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Abstract Bovine leukemia virus (BLV) is a causative agent of bovine leukosis, 

which, due to its long incubation period, can spread widely within a herd before 
clinical symptoms appear, causing significant economic losses. This study used 
a supervised machine learning method called random forest to identify genomic 
regions associated with BLV. The non-parametric nature of this method allows 
for the creation of predictive models without the need for initial statistical 
assumptions; whereas the standard Genome-wide association studies (GWAS) 
methods are usually based on single-variable hypothesis tests and cannot 
account for correlations resulting from connectivity imbalance or the combination 
of multiple markers. In this study, the genotyping data of 145 Holstein cows (77 
BLV-positive, 68 healthy) after quality control by using the PLINK (v 1.02), which 
resulted in 23,910 Single nucleotide polymorphisms (SNPs) were analyzed. 
Random forest analyses on the mentioned data included three hyperparameters: 
mtry (0.5(p/3), (p/3), 2(p/3)), ntree (2000, 3000, 4000), and nodesize (5, 10, 15), 
where p is equal to the total number of SNPs (23,910). To find the best SNPs, the 
Mean Decrease Accuracy (MDA) index (> 1.89) was used which resulted in the 
selection of 50 SNPs. Genomic enrichment analyses showed that genes 
associated with the top 50 SNPs are predominantly involved in Positive 
Regulation, Intracellular Signaling, Apoptosis and Cell Death, Signal 
Transduction, Metabolic Processes, and Cell Differentiation and Development. In 
total, 82 genes were identified, including hub genes such as MYC, RABIF, IRS1, 
TRAPPC9, MAPK8, HTT, SNX9, BCLAF1, XRN1, and LSM6. 

Keywords: bovine leukemia virus (BLV), dairy cattle, genomic prediction, 

random forest, susceptibility loci 

 

Introduction 
important to accurately diagnose the disease in its early   

The bovine leukemia virus is a retrovirus that is known as  stages to control disease outbreaks and economic losses.    
the causative agent of enzootic bovine leucosis, which is  (Lv et al., 2024).  
a common neoplastic disease in dairy cattle. Bovine  Genome-wide association studies (GWAS) analyze   
leucosis is usually disregarded in breeding processes  hundreds of thousands of genetic variants across the   
because of its lack of specific clinical symptoms; and due  genome (Uffelmann et al., 2021) with the main objective to   
to the long latency period, which may lead to widespread  identify the variants that cause a specific trait or disease,  
in the herd (Bongers, 2023). In the United States, the  either individually or in combination (Botta et al., 2014). The   
prevalence rate of bovine leucosis is more than forty  most common variants studied in GWAS (Uffelmann et al.,   
percent, and the annual economic impact of reduced 2021) are single-nucleotide polymorphisms (SNP). The   
milk production is 500 million dollars. Therefore, it is SNPs are variations in the base pairs of the DNA, and it has  
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been proven that SNP profiles identify various types of 
diseases in GWAS. The identification and selection of 
SNPs related to economic traits are the most important 
tasks in the analysis of GWAS data. However, the large 
dimensions of the data and the lack of association of a 
significant portion of SNPs with the disease make this 
task challenging (Nguyen et al., 2015). Since the data 
dimensions are large, stringent thresholds must be 
adopted for calculating the error rates, which leads to 
insufficient detection and increases the likelihood that 
SNPs with small effects associated with the trait will not 
be identified (Silva et al., 2022). Standard GWAS 
methods are usually based on univariate hypothesis 
tests and therefore cannot account for correlations 
resulting from linkage disequilibrium or the combination 
of multiple markers (Botta et al., 2014).  

Several methods have been used to identify SNPs 
with the most distinction among thousands of markers in 
commercially available SNP chip tools (Schiavo et al., 
2020). Random forest is one of the machine learning 
algorithms that has been proposed for this purpose 
(Enoma et al., 2022), and it can be used to estimate the 
importance of each SNP in classification and rank all 
SNPs in order of importance (Schiavo et al., 2024). It is 
composed of a collection of decision trees, each of 
which is developed with a bootstrapped subsample of 
the training dataset. Therefore, it is anticipated that a 
group of algorithms will fit well for modelling the non-
linear biological functions evident in genetic data such as 
SNP GWAS (Enoma et al., 2022). 

In simulations conducted by Meng et al. (2009), it was 
shown that as the genetic effect becomes stronger; the 
impact of LD on the performance of random forests also 
becomes stronger. In most genetic models that were 
simulated, the revised IM (importance measure) 
demonstrated better performance compared to the 
original IM when used with either the revised random 
forest method or the original random forest method. 
Additionally, SNPs in LD with noise SNPs had little effect 
on performance, suggesting the advantages of including 
all SNPs in analyses (Meng et al., 2009). Therefore, this 
study aimed to identify the markers and genes 
associated with bovine leukosis through genomic 
screening using the random forest algorithm. 

Material and methods  

Phenotypic and genotypic data  

 In the present research, the data (SNP chip) from the 
genotyping project of superior Holstein cows of a large 
dairy farm in Isfahan were used. The groups of sick and 
healthy animals were distinguished based on phenotypic 
data which were obtained from the ELISA blood sample 
test on Holstein female cows aged 3 to 7 years. In 
selecting animals for blood samples, non-related 
animals, animals that represented the diversity of the 
breed as much as possible (diversity in milk production 
and exposure to disease and stress factors), and 
animals that indicated different stages of leukosis were  

 

chosen. Blood samples were taken (5-7 cc) from the 
jugular vein and mixed with 0.5 mL of EDTA in vacuum 
tubes. The samples were immediately transferred to the 
laboratory under temperature-controlled conditions and 
stored at 4°C until plasma and DNA extraction. The 
genotyping of 145 Holstein cows (77 diseased and 68 
healthy) was performed using Illumina GeneSeek arrays 
(GGP Bovine LD v4 30k). 

Quality control  

Quality control of the data was performed using the 
PLINK v1.02 software for 29,776 SNPs. No animals 
were removed with MIND > 0.1. A total of 334 SNPs with 
GENO > 0.05, 9 SNPs with H-W < 1e - 6, and 5,523 
SNPs with MAF < 0.01 was removed. Finally, 23,910 
SNPs and 145 cows were used in the random forest 
analyses. 

Random forest in genomic screening 

The random forest (RF) algorithm (Breiman, 2001) was 
employed to identify the SNPs associated with BLV. (1) 
For each tree in the forest, a training subset was drawn 
randomly with replacement from the original dataset, 
comprising approximately two-thirds of the total samples 
(in-bag data). The remaining one-third (out-of-bag, 
OOB) samples were retained for internal validation. 
(2)  At each node of a decision tree, a random subset of 
SNPs (mtry) was evaluated as potential splitting 
variables. (3) A binary decision tree was grown by 
recursively partitioning the in-bag samples. At each 
node, the SNP that maximally reduced the MDA 
between the observed and predicted phenotypes (e.g., 
BLV infection status) was selected to split the node. This 
process continued until terminal nodes were reached, 
where no further reduction in MDA was achievable. (4) 
The prediction accuracy for each tree was estimated 
using its OOB samples, yielding an OOB error rate. The 
SNP variable importance (VIM) was quantified by 
permuting each SNP’s value within the OOB samples 
and calculating the resultant increase in MDA. Higher 
MDA values indicated stronger associations between 
SNPs and BLV-related outcomes. (5) Steps 1–4 were 
repeated to generate a forest of N trees. The final 
importance score for each SNP was computed as the 
average MDA across all trees in which the SNP was 
included (Breiman, 2001).  

To implement the random forest (RF) algorithm, we 
need to tune several key parameters. The first and most 
influential parameter is mtry - the number of candidate 
variables considered at each node split, which critically 
determines the complexity of the final model. Larger mtry 
values result in fewer variables being incorporated into 
the tree, producing sparser solutions while 
simultaneously reducing the variance-reducing effect of 
randomization. Conversely, smaller mtry values 
decrease the correlation between the trees and enhance 
the potential for variance reduction through bagging 
(Goldstein et al., 2011). 
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The second crucial parameter is ntree (number of 
trees in the forest). Unlike mtry, there is no definitive 
"optimal" value for ntree - generally, higher values yield 
better results. However, increasing the number of trees 
requires greater computational resources and 
demonstrates diminishing returns with very large values 
(Goldstein et al., 2011). 

The third parameter employed in this analysis is node 
size. The splitting process is halted when a node's 
observation count falls below predefined threshold 
values (Goldstein et al., 2011). 

The random forest (Breiman., 2013) analyses on the 
data were performed using the random forest package 
in R 4.3.0 software. This analysis includes three 
hyperparameters: mtry (0.5(p/3), (p/3), 2(p/3)), ntree 
(2000, 3000, 4000), and nodesize (5, 10, 15), where p is 
the total number of SNPs (23,910). Accuracy was used 
to select the optimal model using the largest value 
(0.544828). The final values used for the model were 
mtry = 3985 (0.5(p/3)), ntree = 2000 and nodesize = 5. 

Furthermore, the Random Forest (RF) algorithm, as 
a machine learning method, is particularly well-suited for 
studies with smaller sample sizes or datasets containing 
outliers due to its non-parametric nature and robustness. 
Unlike traditional GWAS methods that rely on stringent 
statistical thresholds and may miss SNPs with small 
effects or complex interactions (Botta et al., 2014). The 
RF leverages Out-of-Bag (OOB) error estimates to 
provide robust internal validation and reduce overfitting 
(Breiman, 2001). Additionally, RF effectively handles 
high-dimensional data and outliers, which are common 
in genomic datasets, by averaging predictions across 
multiple decision trees (Enoma et al., 2022). This makes 
RF an ideal choice for our dataset, where the number of 
SNPs (23,910) far exceeded the number of samples, 
and potential outliers from phenotypic or genotypic data 
could influence the outcome. 
 

Gene ontology  

Using the MDA index (value > 1.89), we selected the top 
50 SNPs. This approach is consistent with previous 
studies, such as Bani Saadat et al. (2024; top 10 
markers), Li et al. (2018; positive-effect markers), and 
Schiavo et al. (2020; top 1000 MDA-ranked SNPs). To 
validate this selection, we identified the genes 
associated with these 50 SNPs (e.g., GRK4, KDM1B) 
using the ENSEMBL database. Subsequently, utilizing 
the ENSEMBL database and the VEP tool, we identified 
82 genes located within 500 kilobase pairs (kbp) of the 
target SNPs. Finally, for functional annotation and 
pathway enrichment analysis of these genes, Gene 
Ontology (GO) analysis was performed using DAVID 
(https://david.ncifcrf.gov/). 

Gene network  

The protein-protein interaction network was constructed 
using the STRING database (https://string-db.org/) by  
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uploading the list of identified genes. The resulting 
network was downloaded in TSV format and imported 
into Cytoscape (v3.10.3) for further analysis. To identify 
the hub genes with high confidence, we employed 
Maximal Clique Centrality (MCC) analysis, which is 
particularly effective for detecting the essential nodes 
based on their clustering patterns in protein networks. 
The MCC score for a node v was calculated as: 

𝑀𝐶𝐶(𝑣) =∑ (|𝐶|
𝐶∈𝑆(𝑣)

− 1)! 

 where S(v) represents the collection of maximal cliques 
containing v, and (|C|-1)! denotes the product of all 
positive integers less than |C|. When no edges exist 
between a node's neighbors, its MCC value equals its 
degree. Using this approach, we identified high-
connectivity hub genes and subsequently refined and 
visualized the network using Cytoscape's advanced 
graphical tools (Chin et al., 2014). 

Results and discussion 

Genome-wide identification of important SNPs 

Figure 1 presents the ranking of SNPs associated with 
bovine leukosis based on the Mean Decrease Accuracy 
(MDA) index, ordered from most to least significant. In 
the random forest analysis, the SNP importance was 
determined using the MDA index, which exhibited 
negative, zero, or positive values.Positive values 
indicate that random permutation of the SNP increased 
the prediction error (MSE) compared to its original state 
(suggesting SNP importance), while negative values 
indicated that permutation decreased the MSE, implying 
potential analytical complications when including such 
SNPs (Li et al., 2018). The analysis revealed that among 
all SNPs examined, 4,160 (17.39%) exerted positive 
effects, 14,943 (62.49%) showed neutral effects, and 
4,807 (20.10%) demonstrated negative effects. The 
highest MDA value was observed for the SNP ARS-
BFGL-NGS-117080 located at physical position 
115,749,351 bp on chromosome 6, while the lowest 
value was associated with the SNP 
BovineHD2600000989 at physical position 4,872,205 bp 
on chromosome 26. 

The Manhattan plot in Figure 2 displays significant 
leukosis-associated SNPs distributed across the bovine 
genome. Most top-ranked SNPs were located on 
chromosomes 1, 9, 14, 16, and 17. We identified two 
SNPs with MDA >4, four SNPs with MDA between 3-4, 
and 25 SNPs with MDA values of 2-3. The six top-
ranking SNPs were located on chromosomes 6 
(MDA=4.9), 17 (MDA=4.8), 9 (MDA=3.8), 20 (MDA=3.6), 
17 (MDA=3.2), and 24 (MDA=3.1), respectively. 

The top 50 SNPs with positive effects are listed in 
Table 1 in order of importance. The most important SNP 
here is ARS.BFGL.NGS.117080 with an MDA of 4.9, 
which is located on chromosome 6 and within the GRK4 
gene. In this table, the SNPs BTB.00888968, 
BovineHD2900004537, and ARS.BFGL.NGS.108504, 
ranked 6, 18, and 30 respectively, are not located on any  
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gene and are not near any gene. However, the SNP 
BovineHD2300011387 on chromosome 23 is located on 
both the DEK and KDM1B genes simultaneously. 
Additionally, the SNP BovineHD2300011392 (located on 
chromosome 23) is located on the KDM1B gene. In a  
 

 

study conducted on two Colombian cattle breeds, the 
DEK and KMD1B genes were found to be associated 
with cellular stress response and response to important 
environmental changes such as high temperature and 
oxidative stress, respectively (De León et al., 2021). 
 

Figure 1. The distribution profiles of ranked SNP variable importance values from RF (MDA) for bovine leukosis 
 

Figure 2. Manhattan plot showing the genome-wide profile of SNP variable importance values for RF (Mean Decrease 

Accuracy) 

 
Other significant genes including TDH, TRDN, and 

FBLN2 have been associated with various animal 
cancers (Mentis et al., 2010), variations in bovine 
intramuscular fat deposition (Sasaki et al., 2006), and 
carcass traits including backfat thickness (Hong et al., 
2019) and milk production (Deng et al., 2024), 
respectively. 

Matenchi et al. (2024) reported that the CTIF gene in 
catt le is associated with product ion traits and 

longissimus muscle area, a reliable indicator of growth 
and productivity. As a component of the CBP80/20-
dependent translation initiation complex, CTIF binds 
cotranscriptionally to the cap structure of nascent 
mRNAs and recognizes premature termination codons 
(PTCs) during translation, thereby reducing expression 
of truncated proteins. Mutations in CTIF may impair this 
quality control mechanism, potentially increasing 
expression of dysfunctional or cytotoxic truncated 
proteins that could enhance growth of Streptococcus  
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uberis, a major bovine mastitis pathogen (Siebert, 2017). 
The CTIF gene has demonstrated antiviral functions, 
including suppression of viral replication (Chang et al., 
2021), inhibition of HIV-1 Gag production (García-de-
Gracia et al., 2021), and modulation of host responses 
to viral transcription (Salvucci et al., 2022). Furthermore,  
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the DEK gene regulates both transcriptional responses 
to viral infection and maintenance of viral genetic 
material during infections by human immunodeficiency 
virus (HIV) and Kaposi's sarcoma-associated 
herpesvirus (KSHV) (Pease et al., 2015). 
 

Table 1. The list of top 50 ranking SNPs related to BLV from Random Forests (RF) 
Rank Chr1 Marker name Position (bp) MDA2 Downstream Gene Upstream 

1 6 ARS.BFGL.NGS.117080 115749351 4.91697 HTT GRK4 NOP14 
2 17 BovineHD1700003491 12114382 4.82383  REELD1 LSM6 
3 9 BovineHD0900020518 73829226 3.81943   PDE7B 
4 20 Hapmap31141.BTA.150972 24031442 3.6516 GZMA gzmA GZMK 
5 17 BTB.01680332 42584965 3.28263 PDGFC - - 
6 24 BTB.00888968 38518899 3.13495 - - - 
7 16 BovineHD1600023317 79935995 2.95506 MGAT4F  RABIF 
8 10 BovineHD1000030652 49507121 2.87859   RORA 
9 8 BTA.07949.rs29027610 7954469 2.83072 FAM167A TDH MTMR9 

10 16 Hapmap44461.BTA.40052 73108337 2.73872 SERTAD4  SYT14 
11 20 BovineHD2000005646 18839805 2.69576   PDE4D 
12 1 BovineHD0100010673 37269585 2.54877  EPHA3  
13 21 ARS.BFGL.NGS.119025 31960636 2.39442 ISL2 SCAPER RCN2 
14 23 BovineHD2300011387 39393720 2.37971 RNF144B DEK  &  KDM1B TPMT 
15 2 BTB.01343453 115092998 2.33358 IRS1 RHBDD1 COL4A4 
16 10 BovineHD1000023182 81311788 2.32759 PLEKHD1  CCDC177 
17 1 ARS.BFGL.NGS.113021 126606801 2.30818  XRN1  
18 29 BovineHD2900004537 15377343 2.30043    
19 22 BovineHD2200016905 58371789 2.29878  FBLN2 HDAC11 
20 23 BovineHD2300011392 39402448 2.25011 DEK KDM1B TPMT 
21 4 BovineHD0400009689 34096022 2.17136    
22 27 ARS.BFGL.NGS.117324 7790117 2.16808 SPCS3  VEGFC 
23 9 BovineHD0900026766 94393283 2.1488 ZDHHC14  SNX9 
24 11 ARS.BFGL.NGS.31804 3044180 2.12191   ZAP70 
25 14 BovineHD1400000684 3507954 2.09081  TRAPPC9 KCNK9 
26 19 ARS.BFGL.NGS.39252 57422012 2.08934 RPL38  SDK2 
27 4 BTB.01700995 94843636 2.07161   MKLN1 
28 3 BovineHD0300006808 21720162 2.04681 PDKZ1 GPR89A GJA8 
29 9 ARS.BFGL.NGS.25071 74293236 2.03666 BCLAF1  MAP7 
30 15 ARS.BFGL.NGS.108504 81255556 2.02279    
31 26 ARS.BFGL.NGS.1097 8129819 2.00063   A1CF 
32 26 ARS.BFGL.NGS.83234 35187167 1.9972 AFAP1L2 ABLIM1  
33 29 BTA.65013.no.rs 20539330 1.9968  LUZP20  
34 14 BovineHD1400000779 3831667 1.99056 KCNK9   
35 24 BovineHD2400013489 48345676 1.98624 ZBTB7C CTIF SMAD7 
36 9 Hapmap41922.BTA.63988 27684090 1.97684 NKAIN2 TRDN  
37 6 BovineHD0600026174 94436688 1.97225   ANTXR2 
38 16 BovineHD1600003306 12378523 1.96795 UCHL5   
39 5 BovineHD0500025349 89333462 1.94386 SLCO1C1 PDE3A  
40 3 BovineHD0300008013 25425609 1.93565 GDAP2  TENT5C 
41 24 Hapmap41219.BTA.29565 32677985 1.91473 TTC39C  LAMA3 
42 14 BovineHD1400000814 3971521 1.91417 KCNK9   
43 17 ARS.BFGL.NGS.16934 47147387 1.91173 FZD10  TMEM132D 
44 1 BTB.01744858 129942985 1.90709 MRPS22   
45 1 ARS.BFGL.NGS.115228 109706655 1.902 SHOX2  VEPH1 
46 1 Hapmap58062.rs29012621 96059058 1.90071 PLD1  TNIK 
47 14 Hapmap38378.BTA.114219 12603761 1.89927   MYC 
48 28 BovineHD2800012053 42652683 1.89732 PTPN20 FRMPD2 MAPK8 
49 1 Hapmap42913.BTA.33619 4052161 1.89457   TIAM1 
50 20 BovineHD2000005045 16626569 1.89089   IPO11 

1Chromosome 
2Mean Decrease Accuracy 

Gene ontology (GO) enrichment analysis 

Table 2 presents the GO enrichment analysis results of 
the top 50 SNPs from the ENSEMBL website. 
Examination of the biological functions of genes 
associated with the top 50 SNPs (most frequently 
including KDM1B, MYC, MAPK8, PDE3A, GZMA,  

 

 
 
EPHA3, BCLAF1, and GRK4) revealed that these genes 
are primarily involved in: positive regulation of cellular 
process, regulation of cellular metabolic process, 
positive regulation of cellular metabolic process, positive 
regulation of macromolecule metabolic process, 
intracellular signal transduction, and regulation of 
developmental process.  
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Granzymes play a crucial role in inflammatory 
responses by mediating perforin-dependent death of 
virus-infected or cancerous cells targeted by cytotoxic T 
lymphocytes. GZMA is a serine protease produced by 
cytotoxic T and natural killer (NK) cells that induce 
apoptosis in target cells (Rosse et al., 2017). GZMA is  

 

the most highly expressed gene in endometrial CD14+ 
cells and functions in cellular apoptosis (Oliveira et al., 
2011). This gene also plays roles in bovine tuberculosis 
(Bhat et al., 2023) and buffalo milk somatic cells 
(Ahlawat et al., 2021). 
 

 

Table 2.  Gene enrichment analysis for top 50 SNPs with positive variable importance values from RF 
Term Count P-Value Genes 

GO:0048522~positive regulation of cellular 
process 

26 2.17E-04 KDM1B, SHOX2, HTT, RORA, FZD10, PLD1, FBLN2, 
BCLAF1, MAPK8, MYC, PDGFC, SNX9, ZBTB7C, 
AFAP1L2, GZMA, VEGFC, TENT5C, A1CF, SMAD7, 
SLCO1C1, GZMK, TIAM1, ISL2, PDE3A, TNIK, EPHA3 

GO:0031325~positive regulation of cellular 
metabolic process 

17 3.29E-04 AFAP1L2, KDM1B, VEGFC, HTT, RORA, PLD1, TENT5C, 
A1CF, SLCO1C1, BCLAF1, MAPK8, ISL2, MYC, PDGFC, 
SNX9, TNIK, ZBTB7C 

GO:0010604~positive regulation of 
macromolecule metabolic process 

16 0.001826 AFAP1L2, KDM1B, VEGFC, RORA, PLD1, TENT5C, A1CF, 
RNF144B, BCLAF1, MAPK8, ISL2, MYC, PDGFC, SNX9, 
TNIK, ZBTB7C 

GO:0031323~regulation of cellular metabolic 
process 

22 0.056954 AFAP1L2, KDM1B, SHOX2, VEGFC, MTMR9, HTT, RORA, 
PLD1, TENT5C, A1CF, SMAD7, SLCO1C1, CTIF, BCLAF1, 
MAPK8, ISL2, XRN1, MYC, PDGFC, SNX9, TNIK, ZBTB7C 

GO:0006468~protein phosphorylation 5 0.081771 ZAP70, MAPK8, GRK4, TNIK, EPHA3 
GO:0006796~phosphate-containing 
compound metabolic process 

10 0.044492 ZAP70, MAPK8, GRK4, PDE4D, PTPN20, MTMR9, RORA, 
TNIK, PLD1, EPHA3 

GO:0006793~phosphorus metabolic process 10 0.048545 ZAP70, MAPK8, GRK4, PDE4D, PTPN20, MTMR9, RORA, 
TNIK, PLD1, EPHA3 

GO:0043067~regulation of programmed cell 
death 

8 0.030163 GZMK, RNF144B, BCLAF1, MAPK8, MYC, RHBDD1, 
GZMA, HTT 

GO:0007169~cell surface receptor protein 
tyrosine kinase signaling pathway 

6 0.003213 ZAP70, IRS1, COL4A4, PDGFC, VEGFC, EPHA3 

GO:0043068~positive regulation of 
programmed cell death 

6 0.003859 GZMK, BCLAF1, MAPK8, MYC, GZMA, HTT 

GO:0019933~cAMP-mediated signaling 3 0.006016 PDE4D, PDE3A, PDE7B 
GO:0042981~regulation of apoptotic process 8 0.026088 GZMK, RNF144B, BCLAF1, MAPK8, MYC, RHBDD1, 

GZMA, HTT 
GO:1902531~regulation of intracellular signal 
transduction 

11 0.005762 BCLAF1, MAPK8, MYC, PDE4D, PDGFC, PDE3A, HTT, 
RORA, TNIK, FZD10, SMAD7 

GO:0035556~intracellular signal transduction 11 0.005858 ZAP70, TIAM1, RABIF, MAPK8, MYC, PDE4D, PDE3A, 
TNIK, PDE7B, PLD1, SMAD7 

GO:0050793~regulation of developmental 
process 

10 0.054087 TIAM1, MYC, LAMA3, SHOX2, PDE3A, VEGFC, RORA, 
TNIK, SMAD7, ZBTB7C 

 

The ephrin-Eph gene family has well-established 
physiological functions in regulating mammalian 
reproductive performance, particularly in bovine ovarian 
granulosa cells (Yousuf et al., 2023). In cattle, EPHA3 is 
associated with fertility, angularity (Ooi et al., 2024), 
nervous system function, platelet reactivity, parasite 
resistance and histoblood group antigens (Yang et al., 
2017), while in sheep it relates to fertility traits (Yousuf et 
al., 2023).  

The PDE type 3 plays an essential role in the meiotic 
resumption of bovine oocytes (Mayes and Sirard, 2002; 
Schwarz et al., 2014). The PDE3A gene is associated 
with semen production traits (Liu et al., 2017).  

The BCLAF1-associated transcription factor was 
initially identified as a regulator of apoptosis and 
transcription, and has since been implicated in a wide 
array of biological processes including T-cell activation, 
lung development, muscle cell proliferation and 
differentiation, autophagy, and viral infections. Notably, 
BCLAF1 can function as either an oncogene or tumor 
suppressor in carcinogenesis, depending on the cancer 
type (Yu et al., 2022). 

Gene networks and hub genes 

The gene network of identified genes was constructed 
using Cytoscape software version 3.10.3 (Figure 3), 
followed by identification of hub genes including MYC, 
RABIF, IRS1, TRAPPC9, MAPK8, HTT, SNX9, BCLAF
1, XRN1, and LSM6 (Figure 4). 

The MYC gene performs several functions in bovine 
mammary gland (Bionaz and Loor, 2007) and is 
associated with muscle growth and differentiation in 
cattle (Sheet et al., 2024). As a core component of FSH 
signaling, MYC integrates FSH signaling networks and 
may help investigate genome-wide transcriptional 
changes associated with oocyte competence acquisition 
(Cantanhêde et al., 2022). Elevated c-myc transcripts in 
BLV-induced tumors result from a series of changes 
induced by BLV infection that persist throughout the 
neoplastic process (Neoplastic diseases are conditions 
that cause tumor growth), even after viral expression 
ceases (Gupta et al., 1986). 

The SNPs in TRAPPC9 may serve as useful genetic 
markers for selection toward mastitis resistance (Wang 
et al., 2024) and improvement in milk protein (Khan et 
al., 2022) and fat content (Freitas et al., 2020) in dairy 
cattle. 
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MicroRNAs (miRNAs) are short non-coding RNAs 
that can regulate target gene expression at the post-
transcriptional level. The bta-miR-145 has been reported 
to show differential expression across different lactation 
stages in bovine mammary glands. Insulin receptor 
substrate 1 (IRS1) was predicted as a potential target of 
miR-145. The bta-miR-145 is involved in the proliferation 
of bovine mammary epithelial cells by targeting IRS1, 
which is associated with the MAPK signaling pathway 
(Solodneva et al., 2022). The IRS1 gene also plays a 
role in regulating milk fat metabolism in dairy cows (Jiao 
et al., 2020).  

Downregulation of lncRNA IALNCR in host cells 
during Bovine Viral Diarrhea Virus (BVDV) infection  

Genetic loci of bovine leukemia virus by random forest 

suppresses MAPK8/JNK1 expression at both mRNA and 
protein levels. This suppression indirectly activates 
caspase-3, triggering autonomous cell apoptosis to 
inhibit BVDV replication (Gao et al., 2022). The XRN1 
may serve as a critical mechanism through which 
various Flaviviridae family viruses (including BVDV) 
exert pathogenicity by disrupting cellular gene 
expression regulation (Moon, 2014). Following infection 
by Flaviviridae viruses such as Zika virus and West Nile 
virus, eukaryotic hosts employ the evolutionarily 
conserved endoribonuclease Xrn1 to degrade viral 
genomic RNA (Dilweg et al., 2021). 
 

 

Figure 3. Gene network displaying the connections between 82 genes 

Figure 4. Interaction analysis of Hub genes (The top 10 hub genes with significant connectivity) 
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Identifying the susceptibility loci related to disease is 
one of the fundamental and important challenges in 
modeling complex diseases (Silva et al., 2022). 
Genome-wide association studies (GWAS) involve 
scanning genomes from many individuals to find genetic 
markers that correlate with observable traits or diseases. 
This process starts with association tests that evaluate 
one single-nucleotide polymorphism (SNP) at a time 
across the genome to identify variants with statistically 
significant associations with the target phenotype 
(Alireza et al., 2024). While a single SNP may not directly 
cause a particular disease, specific sequences or 
combinations of SNPs have predictive power for 
detecting the disease of interest (Wakayu et al., 2021). 
Machine learning (ML) methods are increasingly 
important in genome-wide association studies for 
identifying key genetic variants or SNPs that statistical 
methods might overlook (Alireza et al., 2024). Among 
these, the most successful method is random forest 
(Nguyen et al., 2015). 

In our study, 23,910 SNPs were analyzed using the 
random forest. After identifying significant SNPs, we 
mapped their associated genes and found two 
genes, GRK4 and SCAPER, which were consistent with 
a prior GWAS analysis conducted on the same dataset 
(Arjmand Kermani et al., 2024). In cattle, GRK4 has 
been linked to the regulation of two body weight-related 
hormones (parathyroid hormone and adrenomedullin) 
(Jiang et al., 2022), while SCAPER is associated with 
spermatogenesis and fertility (Ghoreishifar et al., 2023). 
The discrepancy in gene identification between our study 
and the previous GWAS likely stems from differences in 
analytical models and assumptions: GWAS relies on 
statistical thresholds, whereas random forest is non-
parametric and does not require predefined statistical 
assumptions. Based on these findings, we recommend 
integrating classical methods (e.g., GWAS) with modern 
machine learning techniques to optimize marker 
discovery in genomic analyses. 

Conclusions 

This study successfully identified key SNPs associated 
with bovine leukosis using the random forest method, 
with some SNPs (e.g., GRK4 and SCAPER) overlapping 
with findings from previous GWAS study (Arjmand 
Kermani et al., 2024). Functional analyses revealed that 
critical genes such as MYC, MAPK8, and GZMA are 
involved in pathways related to apoptosis, viral 
response, and cellular metabolic regulation, potentially 
e luc ida t ing  m echan isms under l y ing  leukos is 
pathogenesis. The constructed gene networks further 
highlighted hub genes (e.g., MYC and BCLAF1) as key 
players in molecular interactions linked to the disease. 
While machine learning methods like random forest 
proved efficient for SNP screening, their integration with 
classical statistical approaches (GWAS) could enhance 
the precision of genetic marker identification. These 
findings not only provide novel insights into the genetic 
factors influencing bovine leukosis but also offer  

 

practical strategies for livestock breeding programs 
aimed at improving disease resistance. Future studies 
should focus on the functional validation of these SNPs 
and the investigation of epistatic interactions to advance 
our understanding of the disease’s pathogenesis. 
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