9826 3.9282 3.9308 3.9316
δ112 -0.4981 -0.4977 -0.4992 0.2489 0.2484 0.2500
δ212 -0.9913 -0.9918 -0.9918 0.9833 0.9843 0.9842
δ312 -1.9835 -1.9838 -1.9842 3.9347 3.9360 3.9379
δ122 -0.4978 -0.4990 -0.4983 0.2487 0.2497 0.2490
δ222 -0.9920 -0.9924 -0.9906 0.9847 0.9855 0.9819
δ322 -1.9835 -1.9842 -1.9839 3.9349 3.9375 3.9364
δ132 -0.4978 -0.4981 -0.4976 0.2486 0.2488 0.2484
δ232 -0.9920 -0.9912 -0.9910 0.9847 0.9831 0.9826
δ332 -1.9832 -1.9843 -1.9838 3.9335 3.9380 3.9362
δ113 -0.4997 -0.4986 -0.4992 0.2502 0.2492 0.2497
δ213 -0.9941 -0.9927 -0.9926 0.9886 0.9859 0.9858
δ313 -1.9859 -1.9864 -1.9862 3.9443 3.9462 3.9455
δ123 -0.4986 -0.4982 -0.4985 0.2492 0.2487 0.2489
δ223 -0.9939 -0.9931 -0.9921 0.9883 0.9867 0.9848
δ323 -1.9862 -1.9862 -1.9862 3.9452 3.9456 3.9457
δ133 -0.4987 -0.4989 -0.4988 0.2493 0.2494 0.2493
δ233 -0.9942 -0.9927 -0.9924 0.9890 0.9859 0.9853
δ333 -1.9859 -1.9861 -1.9862 3.9441 3.9452 3.9453

top of each other, thus creating an order-3 tensor. The images come from
the CIFAR-100 dataset [10]. For more information about these images please
see the following address: https://www.cs.toronto.edu/ kriz/cifar.html . Here
images of maple trees that had green or yellow leaves are chosen and came from
the following CIFAR-100 class hierarchy: super class trees and class maple.
The maple tree images were converted from RGB arrays to an HSL format to
filter out trees that did not have green or yellow leaves. These tensors had an
p = (32, 32, 3).
Figure 3 (left) is an example of one of the images in our sample of 212 tensors
Using EM algorithm, we estimate the parameter of the TVSN distribution and
Figure 3 (right) shows the color image that results from the estimated E(X )
tensor. The sky, tree trunk and branches are clearly visible. This feature can
be useful in areas such as automatic vegetation classification, object detection
in natural images, and image data compression. Also, Figure 4 displays the
distribution of pixel intensities for both the original maple tree image and the

https://www.cs.toronto.edu/~kriz/cifar.html
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Table 3. Average bias and MSE for Σr, r = 1, 2, 3

(p1, p2, p3) Component
Bias MSE
n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

(2,2,2)

Σ1

σ11 -0.2799 -0.2794 -0.2763 0.0839 0.0817 0.0790
σ12 = σ21 0.0001 -0.0003 0.0001 0.0012 0.0009 0.0006

σ22 -0.3186 -0.3159 -0.3168 0.1070 0.1034 0.1029

Σ2

σ11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ12 = σ21 -0.0004 0.0002 0.0015 0.0027 0.0020 0.0014

σ22 0.0925 0.0894 0.0848 0.0222 0.0159 0.0131

Σ3

σ11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ12 = σ21 0.0020 0.0010 0.0024 0.0024 0.0016 0.0012

σ22 -0.0417 -0.0487 -0.0497 0.0128 0.0097 0.0075

(3,3,3)

Σ1

σ11 -0.0750 -0.0786 -0.0777 0.0106 0.0095 0.0085
σ12 = σ21 0.0007 0.0009 0.0015 0.0008 0.0005 0.0004
σ13 = σ31 -0.0004 -0.0004 -0.0002 0.0005 0.0004 0.0003

σ22 -0.2784 -0.2802 -0.2808 0.0803 0.0803 0.0801
σ23 = σ32 0.0018 -0.0002 0.0016 0.0004 0.0003 0.0002

σ33 -0.4817 -0.4810 -0.4819 0.2333 0.2322 0.2328

Σ2

σ11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ12 = σ21 0.0005 0.0012 0.0004 0.0013 0.0009 0.0006
σ13 = σ31 0.0003 0.0004 0.0004 0.0013 0.0008 0.0006

σ22 0.0076 0.0026 0.0014 0.0055 0.0035 0.0024
σ23 = σ32 0.0008 0.0006 0.0004 0.0013 0.0008 0.0007

σ33 0.0037 0.0008 0.0010 0.0052 0.0032 0.0025

Σ3

σ11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ12 = σ21 0.0013 -0.0008 0.0008 0.0012 0.0008 0.0006
σ13 = σ31 0.0015 0.0005 -0.0004 0.0013 0.0008 0.0007

σ22 -0.0026 0.0026 -0.0003 0.0051 0.0032 0.0025
σ23 = σ32 0.0019 0.0011 0.0017 0.0013 0.0008 0.0007

σ33 0.0004 -0.0002 0.0008 0.0053 0.0035 0.0025

estimated mean tensor. Table 4 shows the AIC, BIC and the Logarithm of the

Figure 3. An image of a maple tree from CIFAR-100 dataset
(left) and An image of the estimated mean tensor (right)

likelihood function criteria to select the better model for this data, Considering
that the skew normal distribution has the highest value of the logarithm of
the likelihood and the lowest values of AIC and BIC,therefore Skew Normal
distribution obtained the best performance, which can serve as a useful guide
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Figure 4. The distribution of pixel intensities for both the
original maple tree image and the estimated mean tensor

for model selection in real-world image processing projects—especially when
the data exhibit asymmetry.

AIC BIC LNL
Normal 22582000 22607000 -11284000

SkewNormal 22562000 22587000 -11274000

Table 4. AIC,BIC,LNL results for the image analysis

6. Conclusion

In this paper, we introduced the Tensor Variate Skew-Normal (TVSN) dis-
tribution and presented its key properties, such as moments, characteristic
functions. We also derived multivariate Hermite polynomials, which are useful
for Edgeworth expansions and numerical integration such as Gaussian Quad-
rature. Through simulation studies, we evaluated the parameter estimation
process using the EM algorithm, reporting the average bias and mean squared
error (MSE) of the estimates. The model’s relative error was also calculated,
showing how closely the estimated parameters matched the true values. Al-
though the TVSN model performed well in low-dimensional cases, we noted
that parameter estimation can become computationally infeasible in higher
tensor dimensions due to the increased complexity. The TVSN distribution
was fitted to a dataset of colored images of maple trees, and its performance
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was compared to the standard tensor variate normal and skew-normal distri-
butions using model selection criteria such as AIC, BIC, and LNL. The results
demonstrated that the TVSN model provided the best fit to the data, accu-
rately representing the trunk, branches, leaves, and sky in the images.

In future work, we propose exploring dimensionality reduction techniques,
such as PCA or autoencoders, to handle high-dimensional image data more
efficiently. We also suggest developing more scalable algorithms for parameter
estimation and considering the use of finite mixture models for clustering and
classification tasks. Overall, the TVSN model provides a powerful tool for
image analysis and opens up new possibilities for modeling complex, high-
dimensional data.
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