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Abstract. This paper investigates degree deviation and variance in graph
theory, with a specific focus on k-regular graphs and subdivision of graphs.

These metrics are fundamental for characterizing graph irregularity and

have significant applications in network analysis and the social sciences.
Furthermore, we introduce novel geometric measures of irregularity, geo-

metric degree deviation and geometric degree variance derived from the

geometric mean of vertex degrees. By means of rigorous theorems and
illustrative examples, we explore the relationships between graph struc-

tures and their degree properties. Our findings seek to advance the cur-

rent understanding of graph irregularity and provide a solid foundation
for future research in this area.
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1. Introduction and preliminaries

Understanding irregularity measures of graphs, such as degree deviation, is
vital for analyzing the structure and dynamics of complex networks. These
measures help identify anomalies, assess robustness, and optimize network per-
formance in fields like social sciences, biology, and computer science.

The new geometric irregularity metrics introduced in this paper offer valu-
able tools for studying network heterogeneity and improving network design
and resilience. Additionally, examining how graph operations influence these
measures may provide insights applicable to network control and evolution.

In graph theory, degree deviation and degree variance are two of the most
important metrics used to quantify graph irregularity. These measures pro-
vide valuable insights into the distribution of vertex degrees within a graph,
with significant implications across diverse domains, including network analy-
sis, chemistry, and the social sciences.

Let G be a connected simple graph with vertex set V (G), |V (G)| = n and
edge set E(G), |E(G)| = m. We denote ∆ = ∆(G) as the maximum degree and
δ = δ(G) as the minimum degree of the vertices in G. A vertex adjacent to all
other vertices in G is called a universal vertex and satisfies ∆(G) = n− 1. The
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degree of a vertex u in G is represented as dG(u), and the number of vertices
of degree i is denoted by Ni. A graph is termed r-regular if all its vertices have
the same degree r. Conversely, an irregular graph is a connected graph that
contains at least two vertices of different degrees.

If the degree multiset D(G) of an irregular graph G consists of exactly k dis-
tinct degrees, then G is classified as a k-degree graph. Specifically, an irregular
graph with exactly two different degrees is referred to as a bidegreed graph,
denoted by G(∆, δ). The concept of irregularity was first introduced by Collatz
and Sinogowitz [5] in 1957. According to Bell’s definition [4], if IT (G) is a topo-
logical invariant of a connected graph G such that IT (G) ≥ 0, then IT (G) is
termed an irregularity measure if G is regular if and only if IT (G) = 0. Various
irregularity measures have been defined, including the Collatz-Sinogowitz in-
dex [4], the Albertson index [2], total irregularity [1], and the Sigma index [6,8].
It is very easy fact that (Hand-shaking lemma) the sum of the degrees of ver-
tices equals twice the number of edges, i.e., 2m =

∑
v∈V (G) deg(v) ( [10]).

Among these measures, degree deviation S(G) and degree variance Var(G) are
particularly prominent. Nikiforov ( [9]) introduced the degree deviation for a
connected graph G with n vertices and m edges as follows:

S(G) =

n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣ .
Bell defined the degree variance as:

Var(G) =
1

n

n∑
i=1

(
di −

2m

n

)2

.

Here, 2m
n represents the average degree of the vertices in graph G, which, in

the case of unicyclic graphs, equals 2.
The k-subdivision of a graph G, presented as G

1
k , is formed by substituting

each edge e of G with a path of length k (see [3]). In the subsequent sections,
we will calculate the degree deviation and degree variance for various graphs,
including the k-subdivision of graph G.

Additionally, we define the geometric mean of the degrees of the vertices in
the graph G as:

GM(G) =

(
n∏
i=1

d(vi)

) 1
n

.

While the traditional degree deviation and variance are based on the arith-
metic mean 2m

n , we now introduce two new irregularity measures based on
the geometric mean: geometric degree deviation S

GM
(G) and geometric degree

variance Var
GM

(G), defined as follows:

S
GM

(G) =

n∑
i=1

|di −GM(G)| ,
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Var
GM

(G) =
1

n

n∑
i=1

(di −GM(G))
2
.

In Section 2, we study the effect of deletion (or addition) of a vertex on the
degree deviation and degree variance. In Section 3, we study the effect of k-
subdivision on degree deviation and degree variance. In Section 4, we introduce
new measures of irregularity based on the geometric mean of vertex degrees in
a graph and present several related results.

2. Results for some operations on graphs

It is a natural question to ask what happens to S(G) and V ar(G) when
we delete a vertex or an edge from a graph G and what happens to these
parameters when the graph is subdivided. In this section, we try to answer
some of these questions. Additionally, we will examine specific types of graphs,
including trees and unicyclic graphs, to derive further insights into their degree
properties.

Theorem 2.1. If G is a connected graph with n vertices, then

S(G) = 2
∑

di>
2m
n

∣∣∣∣di − 2m

n

∣∣∣∣ = 2
∑

di≤ 2m
n

∣∣∣∣di − 2m

n

∣∣∣∣ .
Proof. Consider M = 2m

n and Ds(G) denote the multiset of all vertex degrees
less than M in the graph G, such that Ds(G) contains s elements. So,

S(G) =

n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣
= (M − d1) + ...+ (M − ds) + (ds+1 −M) + ...+ (dn −M)

= sM − (d1 + d2 + ...+ ds) + (ds+1 + ...+ dn)− (n− s)M
= sM − (d1 + d2 + ...+ dn) + 2(ds+1 + ...+ dn)− (n− s)M
= sM − nM + 2(ds+1 + ...+ dn)− (n− s)M
= 2(ds+1 + ...+ dn)− 2(n− s)M

= 2
∑

di>
2m
n

∣∣∣∣di − 2m

n

∣∣∣∣ .
Also, clearly 2S(G) = 2(

∑
di>

2m
n

∣∣di − 2m
n

∣∣ +
∑
di≤ 2m

n

∣∣di − 2m
n

∣∣). By the first

part of the proof, 2S(G) = S(G) + 2
∑
di≤ 2m

n

∣∣di − 2m
n

∣∣ and hence S(G) =

2
∑
di≤ 2m

n

∣∣di − 2m
n

∣∣. �

Corollary 2.2. (i) If G is a bidegree graph G(δ,∆), then

S(G) = 2Nδ(M − δ) = 2N∆(∆−M).

(ii) For the star graph Sn = K1,n−1, S(Sn) = 2(n− 3 + 2
n ).
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(iii) For the path graph Pn, S(Pn) = 4(1− 2
n ).

(iv) If n ≤ m, then S(Kn,m) = 2nm(m−n)
m+n .

Corollary 2.3. (i) If G is a graph with t pendant vertices and 1 ≤M = 2m
n ≤

2, then S(G) = 2t(M − 1) ≤ 2t.
(ii) If G is a unicyclic graph with t pendant vertices, then S(G) = 2t.
(iii) If T is a tree with n vertices and t pendant vertices, then S(G) =

2t(1− 2
n ).

Corollary 2.3.(ii) shows that, among all n-vertex trees, the tree with the
maximum degree deviation is the one that has the greatest number of pendant
vertices, while the tree with the fewest pendant vertices has the minimum
degree deviation. Therefore, among all n-vertex trees, the path Pn attains the
minimum degree deviation, while the star Sn attains the maximum, i.e., for
each tree T with n vertices, S(Pn) ≤ S(T ) ≤ S(Sn). Note also that the only
graphs satisfying the condition 1 ≤ M ≤ 2 are trees and unicyclic graphs, as
also stated in parts (ii) and (iii) of Corollary 2.3.

The following example shows that there is no direct relationship between
S(G) and S(G− v).

Example 2.4. (i) Let G = C4, the cyclic graph of order 4, and v ∈ V (G).
Then S(G) = 0 and S(G− v) = 4

3 . So S(G) � S(G− v).
(ii) Let G be a graph obtained by joining a pendant vertex v to the cycle C4.

Then S(G) = 2 and S(G− v) = 0. Hence S(G− v) � S(G).

For regular graphs, we can obtain the exact values of S(G−v) and V ar(G−
v).

Theorem 2.5. If G is a k-regular graph with n vertices and v ∈ V (G), then

(i) S(G− v) = 2k(n−k−1)
n−1 . (ii) V ar(G− v) = k(n−k−1)

(n−1)2 .

Proof. (i) The graph G − v has n − 1 vertices and k(n−2)
2 edges such that

(n− 1)− k vertices are of degree k and k vertices are of degree k − 1. So,

S(G− v) = (n− k − 1)[k − k(n− 2)

n− 1
] + k[

k(n− 2)

n− 1
− (k − 1)]

= (n− k − 1)
k

n− 1
+ k

n− k − 1

n− 1

=
2k(n− k − 1)

n− 1
.

(ii) V ar(G− v) =
1

n− 1

(
(n− k − 1)[k − k(n− 2)

n− 1
]2 + k[

k(n− 2)

n− 1
− (k − 1)]2

)
= (n− k − 1)

k2

(n− 1)3
+ k

(n− k − 1)2

(n− 1)3

=
k(n− k − 1)

(n− 1)3

(
k + n− k − 1

)
=
k(n− k − 1)

(n− 1)2
.
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�

Theorem 2.6. Let G be a k-regular graph of order n. If the graph G + v is
obtained by connecting a pendant vertex v to one of the vertices of the graph
G, then

(i) S(G+ v) = 2(k−2)n+2
n+1 .

(ii) V ar(G+ v) = (k2−2k+2)n2+k(kn+2)−2
(n+1)3 .

Proof. (i) Let G be a k-regular graph. It is not difficult to check that
d̄ = kn+2

n+1 . So there exist (n − 1) vertices of degree k, one vertex of
degree k + 1 and one vertex of degree 1. Then,

S(G+ v) = (n− 1)[k − kn+ 2

n+ 1
] + (k + 1− kn+ 2

n+ 1
) + (

kn+ 2

n+ 1
− 1)

= (n− 1)
k − 2

n+ 1
+
n+ k − 1

n+ 1
+

(k − 1)n+ 1

n+ 1

=
2(k − 2)n+ 2

n+ 1
,

(ii)

V ar(G+ v) =
1

n+ 1
[(n− 1)(k − kn+ 2

n+ 1
)2 + (k + 1− kn+ 2

n+ 1
)2 + (

kn+ 2

n+ 1
− 1)2]

= (n− 1)
(k − 2)2

(n+ 1)3
+

(n+ k − 1)2

(n+ 1)3
+

((k − 1)n+ 1)2

(n+ 1)3

=
(k2 − 2k + 2)n2 + k(kn+ 2)− 2

(n+ 1)3
.

�

3. Results for k-subdivision of graphs

This section is devoted to the study of the degree deviation and degree
variance for the k-subdivision (k ∈ N) of a graph. First, recall the following
definition.

Definition 3.1. The k-subdivision of a graph G, presented as G
1
k , is formed

by substituting each edge e of G with a path of length k.

For example, since V (G
1
k ) = n + (k − 1)m,P

1
k
n = Pn+(k−1)m and C

1
k
n =

Cn+(k−1)m.

Theorem 3.2. Let G be a graph and k ∈ N. Then S(G) ≤ S(G
1
k ).

Proof. Let G be of order n and size m. Two cases may occur:
Case 1: If G is a tree. It is easy to observe that the number of vertices in

G
1
k is greater than the number of vertices in G, and the number of pendant
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vertices in both is equal. Therefore, using Corollary 2.3 (iii), we conclude that

S(G) ≤ S(G
1
k ).

Case 2: If G is not a tree. The number of vertices and edges in graph G
1
k

is equal to n1 = n + (k − 1)m and m1 = km, respectively. Therefore, the

average degree of the vertices in G
1
k are 2km

n+(k−1)m , and it can be seen that

2 ≤ 2km
n+(k−1)m ≤

2m
n . So, the number of vertices with a degree greater than 2m

n

remains unchanged. Now, the conclusion follows from Theorem 2.1. �

The following theorem will be used to derive further results

Theorem 3.3. [7] If T is a tree of order n, then

V ar(T ) =
2(n− 2)

n2
+

1

n

∆∑
i=3

Ni(i− 1)(i− 2).

By Theorem 3.3, we observe that for the path Pn and the star Sn, V ar(Pn) =
2(n−2)
n2 and V ar(Sn) = (n−1)(n−2)2

n2 . So the path Pn and the star Sn attain the
minimum and maximum degree variance. Thus for each tree T with n vertices,

2

(n− 1)(n− 2)
≤ V ar(T )

V ar(Sn)
≤ 1.

Corollary 3.4. If T is a tree of order n and k ∈ N, then,

V ar(T
1
k ) =

2
(
(n− 1)k − 1

)(
(n− 1)k + 1

)2 +
1

(n− 1)k + 1

∆∑
i=3

Ni(i− 1)(i− 2).

Here, we compare V ar(T ) with V ar(T
1
k ).

Theorem 3.5. If T is a tree of order n and k ∈ N, then

V ar(T ) ≤
( (n− 1)k + 1

n

)
V ar(T

1
k ).

Proof. By Theorem 3.3 and Corollary 3.4, the value of
∑∆
i=3Ni(i − 1)(i − 2)

in V ar(T ) and V ar(T
1
k ) are equal. Since (n−2)

n ≤
(

(n−1)k−1
)

(n−1)k+1 , so

( (n− 1)k + 1

n

)
V ar(T

1
k ) =

2
(
(n− 1)k − 1

)
n
(
(n− 1)k + 1

) +
1

n

∆∑
i=3

Ni(i− 1)(i− 2)

≥ 2(n− 2)

n2
+

1

n

∆∑
i=3

Ni(i− 1)(i− 2) = V ar(T ).

�

The following theorem provides the degree deviation and degree variance of
the k-subdivision of unicyclic graphs.
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Theorem 3.6. Let G be a graph and k ∈ N, then S(G) = S(G
1
k ) if and only

if G is unicyclic graph.

Proof. If G is a unicyclic graph, then the graph G
1
k is also a unicyclic. In

the k-subdivision, only the number of vertices of degree two increases and the
degrees of the remaining vertices remain unchanged. Additionally, we have,

|V (G
1
k )| = n+ (k − 1)m = n+ (k − 1)n = kn

and |E(G
1
k )| = km. Since the average degree is 2, it follows by definition that

S(G) = S(G
1
k ).

Conversly: assume thet S(G) = S(G
1
k ). Let M = 2m

n be the average degree of

the vertices of the graph G, and Mk = 2km
n+(k−1)m be the average degree of the

vertices of the graph G
1
k . If M = Mk then m = n, which shows that graph G

is unicyclic. If M ≤Mk, then we have,∑
di<Mk

(Mk − di) =
∑
di<M

(Mk − di) +
∑

M<di<Mk

(Mk − di)

=
∑
di<M

(Mk −M +M − di) +
∑

M<di<Mk

(Mk − di)

=
∑
di<M

(Mk −M) +
∑
di<M

(M − di) +
∑

M<di<Mk

(Mk − di)

=
∑
di<M

(Mk −M) +
∑

di<M&di∈Ds(G)

(M − di)

+
∑

di<M&di /∈Ds(G)

(M − di) +
∑

M<di<Mk

(Mk − di).

By Theorem 2.1, S(G) = 2
∑
di<M

(M −di) and S(G
1
k ) = 2

∑
di<Mk

(Mk−di),
and based on the assumpthion

∑
di<M

(M−di) =
∑
di<Mk

(Mk−di). Therefore,
we have∑

di<M
(Mk −M) +

∑
di<M&di /∈Ds(G)(M − di) +

∑
M<di<Mk

(Mk − di) = 0.

This equality holds only when M = Mk, which means that G is an unicyclic
graph. �

Similarly, it can be shown that G is also an unicyclic graph when Mk ≤M .
Similar to the proof of Theorem 3.6, we have the following theorem.

Theorem 3.7. If G is a unicyclic graph and k ∈ N, then V ar(G) = kV ar(G
1
k ).
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4. Geometric mean irregularity

In this section, we introduce new measures of irregularity based on the geo-
metric mean of vertex degrees in a graph. The geometric mean provides a
distinct perspective on the distribution of vertex degrees, complementing tra-
ditional metrics such as degree deviation and degree variance. By defining the
geometric mean of the degrees of the vertices in a graph G, we derive two
new irregularity measures: geometric degree deviation and geometric degree
variance.

These measures allow us to analyze the irregularity of graphs in a novel
way, emphasizing the relationships between the geometric mean and the de-
gree distribution. We will explore the properties of these geometric measures,
demonstrate their applicability to various graph types, and establish their sig-
nificance in understanding graph irregularity.

Definition 4.1. Let G be a graph with n vertices. The geometric mean of the
degrees of the vertices of G is defined as follows:

GM(G) = (
∏n
i=1 d(vi))

1
n

Definition 4.2. Let G be a graph and let GM(G) denote the geometric mean
of the degrees of its vertices. The geometric degree deviation and geometric
degree variance, denoted by SGM (G) and V arGM (G), respectively, are defined
as follows:

SGM (G) =
∑n
i=1 |di −GM(G)|

V arGM (G) = 1
n

∑n
i=1(di −GM(G))2

Theorem 4.3. SGM (G) and V arGM (G) are irregularity measures.

Theorem 4.4. Let G be a bidegreed graph with n vertices. Then,

(i) SGM (G) = N∆∆−Nδδ + (Nδ −N∆)δ
Nδ
n ∆

N∆
n .

(ii) V arGM (G) = 1
n

(
N∆∆2 +Nδδ

2 + nδ
2Nδ
n ∆

2N∆
n − 2(Nδδ +N∆∆)δ

Nδ
n ∆

N∆
n

)
.

Proof. It is not to check that GM(G) = δ
Nδ
n ∆

N∆
n . So

(i)

SGM (G) = Nδ|δ − δ
Nδ
n ∆

N∆
n |+N∆|∆− δ

Nδ
n ∆

N∆
n |

= N∆∆−Nδδ + (Nδ −N∆)δ
Nδ
n ∆

N∆
n

(ii)

V arGM (G) =
1

n

(
Nδ(δ − δ

Nδ
n ∆

N∆
n )2 +N∆(∆− δ

Nδ
n ∆

N∆
n )2

)
=

1

n

(
N∆∆2 +Nδδ

2 + (Nδ +N∆)δ
2Nδ
n ∆

2N∆
n − 2(Nδδ +N∆∆)δ

Nδ
n ∆

N∆
n

)
.
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Now we are done using the fact that Nδ +N∆ = n.

�

By Theorem 4.4 we have the following examples:

Example 4.5. If Pn is a path with n vertices, then

(i) SGM (Pn) = 2(n− 3)− (n− 4)
n
√

2n−2.

(ii) V arGM (Pn) = 1
n

(
n(

n
√

2n−2 − 2)2 + 4
n
√

2n−2 − 6
)
.

Example 4.6. If Sn is a star graph, then

(i) SGM (Sn) = (n− 2) n
√
n− 1.

(ii) V arGM (Sn) = ( n
√
n− 1)2 − 4n−1

n
n
√
n− 1 + n− 1.

Theorem 4.7. If G is a k-regular graph of order n, then

(i) SGM (G+ v) = kn− (n− 1) n+1
√

(k + 1)kn−1.
(ii) V arGM (G+ v) =

1
n+1

(
(n+ 1)( n+1

√
(k + 1)kn−1)2 − 2(kn+ 2) n+1

√
(k + 1)kn−1 + k2n+ 2k + 2

)
.

Proof. (i) Since G is a k-regular graph,

SGM (G+v) = (n−1)[k− n+1
√

(k + 1)kn−1]+(k+1− n+1
√

(k + 1)kn−1)+

( n+1
√

(k + 1)kn−1 − 1) = kn− (n− 1) n+1
√

(k + 1)kn−1.

(ii) V arGM (G+v) = 1
n+1 [(n−1)(k− n+1

√
(k + 1)kn−1)2+(k+1− n+1

√
(k + 1)kn−1)2

+ ( n+1
√

(k + 1)kn−1 − 1)2] = 1
n+1 [(n+ 1)( n+1

√
(k + 1)kn−1)2 − 2(kn+

2) n+1
√

(k + 1)kn−1 + k2n+ 2k + 2].
�

The following corollary examines the effect of vertex removal on the geomet-
ric degree deviation and the geometric degree variance of regular graphs.

Corollary 4.8. If G is a k-regular graph of order n, then

(i) SGM (G− v) = k(n− 2k) + (2k − n+ 1)(k − 1)
k

n−1 k
n−k−1
n−1 .

(ii) V arGM (G− v) =
1

n+1

(
k2(n− 3) + k + (n− 1)(k − 1)

2k
n−1 k

2n−2k−2
n−1 − 2k(n− 2)(k − 1)

k
n−1 k

n−k−1
n−1

)
.

Theorem 4.9. Let G be a graph and for every di ∈ D(G), di ≥ 2m
n or di ≤

GM .

(i) If
∑
di≤GM Ndi >

∑
di>GM

Ndi , then S(G) > SGM (G),

(ii) If
∑
di≤GM Ndi <

∑
di>GM

Ndi , then S(G) < SGM (G).
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Proof. Let d1, d2, · · · dn be the sequence of degrees of vertices of the graph G.
Then,

SGM (G) =

n∑
i=1

|di −GM |

=
∑

di≤GM

(GM − di) +
∑

di>GM

(di −GM)

=
∑

di≤GM

(GM − di +
2m

n
− 2m

n
) +

∑
di>GM

(di −GM +
2m

n
− 2m

n
)

=
∑

di≤GM

(
2m

n
− di) +

∑
di>GM

(di −
2m

n
) +

∑
di≤GM

(GM − 2m

n
)

+
∑

di>GM

(
2m

n
−GM)

= S(G) +
∑

di≤GM

(GM − 2m

n
) +

∑
di>GM

(
2m

n
−GM)

Because the mean value of GM is always less than 2m
n , if

∑
di≤GM Ndi >∑

di>GM
Ndi , then S(G) > SGM (G), and if

∑
di≤GM Ndi <

∑
di>GM

Ndi ,

then S(G) < SGM (G). �

Theorem 4.10. Let G(∆, δ) be a bidegreed graph.

(i) If Nδ > N∆, then S(G) > SGM (G),
(ii) If Nδ < N∆, then S(G) < SGM (G).

Proof. According to the definition of S(G) and SGM (G), we have

S(G) =

n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣
= Nδ(

2m

n
− δ) +N∆(∆− 2m

n
)

= Nδ(
2m

n
− δ +GM −GM) +N∆(∆− 2m

n
+GM −GM)

= Nδ(GM − δ) +N∆(∆−GM) + (
2m

n
−GM)(Nδ −N∆)

= SGM (G) + (
2m

n
−GM)(Nδ −N∆)

because the mean value of GM is always less than 2m
n , if Nδ > N∆ then

S(G) > SGM (G) and if Nδ < N∆, then S(G) < SGM (G). �



More results on degree deviation and degree variance – JMMR Vol. 15, No. 1 (2026) 121

Theorem 4.11. Let G be a graph and k ∈ N. Then GM(G) ≥ 2 if and only

if GM(G) ≥ GM(G
1
k ).

Proof. Let
∏n
i=1 d(vi) = A. SoGM(G) = A

1
n andGM(G

1
k ) = (A2(k−1)m))

1
n+(k−1)m .

Then, GM(G) = A
1
n ≥ 2 if and only if A(k−1)m ≥ 2(k−1)mn if and only if

An+(k−1)m > An2(k−1)mn

and this holds if and only if

GM(G) = A
1
n ≥ (A2(k−1)m))

1
n+(k−1)m = GM(G

1
k ).

�

Theorem 4.12. If G is a graph with n vertices, then

2
∑

di≤GM

|di −GM | ≤ SGM (G) ≤ 2
∑

di>GM

|di −GM | .

Proof. Consider Ds(G) = {di ∈ D(G)|di ≤ GM}, such that Ds(G) contains s
elements. So,

SGM (G) =

n∑
i=1

|di −GM |

= (GM − d1) + ...+ (GM − ds) + (ds+1 −GM) + ...+ (dn −GM)

= sGM − (d1 + d2 + ...+ ds) + (ds+1 + ...+ dn)− (n− s)GM
= sGM − (d1 + d2 + ...+ dn) + 2(ds+1 + ...+ dn)− (n− s)GM

= sGM − n(
2m

n
) + 2(ds+1 + ...+ dn)− (n− s)GM

= 2(ds+1 + ...+ dn)− 2(n− s)G+ n(GM − 2m

n
)

= 2
∑

di>GM

|di −GM |+ n(GM − 2m

n
).

Because the mean value of GM is always less than 2m
n , then SGM (G) ≤

2
∑
di>GM

|di −GM |. Similarly, SGM (G) ≥ 2
∑
di≤GM |di −GM |. �

Example 4.13. (i) If G is a bidegreed graph, then by Theorem 4.12,

2Nδ(δ
Nδ
n ∆

N∆
n − δ) ≤ SGM (G) ≤ 2N∆(∆− δ

Nδ
n ∆

N∆
n ).

(ii) If Sn is a star graph, then by Theorem 4.12, we have

2(n− 1)( n
√
n− 1− 1) ≤ SGM (Sn) ≤ 2(n− 1− n

√
n− 1).

(iii) If Pn is a path graph, then by Theorem 4.12, we have

4(
n
√

2n−2 − 1) ≤ SGM (Pn) ≤ 2(n− 2)(2− n
√

2n−2).



122 M. Sayadi, H. Barzegar, S. Alikhani

5. Conclusion

This paper investigated degree deviation and variance in k-regular graphs
and graph subdivisions. By introducing novel geometric irregularity measures,
we expanded the toolkit for analyzing graph irregularity. Our results reveal re-
lationships between graph structure and degree properties while analyzing how
these measures behave under various graph operations, such as vertex deletion,
addition, and k-subdivision. Key findings include the characterization of de-
gree deviation and variance for specific graph classes, such as trees, unicyclic
graphs, and bidegreed graphs, as well as the establishment of inequalities and
exact formulas for these measures. The introduction of geometric mean-based
irregularity measures has further enriched the understanding of graph hetero-
geneity, with applications in network analysis and design. This work provides
a foundation for future studies of complex networks and practical applications.
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