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Abstract. Let a be an ideal of Noetherian ring R and M , N be two
finitely generated R-modules. In this paper, we obtain some results about

the annihilators of top generalized local cohomology modules. We define

T := TR(a,M,N) as the largest submodule of N such that
cd(a,M, TR(a,M,N)) < cd(a,M,N). Let (R,m) be a complete Goren-

stein Noetherian local ring such that pd(M) = d <∞, dimN = dimR =

n <∞ and cd(a,M,N) = d+n. We prove that if AssR(ExtdR(M,N/T )) ⊆
AssR R, then AnnR(Hd+n

m (M,N)) ⊆ AnnR ExtdR(M,N/T ).
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1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity,
a is an ideal of R, Mand N are two R-modules.

For each i ≥ 0, the i-th local cohomology module M with respect to an
ideal a is defined as Hi

a(M) = lim−→
n

ExtiR(R/an,M). For basic results about

local cohomology we refer the reader to [6]. A Generalization of local co-
homology functor has been given by J. Herzog in [10]. The i-th general-
ized local cohomology module of M and N with respect to a is denoted by
Hi

a(M,N) := lim−→
n

ExtiR(M/anM,N).

An important problem concerning local cohomology is determining the an-
nihilators of the i-th local cohomology module Hi

a(M). This problem has
been studied by several authors, see for example [2], [3], [4], [5], [9] and [11].
In [5], Bahmanpour et al. proved an intersting result about the annihila-

tor AnnR(Hdim(M)
m (M)) in the case (R,m) is a complete local ring. In fact,

in [5, Theorem 2.6], they proved that if (R,m) is a complete local ring then

AnnR(Hdim(M)
m (M)) = AnnR(M/TR(M)) where TR(M) = ∪{N : N ≤ M and

dimN < dimM}.
Atazadeh et al. in [2] generalized this main result by determining

AnnR(Hdim(M)
a (M)) for an arbitrary Noetherian ring R. In [2, Theorem 2.3],
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by using the above main result, they showed that, if Hdim(M)
a (M) 6= 0, then

AnnR(Hdim(M)
a (M)) = AnnR(M/TR(a,M)) where TR(a,M) = ∪{N : N ≤

M and cd(a, N) < cd(a,M)}.
Not so much is known about the annihilators of top generalized local coho-

mology modules. Here, we obtain some results about them. Let a be an ideal of
Noetherian ring R and M , N two finitely generated R-modules. At first, we de-
fine TR(a,M,N) as the largest submodule of N such that cd(a,M, TR(a,M,N)) <
cd(a,M,N). Then we prove the following main result:

Theorem 1.1. Let (R,m) be a complete Gorenstein Noetherian local ring. Let
M and N be non-zero finitely generated R-modules and T := TR(m,M,N). As-
sume that pd(M) = d <∞, dimN = dimR = n <∞ and cd(m,M,N) = d+n.

Also, assume that AssR(ExtdR(M,N/T )) ⊆ AssR R. Then AnnR(Hd+n
m (M,N)) ⊆

AnnR ExtdR(M,N/T ).

In [13, Theorem 3.3], the author has determined the annihilators of general-
ized local cohomology modules. In Remark 2.9 we show that his claimed proof
is invalid.

2. Main Results

Recall that, for any two R-modules M and N , the cohomological dimension
of M and N with respect to an ideal a of a commutative Noetherian ring R, is
defined as

cd(a,M,N) = sup{i ∈ N0 : Hi
a(M,N) 6= 0}.

For more details see [1].
We need the following result in our proofs.

Lemma 2.1. Let R be a Noetherian ring and a be an ideal of R. Let M ,
N , L be finitely generated R-modules such that SuppN ⊆ SuppL. Then,
cd(a,M,N) ≤ cd(a,M,L).

Proof. See [1, Theorem B]. �
We give the following definition which is a generalization of [3, Definition 2.4].

Definition 2.2. Let a be an ideal of Noetherian ring R, M and N be non-zero
finitely generated R-modules. We denote by TR(a,M,N) the largest submodule
of N such that cd(a,M, TR(a,M,N)) < cd(a,M,N).

Proposition 2.3. Let R be a Noetherian ring and a be an ideal of R. Let M
and N be non-zero finitely generated R-modules. Assume that pd(M) = d <∞
and dimN = n <∞. Then Hi

a(M,N) = 0 for all i > d + n.

Proof. It follows by [14, Theorem 3.7]. �

Lemma 2.4. Let R be a Noetherian ring and a be an ideal of R. Let M and
N be non-zero finitely generated R-modules. Assume that pd(M) = d < ∞,
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dimN = n <∞ and cd(a,M,N) = d + n. Assume that G := N/TR(a,M,N).
Then

i) Hd+n
a (M,G) ∼= Hd+n

a (M,N) and so cd(a,M,G) = d + n,
ii) G has no non-zero submodule K such that cd(a,M,K) < cd(a,M,G) =

d + n,
iii) AssG = {p ∈ SuppR G| cd(a,M,R/p) = d+n} = {p ∈ AssR N | cd(a,M,R/p) =

d + n} ⊆ {p ∈ SpecR|dimR/p = n},
iv) dimG = n,
v) G has no non-zero submodule of dimension less than n.

Proof. i) Set T := TR(a,M,N). By using the exact sequence 0 → T →
N → G→ 0 we obtain

· · · → Hd+n
a (M,T )→ Hd+n

a (M,N)→ Hd+n
a (M,G)→ 0.

By Definition 2.2, cd(a,M, T ) < d+n and so Hd+n
a (M,T ) = 0. Thus the above

exact sequence implies that Hd+n
a (M,G) ∼= Hd+n

a (M,N).
ii) Assume that, there exists a non-zero submodule K := U/T of G =

N/T such that cd(a,M,K) < cd(a,M,G). By Definition 2.2 and (i) we
have cd(a,M, T ) < cd(a,M,N) = cd(a,M,G). On the other hand, from
0 → T → U → K → 0 and by [1, Theorem A] we have cd(a,M,U) =
Max{cd(a,M, T ), cd(a,M,K)}. Thus it follows that cd(a,M,U) < cd(a,M,G) =
cd(a,M,N). But T ( U and this is a contradiction by definition of T .

iii) By (ii) G has no non-zero submodule K such that cd(a,M,K) < cd(a,M,G) =
d + n. Thus

AssG ⊆ {p ∈ SuppG : cd(a,M,R/p) = d + n}.

Let p ∈ SuppG and cd(a,M,R/p) = d + n. Since d + n = cd(a,M,R/p) ≤
d+dimR/p and d+dimR/p ≤ d+dimN = d+n we conclude that dimR/p = n.
Since p ∈ SuppG ⊆ SuppN and dimR/p = n it follows that p ∈ AssN and so

AssG ⊆ {p ∈ SuppG : cd(a,M,R/p) = d+n} ⊆ {p ∈ AssN : cd(a,M,R/p) = d+n}.

Now assume that p ∈ AssN and cd(a,M,R/p) = d + n. If p ∈ SuppT , then
cd(a,M,R/p) ≤ cd(a,M, T ) < d + n by Lemma 2.1 which is a contradiction.
Thus p ∈ SuppG and by the above argument dimR/p = n. Therefore p ∈
AssG.

iv) By (iii) if p ∈ AssR G, then dimR/p = n. Thus dimG = n.
v) Let U be a non-zero submodule of G. By (ii) we have cd(a,M,U) = d+n.

Now if dimU < n, then Hd+n
a (M,U) = 0 which is a contradiction. Thus

dimU = n, as required. �

Proposition 2.5. Let R be a Noetherian ring and a be an ideal of R. Let M
and N be non-zero finitely generated R-modules. Assume that pd(M) = d <∞
and dimN = n < ∞. Then Hd+n

a (M,N) is Artinian and Hd+n
a (M,N) ∼=

ExtdR(M,Hn
a (N)).
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Proof. By [8, Proposition 2.2]. �

Proposition 2.6. Let (R,m) be a Cohen-Macaulay Noetherian local ring and
for every p ∈ AssR R the zero-dimensional local ring Rp is Gorenstein. Let M
be a finitely generated R-module such that AssR M ⊆ AssR R. Then there is
an exact sequence 0→M → ⊕n

i=1R for some positive integer n.

Proof. By [7, Theorem 3.5]. �
In the following, we prove the main result of this paper.

Theorem 2.7. Let (R,m) be a complete Gorenstein Noetherian local ring. Let
M and N be non-zero finitely generated R-modules and T := TR(m,M,N). As-
sume that pd(M) = d <∞, dimN = dimR = n <∞ and cd(m,M,N) = d+n.

Also, assume that AssR ExtdR(M,N/T ) ⊆ AssR R. Then AnnR Hd+n
m (M,N) ⊆

AnnR ExtdR(M,N/T ).

Proof. By Lemma 2.4 (i), Hd+n
m (M,N) ∼= Hd+n

m (M,N/T ). Thus we must

show that AnnR Hd+n
m (M,N/T ) ⊆ AnnR ExtdR(M,N/T ). By Proposition 2.6

there exists a monomorphism

f : ExtdR(M,N/T )→ ⊕t
i=1R,

for some positive integer t. We claim

AnnR(HomR(ExtdR(M,N/T ),⊕t
i=1R) = AnnR ExtdR(M,N/T ).

If r ∈ AnnR(HomR(ExtdR(M,N/T ),⊕t
i=1R), then rf = 0. Thus f(rExtdR(M,N/T )) =

0. Since f is a monomorphism, it follows that rExtdR(M,N/T ) = 0 and so

r ∈ AnnR ExtdR(M,N/T ). On the other hand, since ExtdR(M,−) is a right

exact functor we have ExtdR(M,N/T ) ' ExtdR(M,R) ⊗ N/T . Thus by using
Proposition 2.5 we have

HomR(Hd+n
m (M,N/T ),⊕t

i=1 E(R/m))
∼= HomR(ExtdR(M,Hn

m(N/T )),⊕t
i=1 E(R/m))

∼= HomR(ExtdR(M,R)⊗Hn
m(N/T ),⊕t

i=1 E(R/m))
∼= HomR(ExtdR(M,R)⊗Hn

m(R)⊗N/T,⊕t
i=1 E(R/m))

∼= HomR(ExtdR(M,R)⊗N/T,HomR(Hn
m(R),⊕t

i=1 E(R/m)))
∼= HomR(ExtdR(M,N/T ),HomR(Hn

m(R),⊕t
i=1 E(R/m))).

Since R is a Gorenstein ring by [6, Lemma 11.2.3] it follows that Hn
m(R) ∼=

E(R/m) and since R is complete by [6, Theorem 10.2.11] we conclude that

HomR(Hn
m(R),⊕t

i=1 E(R/m)) ∼= ⊕t
i=1R.

Thus we have

HomR(Hd+n
m (M,N/T ),⊕t

i=1 E(R/m)) ∼= HomR(ExtdR(M,N/T ),⊕t
i=1R).

Therefore by Lemma 2.4 (i) we have

AnnR Hd+n
m (M,N) = AnnR Hd+n

m (M,N/T )

⊆ AnnR(HomR(Hd+n
m (M,N/T ),⊕t

i=1 E(R/m))
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= AnnR(HomR(ExtdR(M,N/T ),⊕t
i=1R)) ⊆ AnnR ExtdR(M,N/T )

and the proof is complete. �

Corollary 2.8. Let (R,m) be a complete Gorenstein Noetherian local ring.
Let M and N be non-zero finitely generated R-modules and T := TR(m,M,N).
Assume that pd(M) = d < ∞, dimN = dimR = n < ∞ and cd(m,M,N) =
d + n. Then

i) If AssR ExtdR(M,N/T ) ⊆ AssR R, then√
AnnR Hd+n

m (M,N) ⊆ ∩p∈AssR ExtdR(M,N/T )p.

ii) If AssR ExtdR(M,N/T ) ⊆ {p ∈ SpecR|dimR/p = n}, then

AnnR Hd+n
m (M,N) ⊆ AnnR ExtdR(M,N/T ).

iii) If AssR ExtdR(M,N/T ) ⊆ AssR N/T , then

AnnR Hn+d
m (M,N) ⊆ AnnR ExtdR(M,N/T ).

iv) Let ExtdR(M,N/T ) be a Cohen-Macaulay R-module of dimension n. Then

AnnR Hn+d
m (M,N) ⊆ AnnR ExtdR(M,N/T ).

v) Assume that M is projective. Then

AnnR Hn
m(M,N) ⊆ AnnR HomR(M,N/T ).

Proof. i) The result follows by Theorem 2.7.
ii) Since {p ∈ SpecR|dimR/p = n} ⊆ AssR R, the result follows by Theorem

2.7.
iii) By assumption and Lemma 2.4 (iii) we conclude that

AssR ExtdR(M,N/T ) ⊆ {p ∈ SpecR|dimR/p = n},
and so the result follows by (ii).

iv) By assumption and [12, Theorem 17.3 (i)] we conclude that AssR ExtdR(M,N/T ) ⊆
{p ∈ SpecR|dimR/p = n}. Thus the result follows by (ii).

v) By assumption d = pdM = 0. We have

AssR HomR(M,N/T ) = SuppR M ∩AssR N/T ⊆ AssR N/T.

Thus Part (iii) completes the proof. �

Remark 2.9. In [13, Theorem 3.3], the author has determined the annihilators
of generalized local cohomology modules. But he has made an error in the
proof. In fact, for a system of ideals Φ in a Noetherian ring R and two non-
zero finitely generated R-modules M,N such that c := cdΦ(M,N), when one
apply the functor HΦ(M,−) to the map N → xN where x ∈ R, the result
will not be multiplication by x. But applyig the local cohomology functor to
N → N which is multiplication by x will be again multiplication by x.
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