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Abstract Selection increases the frequency of beneficial alleles in 

subpopulations, leaving genomic signatures associated with genes and QTLs 
controlling economic traits. Genomic data from 60 Holstein and 72 Sarabi cattle 
were analyzed to identify these selection signatures. Quality control and data 
filtering were performed using PLINK_1.9 software. The genetic group was 
identified using three complementary methods: principal component analysis 
(PCA) with PLINK 1.9, discriminant analysis of principal components (DAPC) 
implemented in the adegenet package in R, and Admixture analysis conducted 
with Admixture version 1.23. Subsequently, FST, XP-EHH, and Rsb statistics were 
used to identify selection signatures. The chromosomal positions of the selected 
regions were aligned with the bovine genome data (ARS-UCD1.2 Bos Taurus) 
from the Ensembl Biomart database. Genetic analyses revealed the presence of 
two distinct genetic groups with different origins. In this study, 16 genomic regions 
were identified using the FST method, and 18 regions were determined using XP-
EHH and Rsb methods, covering approximately 17.5 and 24 Mbp of the bovine 
genome, respectively. Based on gene ontology analyses, these regions contained 
coding genes related to key biological processes such as immune response, 
muscle growth, reproduction, and milk production. Several genes, including 
MYO1A, STAT6, and PRKAA1, were associated with traits such as carcass 
quality, fertility, and metabolic processes. The analysis of identified QTLs 
confirmed the presence of economically important traits, such as growth rate, 
disease resistance, meat quality, and milk composition. Regions on Bos taurus 
autosome (BTA) 6 and 10 were identified as key areas for immune-related genes, 
while milk production traits were observed on regions of BTA 5, 7, and 20. Overall, 
these findings provide valuable insights into the genetic basis of important 
economic traits in cattle and can contribute to future breeding programs aimed at 
improving productivity and disease resistance. 
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Introduction 
milk production among these breeds, as its milk yield has   

Due to the importance of cattle species in meat and milk  increased due to selective breeding efforts. In recent years,  
production and agricultural activities, research into  in addition to studies on world-renowned exotic and   
breeding and improving these animals has expanded. purebred livestock, numerous studies have also focused on   
The major dairy cattle breeds raised worldwide for milk  native cattle breeds (Gautier et al., 2010; Kukučková et al.,   
production include Holstein, Brown Swiss, Ayrshire,  2017; Maiorano et al., 2018). The increasing knowledge  
Jersey, and Guernsey. Holstein is the dominant breed for about the structure and genetic diversity of native breeds is  
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essential for their effective use in sustainable animal 
husbandry and agriculture, the harsh and 
underdeveloped breeding conditions, and the genetic 
preservation of livestock (Groeneveld et al., 2010). 
Considering that native breeds exhibit high adaptability 
to their environment and have significantly longer 
lifespans, the gene pool of unselected native breeds is a 
valuable genetic resource (Medugorac et al., 2009). 

Selection signatures are genomic patterns that arise 
due to selective forces acting on specific genomic 
regions (Simianer et al., 2014). They include localized 
reductions in genetic diversity, deviations from allele 
frequency distributions, increased linkage 
disequilibrium, extended haplotype structures, and 
genetic differentiation between populations (Qanbari 
and Simianer, 2014). Various tools and methods have 
been successfully developed and applied to identify 
selection signatures across different populations at the 
genomic level (Li et al., 2014). 

Numerous studies have been conducted to identify 
genomic regions under selection in cattle (Stella et al., 
2010; Maiorano et al., 2018; Biabani et al., 2022; Salehi 
et al., 2023), goats and sheep (Moradi et al., 2012; 
Bertolini et al., 2018; Álvarez et al., 2020; Azizi et al., 
2024), and pigs (Zhang et al., 2020). Other studies have 
focused on horses (Grilz-Seger et al., 2019; Nolte et al., 
2019), buffalo (Mokhber et al., 2015; Sun et al., 2020), 
camels (Bahbahani et al., 2019), and poultry (Almeida et 
al., 2019). 

In this regard, this study aims to utilize genomic data 
to identify regions of the genome that have been 
subjected to natural or artificial selection forces over 
time. These genomic regions may serve as 
distinguishing markers between the Holstein and Sarabi 
breeds.  

Materials and methods 

Breed Selection History and Justification for Sarabi 

The Holstein breed (Holstein-Friesian) results from over 
a century of intensive artificial selection aimed at 
optimizing dairy production traits. Organized breeding 
programs since the 1950s, focusing on milk yield traits 
(e.g., volume and fat percentage), have established it as 
the dominant dairy breed in global industrial systems 
(García-Ruiz et al., 2016). In contrast, the Sarabi is an 
indigenous Iranian cattle breed reared in West 
Azerbaijan province. This breed has evolved through 
long-term adaptation to challenging environmental 
conditions (e.g., cold climate, limited forage resources, 
and endemic diseases) and natural selection for survival, 
disease resistance, and production efficiency in 
traditional farming systems (Dadpasand et al., 2013). 
The Sarabi breed was selected for this study based on 
the following rationale: I. Unique Genetic Diversity: As a 
valuable genetic reservoir with adaptive traits (e.g., 
resistance to infectious diseases like foot-and-mouth 
disease and cold stress tolerance) (Mirzaee et al., 2019); 
II. Divergent Selection Patterns: The absence of  

 

industrial breeding interventions allows identification of 
selection signatures linked to environmental adaptation 
(contrasting with anthropogenic selection in Holsteins), 
and III. Conservation Imperative: Genomic data from this 
breed is critical for designing conservation and 
sustainable utilization strategies (FAO, 2015). 

Genomic data collection 

Genomic data from 132 samples, comprising 60 Holstein 
cows and 72 purebred Sarabi cows, were used in the 
present study. The Sarabi breed (72 heads purebred 
Sarabi cows) samples were collected from East-
Azerbaijan (north-western part of Iran (37.02° – 38.78° 
N, 44.81° - 49.52° E), and were sequenced through 
collaboration with Saina Gostar Alborz Company using 
Geneseek’s 40K arrays. whereas the Holstein genomic 
data (60  heads related France Holstein population) were 
obtained from the WIDDE database 
(http://widde.toulouse.inra.fr/widde/widde/main.do;jsess
ionid=1DDE4ECBC7809DD4448A9768E60AA7A6?mo
dule=cattle. (Sempéré et al., 2015).  

Quality control and data filtration 

The Plink 1.9 software was used to perform quality 
control and filtration of individuals and single-nucleotide 
polymorphism (SNP) markers (Purcell et al., 2007). The 
quality control criteria were as follows: 

First, individuals and SNPs with less than a 95% call 
rate were excluded from this study. Then, the data were 
filtered based on a minor allele frequency threshold of 
less than 1% and markers out of the Hardy-Weinberg 
equilibrium (P-value >10e-6). Considering that the 
samples used in the current study were sequenced using 
different platforms, the filtered data were merged, and 
once common genomic data were obtained, the data 
were re-filtered to exclude SNP markers with high 
missing data. 

Principal component analysis (PCA), discriminant 
analysis of principal components (DAPC), and 
population structure analysis 

To elucidate genetic structure and delineate clusters 
within the studied populations, three complementary 
multivariate analyses were implemented. Principal 
Component Analysis (PCA) was performed using PLINK 
1.9 (Purcell et al., 2007), applying standard quality 
control and linkage disequilibrium pruning to identify 
major axes of variation. Discriminant Analysis of 
Principal Components (DAPC) was executed in R using 
the adegenet package (Jombart, 2008; Jombart & 
Ahmed, 2011), with cross-validation to optimize retained 
principal components for maximal between-group 
differentiation. Model-based admixture analysis was 
conducted using ADMIXTURE (Alexander et al., 2009), 
employing maximum-likelihood estimation of individual 
ancestry proportions; the optimal number of ancestral 
clusters (K) was determined by minimizing cross-
validation error. Results from all analyses (PCA  
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scatterplots, DAPC membership probabilities, 
ADMIXTURE ancestry proportions) were integrated and 
visualized using the ggplot2 package (Wickham, 2016) 
within the R statistical environment (R Core Team, 
2023). 

Detection of selection signatures 

The unbiased fixation index (FST) estimator (Weir and 
Cockerham, 1984), cross-population extended 
haplotype homozygosity (XP-EHH) (Sabeti et al., 2007), 
and extended haplotype homozygosity between 
populations (Rsb) statistics (Tang et al., 2007) were 
calculated to examine the pattern of positive selection 
between distinct genetic groups (Holstein and Sarabi). 
All statistics were determined solely on Bos taurus 
autosomal chromosomes (BTA). with appropriate 
software packages in the R environment. To better 
identify selection signals at the genome level, instead of 
directly considering the numerical value of each SNP, a 
sliding window approach with a window length of 300 
Kbp was employed to average the values of adjacent 
SNPs (Qanbari et al., 2012). Finally, 0.1% of the studied 
markers were identified as selection signals. The search 
for selection signals using XP-EHH and Rsb statistics 
was performed via the ReHH software. XP-EHH and Rsb 
statistics are computed via high-frequency and high EHH 
alleles. The EHH and iHS statistics, after imputation and 
phasing with Beagle software (Browning and Browning, 
2007), were calculated using ReHH software (Gautier 
and Vitalis, 2012). Eventually, Manhattan plots for each 
method were drawn using the QQman software package 
in the R environment (R Core). (Ripley, 2001). 

Gene ontology  
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The selected regions' chromosomal positions aligned 
with the gene positions were listed for the cattle genome 
(ARS-UCD1.2 Bos Taurus Genome) in the Ensemble 
Biomart Tool (http://www.ensemble.org/biomart/ 
martview) (Zhang et al., 2011). Next, an extensive 
literature review was conducted to comment on the 
functions of the identified genes. Finally, biological 
pathways and gene networks were determined by 
DAVID (Sherman et al., 2022). 

Results and discussion 

Quality control and data screening 

Following various screening stages based on raw data 
quality control information and animal kinship, a total of 
26,492 SNP markers from autosomal BTA of 132 
animals (including 60 Holstein and 72 Sarabi heads) 
passed the quality control process and were selected for 
final analyses.  

Population structure analysis and determination of 
diversity components 

PCA is a widely used method for examining population 
differentiation and clustering in the genomic studies of 
domestic animals (Kijas et al., 2013; Uzzaman et al., 
2014). This approach estimates and visualizes 
population structure based on the genetic relationships 
among the individuals. In other words, the results of PCA 
reflect the genetic affinity among the studied individuals. 
Ultimately, animals are positioned close to or distant 
from each other based on their genetic relatedness. The 
results of PCA indicated that the studied populations fall 
into two completely distinct groups (Figure 1), with the 
first two components explaining 15% of the total 
variance.  
 

Figure 1. Graphical representation of PCA (right( and DAPC (left( analyses for Holstein and Sarabi cattle 

breeds based on SNP marker data. 

 
 The Admixture analysis results were confirmed the 

genetic distinction between the two studied groups 
(Figure 2). Cross-validation was performed under the 

assumption of 1–3 ancestral populations. The results for 
the assumption with two genetic groups exhibited the 
lowest validation error and provided the highest clarity in 
distinguishing between the populations (Figure 2). 
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Figure 2. Graph of population admixture analysis results with K=2 for Holstein (blue. and Sarabi (red. cattle 

breeds using SNP marker data 

Detection of selection signatures, Manhattan plots and 
gene ontology results 

The Manhattan plots (Figure 3) depict genome-wide FST, 
XP-EHH, and Rsb values for Sarabi vs. Holstein cattle, 
with a threshold line highlighting selection signatures. 
Gene ontology analysis of 16 genomic regions (~17.5 
Mbp) identified via FST, iHS, and Rsb revealed 9 regions 
containing 60 protein-coding genes, localized to BTA 2, 
3, 6, 9, 10 (two regions), 16, 20, and 26 (Table 1). 
Notably, the BTA 10 region (22–23 Mbp) aligns with a 

reported selection signature in buffaloes (Mokhber et al., 
2018). 

Of the 18 regions (~24 Mbp) detected as selection 
signatures, 160 protein-coding genes were identified, 
distributed across BTA 5 (two regions), 6, 7 (two 
regions), 12 (two regions), 15, 16 (two regions), 18, 20 
(six regions), and 25 (Table 1). Extended regions on BTA 
7, 18, and 20 (spanning 3–6 Mbp) were attributed to 
broad marker peaks, cumulatively covering ~24 Mbp. 

 

Figure 3. Manhattan plot of FST, XP-EHH, and Rsb values comparing Sarabi and Holstein cattle breeds. The 

blue line represents the threshold for identifying genomic regions under selection 

Several genomic regions identified in this study, 
including BTA5 (55.4–57 Mbp), BTA6 (71.5–72.5 Mbp), 
BTA7 (44.5–46 Mbp), and BTA2 (32.5–35 Mbp), align 
with selection signatures reported in prior research 
(Yurchenko et al., 2018; Moravčikova et al., 2019). 

Notably, the BTA20 region has been recurrently 
highlighted across studies (Bovine HapMap Consortium 
et al., 2009; Qanbari et al., 2010; Stella et al., 2010), 
underscoring its significance in cattle genetic 
improvement. 
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The BTA5 region (55.4–57 Mbp) emerged as a critical 
locus enriched with functional genes such as PRIM1, 
PTGES3, BAZ2A, GLS2, APOF, MIP, and TIMELESS, 
previously linked to carcass and meat quality traits 
(Yurchenko et al., 2018). These findings corroborate 
earlier reports associating this locus with economically 
vital phenotypes in cattle (Peters et al., 2012; Saatchi et 
al., 2014). 

Key genes associated with meat quality traits include 
MYO1A (muscle development), NACA (myoblast  

Selection signatures between Holstein and Sarabi dairy cattle 

regulation, lipid metabolism), R3HDM2, TAC3, and 
STAT6 (carcass traits, immune responses). These 
genes, previously linked to carcass weight, backfat 
thickness, and skeletal muscle formation in cattle (Cui et 
al., 2012; Leal-Gutierrez et al., 2018; Wang et al., 2022), 
underscore their role in economically vital phenotypes. 
STAT6, identified as a selection signature on BTA 5, 
influences traits such as shear force, daily weight gain, 
and immune pathway activation (Rincon et al., 2009; 
Signer-Hasler et al., 2017). 

 

Table 1. List of identified genes related to selected regions between Holstein and Iranian Sarabi cattle's using FST, XP-EHH 

and Rsb methods 
Detected Genes Methods End (Kbp) Start (Kbp) Chr 

ZEB2 - GTDC1 -ENSBTAG00000052105 FST 52.83 52.17 1 

U6 -ENSBTAG00000051499 -ENSBTAG00000049274 FST 56.03 55.35 3 
R3HDM2 - STAC3 - NDUFA4L2 - SNORA62 - STAT6 - NEMP1 - MYO1A - TAC3 - 

ZBTB39 - RDH16 - SDR9C7 - PRIM1 – NACA - PTGES3 - ATP5F1B - bta-mir-
677 - bta-mir-677 - BAZ2A - GLS2 – MIP – TIMELESS – APON – APOF -STAT2 - 

PAN2 - CNPY2 - bta-mir-12054 – CS - ANKRD52 - RNF41 - SMARCC2 

XP_EHH   و  Rsb 57.16 56.08 5 

GSG1 - HEBP1 - GPRC5D - GPR19 - DUSP16 - 5S_rRNA - MANSC1 - LRP6 XP_EHH   و  Rsb 97.70 96.77 5 

CRACD – PAICS - SRP72 - ARL9 – THEGL - RESTB - POLR2B - Y_RNA - 
ENSBTAG00000052745 - ENSBTAG00000042899 

FST 75.20 71.60 6 

ALB – AFP – AFM - 7SK - CXCL8 - CXCL5 - CXCL2 - CXCL3 - GRO1 - 
MTHFD2L – EPGN – EREG –AREG -PARM1 - THAP6 - USO1 

XP_EHH   و  Rsb 90.64 88.48 6 

SOWAHA – UQCRQ - LEAP2 - HSPA4 - 5S_rRNA XP_EHH   و  Rsb 44.78 44.40 7 

TCF7 - bta-mir-2285di - UBE2B - JADE2 - SEC24A – CAMLG - DDX46 - 
C7H5orf24 - 5S_rRNA - TXNDC15 - PCBD2 - CATSPER3 

XP_EHH   و  Rsb 46.46 45.77 7 

OGFRL1 - RIMS1 - ENSBTAG00000048046 XP_EHH   و  Rsb 11.70 10.63 9 

ENSBTAG00000052267- ENSBTAG00000054833 - ENSBTAG00000050913 - 
ENSBTAG00000047690 - ENSBTAG00000054417 - ENSBTAG00000050391 - 
ENSBTAG00000050781 - ENSBTAG00000054091 - ENSBTAG00000046819 - 
ENSBTAG00000038544 - ENSBTAG00000045863 - ENSBTAG00000054130 - 
ENSBTAG00000049260 - ENSBTAG00000052371 - ENSBTAG00000051127 - 
ENSBTAG00000051187 - ENSBTAG00000018947 - ENSBTAG00000030792 

FST 23.27 22.75 10 

SYT16 - ENSBTAG00000030792 FST 74.26 73.94  10 

LHFPL6 - PROSER1 - STOML3 -U6 XP_EHH   و  Rsb 23.52 22.80 12 

TRPC4 XP_EHH   و  Rsb 24.17 23.97 12 

NCAM1- TTC12 - CLDN25- HTR3B - U6 - HTR3A- ZBTB16- U8 XP_EHH   و  Rsb 24.78 23.71 15 

snoRNA XP_EHH   و  Rsb 25.66 25.26 16 

MIA3 - BROX - FAM177B - DISP1 XP_EHH   و  Rsb 26.36 26.10  

U5 - IRF6 - C16H1ORF74 - LAMB3 FST 73.71 72.97  16 
CCNE1 - URI1 - ZNF536 - bta-mir-2899 - SNORA70 - ZNF507 - DPY19L3 - 

PDCD5 - RGS9BP - NUDT19 - TDRD12 - FAAP24 - GPATCH1 
XP_EHH   و  Rsb 43.55 40.42 18 

ACTBL2 - bta-mir-2285f2 - MIER3 - U1 - ENSBTAG00000042330 - 
ENSBTAG00000026505 - ENSBTAG00000053164 - ENSBTAG00000051954 

XP_EHH   و  Rsb 22.60 21.80 20 

OXCT1 - PLCXD3 - C6 - MROH2B - RPL37 - PRKAA1 - TTC33 XP_EHH   و  Rsb 33.73 32.67 20 

U2 _ rRNA XP_EHH   و  Rsb 34.89 34.85 20 

DAB2 - C9 -FYB1 _ RICTOR _ LIFR + ENSBTAG00000054984 XP_EHH   و  Rsb 35.95 35.00 20 

GDNF + 2 snoRNA XP_EHH   و  Rsb 36.64 36.45 20 

NUP155 - CPLANE1 - RANBP3L - NADK2 - LMBRD2 - UGT3A2 - CAPSL XP_EHH   و  Rsb 38.28 36.97 20 

ENSBTAG00000006971 - ENSBTAG00000054687 - ENSBTAG00000052247 - 
ENSBTAG00000004629 - ENSBTAG00000045056 - ENSBTAG00000047780 - 
ENSBTAG00000055240 - ENSBTAG00000048135 - ENSBTAG00000047700 - 

ENSBTAG00000047632 

FST 71.95 71.39 20 

SNX29 - SHISA9 XP_EHH   و  Rsb 11.65 10.68 25 

JAKMIP3 - DPYSL4 -LRRC27 - PWWP2B - ENSBTAG00000050527 - 

ENSBTAG00000050923 - ENSBTAG00000052910 
FST 51.98 51.24 26 

The genomic region spanning 88.48–90.64 Mbp on 

BTA 6 harbors immune-related genes (CXCL5, CXCL8, 

EPGN, EREG), which regulate cytokine activity, 

inflammation, and mammary gland development. ALB in 

this locus is critical for fatty acid metabolism, apoptosis 

regulation, and reproductive processes. Additionally, 

APOF, APON, and ATP5F1B were linked to lipid 

biosynthesis, cholesterol metabolism, and lung 

development (Gutiérrez-Gil et al., 2015; Bertolini et al., 

2018). These findings highlight genomic hotspots 

governing meat quality, immune function, and metabolic 

efficiency in cattle  
Genomic regions on BTA 7 harbored TCF7 (T-cell 

receptor recombination, Wnt signaling), UBE2B  
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(apoptosis regulation), JADE2 (neurogenesis), and 
TXNDC15 (smoothened signaling). On BTA 9, the 
RIMS1 (synapse formation) and OGFRL1 (opioid 
receptor activity) genes were identified. BTA 10 (22.75–
23.27 Mbp) and BTA 12 (23.96–24.17 Mbp) contained 
immune-related loci (e.g., ENSBTAG00000052267, 
TRPC4) linked to pathogen resistance and 
oligodendrocyte differentiation. 

BTA 15 featured TTC12 (sperm axoneme assembly), 
HTR3B (serotonin signaling), and ZBTB16 
(skeletal/immune cell differentiation). On BTA 16, IRF6 
(epithelial/organ development) and LAMBP3 (tissue 
morphogenesis) were highlighted. These regions 
underscore critical roles in immunity, neural 
development, and tissue differentiation. 

The BTA 18 region harbors CCNE1 (Wnt signaling, 
cell division), URI1 (growth regulation, viral response), 
PDCD5 (apoptosis regulation), and RGS9BP (visual 
perception). ZNF536/ZNF507 are linked to structural 
traits, longevity, and calving difficulty in Holsteins (Cole 
et al., 2011), with QTLs associated with fertility, milk 
production, and calving ease. On BTA 20, PRKAA1 
(metabolic regulation, lipid biosynthesis), GDNF (neural 
development), C6/FYB1 (immune response), and LIFR 
(inflammatory signaling) were identified. PRKAA1 and 
PLCXD3 further influence lipid metabolism, while 
RICTOR and CPLANE1 regulate muscle/kidney 
development. Notably, the GHR gene in this region 
(Yurchenko et al., 2018) underscores its role in growth 
and milk production. 

Genes such as JADE2, RIMS1, TRPC4, and 
PRKAA1 are enriched in neural differentiation pathways. 
Immune-related loci (e.g., CXCL8, CXCL5, TCF7) 
cluster on BTA 6 and 10, highlighting their significance 
in pathogen resistance. PRKAA1, CCNE1, and TCF7 
modulate milk production via Wnt signaling, while APOF, 
APON, and PLCXD3 regulate lipid metabolism. These 
pathways align with QTLs for milk yield/composition on 
BTA 5, 7, 18, and 20, emphasizing Wnt signaling as a 
central driver of lactation traits. 

QTLs related to divergent selected regions  

This study identified 18 genomic regions (spanning ~24 
Mbp) via XP-EHH/rSB methods and 16 regions (~17.5 
Mbp) via FST as selection signatures harboring 
quantitative trait loci (QTLs) associated with critical 
functional traits in cattle. These QTLs were linked to 
economic and health-related traits, including herd 
longevity (BTA 6, 7, 12, 16, 21), resistance to bovine 
tuberculosis (BTA 15), respiratory disease susceptibility, 
and immune cell counts. Growth and meat quality traits 
encompassed birth weight, body weight gain (BTA 2, 
26), muscle composition (e.g., carnosine, taurine), fat 
deposition (subcutaneous, intramuscular), and meat 
tenderness (BTA 16). Feed efficiency traits included 
residual feed intake (BTA 2, 21), while reproductive traits 
involved fertility rates (BTA 2, 3, 6, 15, 18), insemination 
success (BTA 6, 18, 22, 26), and age at puberty. 

 

 

Milk production QTLs were associated with 
fat/protein yield (BTA 5, 7, 12, 20), κ-casein percentage 
(BTA 6, 7, 15, 18), and fatty acid profiles (e.g., palmitic, 
linoleic acids). Physiological and structural traits 
included dystocia/stillbirth (BTA 16) and body 
conformation (udder depth, hip height; BTA 12, 25). 
These findings underscore the genomic architecture 
underlying economically vital traits, providing a 
foundation for targeted breeding strategies to enhance 
productivity, disease resilience, and structural 
soundness in cattle populations (Tables S1, S2). 

The findings of this study demonstrated a strong 
association between the selected genomic regions and 
important traits, such as milk production and 
composition, fertility, growth, meat quality, and 
susceptibility to respiratory diseases. These results 
highlight the significance of these genomic regions in 
improving economically essential traits in dairy cattle, 
particularly in enhancing milk production and disease 
resistance. 

Conclusion 

This study employed FST, XP-EHH, and Rsb statistical 
methods to identify genomic differences between 
Holstein and Sarabi cattle in Iran. A total of 16 genomic 
regions were detected using FST, while 18 regions 
(spanning ~17.5 and 24 Mbp, respectively) were 
identified via XP-EHH and Rsb. Gene ontology analysis 
revealed these regions harbor genes linked to critical 
biological functions, including immune response, muscle 
growth, reproduction, and milk production. Key genes 
such as MYO1A, STAT6, and PRKAA1 were associated 
with traits like carcass quality, fertility, and metabolic 
processes. Immunity-related genes were concentrated 
on chromosomes 6 and 10, while milk production traits 
correlated with regions on chromosomes 5, 7, and 20. 
These findings offer valuable insights for optimizing 
cattle breeding programs to enhance productivity and 
disease resistance. 
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