

Journal of Mahani Mathematical Research

Print ISSN: 2251-7952 Online ISSN: 2645-4505

ON THE ANNIHILATORS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Sh. Rezaei [®] ⊠

Article type: Research Article

(Received: 08 March 2025, Received in revised form 15 June 2025)

(Accepted: 21 July 2025, Published Online: 22 July 2025)

ABSTRACT. Let \mathfrak{a} be an ideal of Noetherian ring R and M, N be two finitely generated R-modules. In this paper, we obtain some results about the annihilators of top generalized local cohomology modules. We define $T:=T_R(\mathfrak{a},M,N)$ as the largest submodule of N such that $\operatorname{cd}(\mathfrak{a}, M, T_R(\mathfrak{a}, M, N)) < \operatorname{cd}(\mathfrak{a}, M, N)$. Let (R, \mathfrak{m}) be a complete Gorenstein Noetherian local ring such that $pd(M) = d < \infty$, dim $N = \dim R =$ $n < \infty$ and $\operatorname{cd}(\mathfrak{a}, M, N) = d + n$. We prove that if $\operatorname{Ass}_R(\operatorname{Ext}_R^d(M, N/T)) \subseteq$ $\operatorname{Ass}_R R$, then $\operatorname{Ann}_R(\operatorname{H}^{d+n}_{\mathfrak{m}}(M,N)) \subseteq \operatorname{Ann}_R \operatorname{Ext}^d_R(M,N/T)$.

Keywords: Annihilator, Local cohomology, Noetherian ring. $2020\ MSC\colon 13\mathrm{D}45,\ 14\mathrm{B}15,\ 13\mathrm{E}05.$

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity, \mathfrak{a} is an ideal of R, M and N are two R-modules.

For each $i \geq 0$, the i-th local cohomology module M with respect to an ideal $\mathfrak a$ is defined as $\mathrm H^i_{\mathfrak a}(M)=\varinjlim \mathrm{Ext}^i_R(R/\mathfrak a^n,M).$ For basic results about

local cohomology we refer the reader to [6]. A Generalization of local cohomology functor has been given by J. Herzog in [10]. The i-th generalized local cohomology module of M and N with respect to $\mathfrak a$ is denoted by $\mathrm{H}^{\imath}_{\mathfrak{a}}(M,N) := \lim_{n \to \infty} \mathrm{Ext}^{\imath}_{R}(M/\mathfrak{a}^{n}M,N).$

An important problem concerning local cohomology is determining the annihilators of the *i*-th local cohomology module $H^i_{\mathfrak{a}}(M)$. This problem has been studied by several authors, see for example [2], [3], [4], [5], [9] and [11]. In [5], Bahmanpour et al. proved an intersting result about the annihilator $\mathrm{Ann}_R(\mathrm{H}^{\dim(M)}_{\mathfrak{m}}(M))$ in the case (R,\mathfrak{m}) is a complete local ring. In fact, in [5, Theorem 2.6], they proved that if (R, \mathfrak{m}) is a complete local ring then $\operatorname{Ann}_R(\operatorname{H}^{\dim(M)}_{\mathfrak{m}}(M)) = \operatorname{Ann}_R(M/T_R(M))$ where $T_R(M) = \bigcup \{N : N \leq M \text{ and } M \}$ $\dim N < \dim M$.

Atazadeh et al. in [2] generalized this main result by determining $\operatorname{Ann}_R(\operatorname{H}_{\mathfrak{g}}^{\dim(M)}(M))$ for an arbitrary Noetherian ring R. In [2, Theorem 2.3],

⊠ sha.Rezaei@pnu.ac.ir, ORCID: 0000-0003-2355-4834 https://doi.org/10.22103/jmmr.2025.24948.1774 Publisher: Shahid Bahonar University of Kerman

© the Author(s)

How to cite: Sh. Rezaei, On the annihilators of generalized local cohomology modules, J. Mahani Math. Res. 2026; 15(1): 125-130.

126 Sh. Rezaei

by using the above main result, they showed that, if $\mathrm{H}^{\dim(M)}_{\mathfrak{a}}(M) \neq 0$, then $\mathrm{Ann}_R(\mathrm{H}^{\dim(M)}_{\mathfrak{a}}(M)) = \mathrm{Ann}_R(M/T_R(\mathfrak{a},M))$ where $T_R(\mathfrak{a},M) = \bigcup \{N: N \leq M \text{ and } \mathrm{cd}(\mathfrak{a},N) < \mathrm{cd}(\mathfrak{a},M)\}$.

Not so much is known about the annihilators of top generalized local cohomology modules. Here, we obtain some results about them. Let \mathfrak{a} be an ideal of Noetherian ring R and M, N two finitely generated R-modules. At first, we define $T_R(\mathfrak{a}, M, N)$ as the largest submodule of N such that $\operatorname{cd}(\mathfrak{a}, M, T_R(\mathfrak{a}, M, N)) < \operatorname{cd}(\mathfrak{a}, M, N)$. Then we prove the following main result:

Theorem 1.1. Let (R, \mathfrak{m}) be a complete Gorenstein Noetherian local ring. Let M and N be non-zero finitely generated R-modules and $T := T_R(\mathfrak{m}, M, N)$. Assume that $\mathrm{pd}(M) = d < \infty$, $\dim N = \dim R = n < \infty$ and $\mathrm{cd}(\mathfrak{m}, M, N) = d + n$. Also, assume that $\mathrm{Ass}_R(\mathrm{Ext}_R^d(M, N/T)) \subseteq \mathrm{Ass}_R R$. Then $\mathrm{Ann}_R(\mathrm{H}^{d+n}_{\mathfrak{m}}(M, N)) \subseteq \mathrm{Ann}_R \mathrm{Ext}_R^d(M, N/T)$.

In [13, Theorem 3.3], the author has determined the annihilators of generalized local cohomology modules. In Remark 2.9 we show that his claimed proof is invalid.

2. Main Results

Recall that, for any two R-modules M and N, the cohomological dimension of M and N with respect to an ideal $\mathfrak a$ of a commutative Noetherian ring R, is defined as

$$\operatorname{cd}(\mathfrak{a}, M, N) = \sup\{i \in \mathbb{N}_0 : \operatorname{H}^i_{\mathfrak{a}}(M, N) \neq 0\}.$$

For more details see [1].

We need the following result in our proofs.

Lemma 2.1. Let R be a Noetherian ring and \mathfrak{a} be an ideal of R. Let M, N, L be finitely generated R-modules such that $\operatorname{Supp} N \subseteq \operatorname{Supp} L$. Then, $\operatorname{cd}(\mathfrak{a}, M, N) \leq \operatorname{cd}(\mathfrak{a}, M, L)$.

Proof. See [1, Theorem B]. \square

We give the following definition which is a generalization of [3, Definition 2.4].

Definition 2.2. Let \mathfrak{a} be an ideal of Noetherian ring R, M and N be non-zero finitely generated R-modules. We denote by $T_R(\mathfrak{a}, M, N)$ the largest submodule of N such that $\operatorname{cd}(\mathfrak{a}, M, T_R(\mathfrak{a}, M, N)) < \operatorname{cd}(\mathfrak{a}, M, N)$.

Proposition 2.3. Let R be a Noetherian ring and \mathfrak{a} be an ideal of R. Let M and N be non-zero finitely generated R-modules. Assume that $\operatorname{pd}(M) = d < \infty$ and $\dim N = n < \infty$. Then $\operatorname{H}^i_{\mathfrak{a}}(M,N) = 0$ for all i > d + n.

Proof. It follows by [14, Theorem 3.7]. \square

Lemma 2.4. Let R be a Noetherian ring and \mathfrak{a} be an ideal of R. Let M and N be non-zero finitely generated R-modules. Assume that $\operatorname{pd}(M) = d < \infty$,

 $\dim N = n < \infty$ and $\operatorname{cd}(\mathfrak{a}, M, N) = d + n$. Assume that $G := N/T_R(\mathfrak{a}, M, N)$.

- $\begin{array}{l} i) \ \mathrm{H}^{d+n}_{\mathfrak{a}}(M,G) \cong \mathrm{H}^{d+n}_{\mathfrak{a}}(M,N) \ \ and \ so \ \mathrm{cd}(\mathfrak{a},M,G) = d+n, \\ ii) \ \ G \ \ has \ \ no \ \ non-zero \ \ submodule \ K \ \ such \ \ that \ \mathrm{cd}(\mathfrak{a},M,K) < \mathrm{cd}(\mathfrak{a},M,G) = d+n, \end{array}$
- iii) Ass $G = \{ \mathfrak{p} \in \operatorname{Supp}_R G | \operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n \} = \{ \mathfrak{p} \in \operatorname{Ass}_R N | \operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n \}$ $d+n\}\subseteq \{\mathfrak{p}\in\operatorname{Spec} R|\dim R/\mathfrak{p}=n\},\$
 - iv) dim G = n,
 - v) G has no non-zero submodule of dimension less than n.

Proof. i) Set $T := T_R(\mathfrak{a}, M, N)$. By using the exact sequence $0 \to T \to T$ $N \to G \to 0$ we obtain

$$\cdots \to \operatorname{H}^{d+n}_{\mathfrak a}(M,T) \to \operatorname{H}^{d+n}_{\mathfrak a}(M,N) \to \operatorname{H}^{d+n}_{\mathfrak a}(M,G) \to 0.$$

By Definition 2.2, $\operatorname{cd}(\mathfrak{a},M,T) < d+n$ and so $\operatorname{H}^{d+n}_{\mathfrak{a}}(M,T) = 0$. Thus the above exact sequence implies that $\operatorname{H}^{d+n}_{\mathfrak{a}}(M,G) \cong \operatorname{H}^{d+n}_{\mathfrak{a}}(M,N)$.

- ii) Assume that, there exists a non-zero submodule K:=U/T of G=N/T such that $cd(\mathfrak{a}, M, K) < cd(\mathfrak{a}, M, G)$. By Definition 2.2 and (i) we have $\operatorname{cd}(\mathfrak{a}, M, T) < \operatorname{cd}(\mathfrak{a}, M, N) = \operatorname{cd}(\mathfrak{a}, M, G)$. On the other hand, from $0 \to T \to U \to K \to 0$ and by [1, Theorem A] we have $\operatorname{cd}(\mathfrak{a}, M, U) =$ $\operatorname{Max}\{\operatorname{cd}(\mathfrak{a},M,T),\operatorname{cd}(\mathfrak{a},M,K)\}$. Thus it follows that $\operatorname{cd}(\mathfrak{a},M,U)<\operatorname{cd}(\mathfrak{a},M,G)=$ $\operatorname{cd}(\mathfrak{a},M,N)$. But $T\subsetneq U$ and this is a contradiction by definition of T.
- iii) By (ii) G has no non-zero submodule K such that $\operatorname{cd}(\mathfrak{a}, M, K) < \operatorname{cd}(\mathfrak{a}, M, G) =$ d+n. Thus

Ass
$$G \subseteq \{ \mathfrak{p} \in \operatorname{Supp} G : \operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n \}.$$

Let $\mathfrak{p} \in \operatorname{Supp} G$ and $\operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n$. Since $d + n = \operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) \leq$ $d+\dim R/\mathfrak{p}$ and $d+\dim R/\mathfrak{p} \leq d+\dim N = d+n$ we conclude that $\dim R/\mathfrak{p} = n$. Since $\mathfrak{p} \in \operatorname{Supp} G \subseteq \operatorname{Supp} N$ and $\dim R/\mathfrak{p} = n$ it follows that $\mathfrak{p} \in \operatorname{Ass} N$ and so

$$\operatorname{Ass} G \subseteq \{\mathfrak{p} \in \operatorname{Supp} G : \operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n\} \subseteq \{\mathfrak{p} \in \operatorname{Ass} N : \operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n\}.$$

Now assume that $\mathfrak{p} \in \operatorname{Ass} N$ and $\operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) = d + n$. If $\mathfrak{p} \in \operatorname{Supp} T$, then $\operatorname{cd}(\mathfrak{a}, M, R/\mathfrak{p}) \leq \operatorname{cd}(\mathfrak{a}, M, T) < d + n$ by Lemma 2.1 which is a contradiction. Thus $\mathfrak{p} \in \operatorname{Supp} G$ and by the above argument $\dim R/\mathfrak{p} = n$. Therefore $\mathfrak{p} \in$ $\operatorname{Ass} G$.

- iv) By (iii) if $\mathfrak{p} \in \operatorname{Ass}_R G$, then $\dim R/\mathfrak{p} = n$. Thus $\dim G = n$.
- v) Let U be a non-zero submodule of G. By (ii) we have $\operatorname{cd}(\mathfrak{a}, M, U) = d + n$. Now if dim U < n, then $H_{\mathfrak{a}}^{d+n}(M,U) = 0$ which is a contradiction. Thus $\dim U = n$, as required. \square

Proposition 2.5. Let R be a Noetherian ring and \mathfrak{a} be an ideal of R. Let M and N be non-zero finitely generated R-modules. Assume that $pd(M) = d < \infty$ and dim $N = n < \infty$. Then $H_{\mathfrak{a}}^{d+n}(M,N)$ is Artinian and $H_{\mathfrak{a}}^{d+n}(M,N) \cong$ $\operatorname{Ext}_{B}^{d}(M,\operatorname{H}_{\mathfrak{q}}^{n}(N)).$

128 Sh. Rezaei

Proof. By [8, Proposition 2.2]. \square

Proposition 2.6. Let (R, \mathfrak{m}) be a Cohen-Macaulay Noetherian local ring and for every $\mathfrak{p} \in \operatorname{Ass}_R R$ the zero-dimensional local ring $R_{\mathfrak{p}}$ is Gorenstein. Let M be a finitely generated R-module such that $\operatorname{Ass}_R M \subseteq \operatorname{Ass}_R R$. Then there is an exact sequence $0 \to M \to \bigoplus_{i=1}^n R$ for some positive integer n.

Proof. By [7, Theorem 3.5]. \square In the following, we prove the main result of this paper.

Theorem 2.7. Let (R, \mathfrak{m}) be a complete Gorenstein Noetherian local ring. Let M and N be non-zero finitely generated R-modules and $T := T_R(\mathfrak{m}, M, N)$. Assume that $\mathrm{pd}(M) = d < \infty$, $\dim N = \dim R = n < \infty$ and $\mathrm{cd}(\mathfrak{m}, M, N) = d + n$. Also, assume that $\mathrm{Ass}_R \, \mathrm{Ext}_R^d(M, N/T) \subseteq \mathrm{Ass}_R \, R$. Then $\mathrm{Ann}_R \, \mathrm{H}^{d+n}_{\mathfrak{m}}(M, N) \subseteq \mathrm{Ann}_R \, \mathrm{Ext}_R^d(M, N/T)$.

Proof. By Lemma 2.4 (i), $\mathrm{H}^{d+n}_{\mathfrak{m}}(M,N)\cong \mathrm{H}^{d+n}_{\mathfrak{m}}(M,N/T)$. Thus we must show that $\mathrm{Ann}_R\,\mathrm{H}^{d+n}_{\mathfrak{m}}(M,N/T)\subseteq \mathrm{Ann}_R\,\mathrm{Ext}^d_R(M,N/T)$. By Proposition 2.6 there exists a monomorphism

$$f: \operatorname{Ext}_R^d(M, N/T) \to \bigoplus_{i=1}^t R,$$

for some positive integer t. We claim

$$\operatorname{Ann}_R(\operatorname{Hom}_R(\operatorname{Ext}_R^d(M,N/T),\oplus_{i=1}^t R) = \operatorname{Ann}_R\operatorname{Ext}_R^d(M,N/T).$$

If $r \in \operatorname{Ann}_R(\operatorname{Hom}_R(\operatorname{Ext}_R^d(M,N/T), \oplus_{i=1}^t R)$, then rf=0. Thus $f(r\operatorname{Ext}_R^d(M,N/T))=0$. Since f is a monomorphism, it follows that $r\operatorname{Ext}_R^d(M,N/T)=0$ and so $r \in \operatorname{Ann}_R\operatorname{Ext}_R^d(M,N/T)$. On the other hand, since $\operatorname{Ext}_R^d(M,-)$ is a right exact functor we have $\operatorname{Ext}_R^d(M,N/T) \simeq \operatorname{Ext}_R^d(M,R) \otimes N/T$. Thus by using Proposition 2.5 we have

$$\begin{split} &\operatorname{Hom}_R(\operatorname{H}^{d+n}_{\mathfrak{m}}(M,N/T), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_R(\operatorname{Ext}^d_R(M,\operatorname{H}^n_{\mathfrak{m}}(N/T)), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_R(\operatorname{Ext}^d_R(M,R) \otimes \operatorname{H}^n_{\mathfrak{m}}(N/T), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_R(\operatorname{Ext}^d_R(M,R) \otimes \operatorname{H}^n_{\mathfrak{m}}(R) \otimes N/T, \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_R(\operatorname{Ext}^d_R(M,R) \otimes N/T, \operatorname{Hom}_R(\operatorname{H}^n_{\mathfrak{m}}(R), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m}))) \\ &\cong \operatorname{Hom}_R(\operatorname{Ext}^d_R(M,N/T), \operatorname{Hom}_R(\operatorname{H}^n_{\mathfrak{m}}(R), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m}))). \end{split}$$

Since R is a Gorenstein ring by [6, Lemma 11.2.3] it follows that $\operatorname{H}^n_{\mathfrak{m}}(R) \cong \operatorname{E}(R/\mathfrak{m})$ and since R is complete by [6, Theorem 10.2.11] we conclude that

$$\operatorname{Hom}_R(\operatorname{H}^n_{\mathfrak{m}}(R), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m})) \cong \oplus_{i=1}^t R.$$

Thus we have

$$\operatorname{Hom}_R(\operatorname{H}^{d+n}_{\mathfrak{m}}(M,N/T),\oplus_{i=1}^t\operatorname{E}(R/\mathfrak{m}))\cong\operatorname{Hom}_R(\operatorname{Ext}^d_R(M,N/T),\oplus_{i=1}^tR).$$

Therefore by Lemma 2.4 (i) we have

$$\begin{aligned} \operatorname{Ann}_R \operatorname{H}_{\mathfrak{m}}^{d+n}(M,N) &= \operatorname{Ann}_R \operatorname{H}_{\mathfrak{m}}^{d+n}(M,N/T) \\ &\subseteq \operatorname{Ann}_R(\operatorname{Hom}_R(\operatorname{H}_{\mathfrak{m}}^{d+n}(M,N/T), \oplus_{i=1}^t \operatorname{E}(R/\mathfrak{m})) \end{aligned}$$

$$=\mathrm{Ann}_R(\mathrm{Hom}_R(\mathrm{Ext}_R^d(M,N/T),\oplus_{i=1}^tR))\subseteq\mathrm{Ann}_R\,\mathrm{Ext}_R^d(M,N/T)$$
 and the proof is complete. \square

Corollary 2.8. Let (R, \mathfrak{m}) be a complete Gorenstein Noetherian local ring. Let M and N be non-zero finitely generated R-modules and $T := T_R(\mathfrak{m}, M, N)$. Assume that $\operatorname{pd}(M) = d < \infty$, $\dim N = \dim R = n < \infty$ and $\operatorname{cd}(\mathfrak{m}, M, N) = d + n$. Then

i) If $\operatorname{Ass}_R \operatorname{Ext}_R^d(M, N/T) \subseteq \operatorname{Ass}_R R$, then

$$\sqrt{\operatorname{Ann}_R \operatorname{H}^{d+n}_{\mathfrak{m}}(M,N)} \subseteq \cap_{\mathfrak{p} \in \operatorname{Ass}_R \operatorname{Ext}^d_R(M,N/T)} \mathfrak{p}.$$

ii) If $\operatorname{Ass}_R \operatorname{Ext}_R^d(M, N/T) \subseteq \{ \mathfrak{p} \in \operatorname{Spec} R | \dim R / \mathfrak{p} = n \}$, then

$$\operatorname{Ann}_R \operatorname{H}^{d+n}_{\mathfrak{m}}(M,N) \subseteq \operatorname{Ann}_R \operatorname{Ext}^d_R(M,N/T).$$

iii) If $\operatorname{Ass}_R \operatorname{Ext}_R^d(M, N/T) \subseteq \operatorname{Ass}_R N/T$, then

$$\operatorname{Ann}_R \operatorname{H}^{n+d}_{\mathfrak{m}}(M,N) \subseteq \operatorname{Ann}_R \operatorname{Ext}^d_R(M,N/T).$$

- iv) Let $\operatorname{Ext}_R^d(M, N/T)$ be a Cohen-Macaulay R-module of dimension n. Then $\operatorname{Ann}_R \operatorname{H}^{n+d}_{\mathfrak{m}}(M, N) \subseteq \operatorname{Ann}_R \operatorname{Ext}^d_R(M, N/T)$.
 - v) Assume that M is projective. Then

$$\operatorname{Ann}_R \operatorname{H}^n_{\mathfrak{m}}(M,N) \subseteq \operatorname{Ann}_R \operatorname{Hom}_R(M,N/T).$$

Proof. i) The result follows by Theorem 2.7.

- ii) Since $\{\mathfrak{p} \in \operatorname{Spec} R | \dim R/\mathfrak{p} = n\} \subseteq \operatorname{Ass}_R R$, the result follows by Theorem 2.7.
 - iii) By assumption and Lemma 2.4 (iii) we conclude that

$$\operatorname{Ass}_R \operatorname{Ext}_R^d(M, N/T) \subseteq \{ \mathfrak{p} \in \operatorname{Spec} R | \dim R/\mathfrak{p} = n \},$$

and so the result follows by (ii).

- iv) By assumption and [12, Theorem 17.3 (i)] we conclude that $\operatorname{Ass}_R \operatorname{Ext}_R^d(M, N/T) \subseteq \{\mathfrak{p} \in \operatorname{Spec} R | \dim R/\mathfrak{p} = n\}$. Thus the result follows by (ii).
 - v) By assumption $d = \operatorname{pd} M = 0$. We have

$$\operatorname{Ass}_R \operatorname{Hom}_R(M, N/T) = \operatorname{Supp}_R M \cap \operatorname{Ass}_R N/T \subseteq \operatorname{Ass}_R N/T.$$

Thus Part (iii) completes the proof. \Box

Remark 2.9. In [13, Theorem 3.3], the author has determined the annihilators of generalized local cohomology modules. But he has made an error in the proof. In fact, for a system of ideals Φ in a Noetherian ring R and two non-zero finitely generated R-modules M, N such that $c := \operatorname{cd}_{\Phi}(M, N)$, when one apply the functor $\operatorname{H}_{\Phi}(M, -)$ to the map $N \to xN$ where $x \in R$, the result will not be multiplication by x. But applying the local cohomology functor to $N \to N$ which is multiplication by x will be again multiplication by x.

130 Sh. Rezaei

Acknowledgment. The author would like to thank the referee for his/her useful suggestions.

References

- & R. (2008).[1] Amjadi, J., Naghipour, Cohomological dimension of Generalized local modules, Colloq., 15, 303-308. cohomology Algebra https://doi.org/10.1142/S1005386708000278
- [2] Atazadeh, A., Sedghi, M., & Naghipour, R. (2014). On the annihilators and attached primes of top local cohomology modules, Arch. der Math., 102, 225-236. https://doi.org/10.1007/S00013-014-0629-1
- [3] Atazadeh, A., Sedghi, M., & Naghipour, R. (2015). Cohomological dimension filtration and annihilators of top local cohomology modules, Colloq. Math., 139, 25-35. https://doi.org/10.4064/cm139-1-2
- [4] Bahmanpour, K. (2015). Annihilators of local cohomology modules, Comm. Algebra, 43, 2509-2515. https://doi.org/10.1080/00927872.2014.900687
- [5] Bahmanpour, K., Azami, J., & Ghasemi, G. (2012). On the annihilators of local cohomology modules, J. Algebra, 363, 8-13. http://dx.doi.org/10.1016/j.jalgebra.2012.03.026
- [6] Brodmann, M., & Sharp, R. Y. (1998). Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, 60. https://doi.org/10.1017/CBO9780511629204
- [7] Evans, E. G., & Griffth P. (1985). Syzygies, London Math. Soc. Lecture Note Ser. Vol 106 Cambridge Univ. Press. https://doi.org/10.1017/CBO9781107325661
- [8] GU, Y., & Chu, L. (2009). Attached primes of the top generalized local cohomology modules, Bull. Aust. Math., 79, 59-67. https://doi.org/10.1017/S000497208000993
- [9] Hasanzad, M., & A'zami, J. (2020). A short note on annihilators of local cohomology modules, J. Algebra and its Appl., 171, 61-67. https://doi.org/10.1142/S0219498820500267
- [10] Herzog, J. (1974). Komplex Auflosungen und Dualitat in der lokalen algebra, Universitut Regensburg.
- [11] Lynch, L. R. (2012). Annihilators of top local cohomology, Comm. Algebra, 40, 542-551. https://doi.org/10.1080/00927872.2010.533223
- [12] Matsumura, H. (1986). Commutative ring theory, Cambridge Univ. Press., https://doi.org/10.1017/CBO9781139171762
- [13] Tri, N. M. (2020). Some results on top generalized local cohomology modules with respect to a system of ideals, Turk. J. Math., 44, 1673- 1686. https://doi.org/10.3906/mat-1910-10
- [14] Yassemi, S. (1994). Generalized section functors, J. Pure. Appl. Algebra, 95, 103-119. https://doi.org/10.1016/0022-4049(94)90121-X

Shahram Rezaei

ORCID NUMBER: 0000-0003-2355-4834 DEPARTMENT OF MATHEMATICS PAYAME NOOR UNIVERSITY

Tehran, Iran

 $Email\ address: \verb| sha.Rezaei@pnu.ac.ir| \\$