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ABSTRACT. Let a be an ideal of Noetherian ring R and M, N be two
finitely generated R-modules. In this paper, we obtain some results about
the annihilators of top generalized local cohomology modules. We define
T :=Tgr(a, M, N) as the largest submodule of N such that

cd(a, M, Tr(a, M, N)) < cd(a, M, N). Let (R,m) be a complete Goren-
stein Noetherian local ring such that pd(M) =d < oo, dim N = dim R =
n < oo and cd(a, M, N) = d+n. We prove that if Assg(Ext% (M, N/T)) C
Assg R, then Anng(HE™ (M, N)) C Anng Ext& (M, N/T).
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1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity,
a is an ideal of R, Mand N are two R-modules.

For each ¢ > 0, the i-th local cohomology module M with respect to an
ideal a is defined as H' (M) = lignExt’}é(R/a”,M). For basic results about

local cohomology we refer the reader to [6]. A Generalization of local co-
homology functor has been given by J. Herzog in [10]. The i-th general-
ized local cohomology module of M and N with respect to a is denoted by
H (M, N) := lim Extz(M/a"M, N).

An importagt problem concerning local cohomology is determining the an-
nihilators of the i-th local cohomology module H;(M ). This problem has
been studied by several authors, see for example [2], [3], [4], [5], [9] and [11].
In [5], Bahmanpour et al. proved an intersting result about the annihila-
tor Anng(HE™M) (A1) in the case (R, m) is a complete local ring. In fact,
in [5, Theorem 2.6], they proved that if (R, m) is a complete local ring then
Anng (HERO (M) = Anng(M/Tr(M)) where Tr(M) = U{N : N < M and
dim N < dim M}.

Atazadeh et al. in [2] generalized this main result by determining
Ann g (HE™O (1)) for an arbitrary Noetherian ring R. In [2, Theorem 2.3],
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by using the above main result, they showed that, if H‘iim(M) (M) # 0, then
Anng (HENOM (A1) = Anng(M/Tgr(a, M)) where Tr(a, M) = U{N : N <
M andcd(a, N) < cd(a, M)}.

Not so much is known about the annihilators of top generalized local coho-
mology modules. Here, we obtain some results about them. Let a be an ideal of
Noetherian ring R and M, N two finitely generated R-modules. At first, we de-
fine Tr(a, M, N) as the largest submodule of N such that cd(a, M, Tg(a, M, N)) <
cd(a, M, N). Then we prove the following main result:

Theorem 1.1. Let (R, m) be a complete Gorenstein Noetherian local ring. Let
M and N be non-zero finitely generated R-modules and T := Tr(m, M, N). As-
sume that pd(M) = d < 0o, dim N = dim R = n < co and cd(m, M, N) = d+n.
Also, assume that Assp(Ext& (M, N/T)) C Assg R. Then Anng(HET™ (M, N)) C
Anng Ext% (M, N/T).

In [13, Theorem 3.3], the author has determined the annihilators of general-
ized local cohomology modules. In Remark 2.9 we show that his claimed proof
is invalid.

2. Main Results

Recall that, for any two R-modules M and NN, the cohomological dimension
of M and N with respect to an ideal a of a commutative Noetherian ring R, is
defined as

cd(a, M, N) = sup{i € Ny : H,(M, N) # 0}.
For more details see [1].
We need the following result in our proofs.

Lemma 2.1. Let R be a Noetherian ring and a be an ideal of R. Let M,
N, L be finitely generated R-modules such that Supp N C SuppL. Then,
cd(a,M,N) < cd(a, M, L).

Proof. See [1, Theorem B]. O

We give the following definition which is a generalization of [3, Definition 2.4].

Definition 2.2. Let a be an ideal of Noetherian ring R, M and N be non-zero
finitely generated R-modules. We denote by Tr(a, M, N) the largest submodule
of N such that cd(a, M,Tg(a, M, N)) < cd(a, M, N).

Proposition 2.3. Let R be a Noetherian ring and a be an ideal of R. Let M
and N be non-zero finitely generated R-modules. Assume that pd(M) = d < o0
and dim N =n < co. Then Hy (M, N) =0 for alli > d+n.

Proof. It follows by [14, Theorem 3.7]. O

Lemma 2.4. Let R be a Noetherian ring and a be an ideal of R. Let M and
N be non-zero finitely generated R-modules. Assume that pd(M) = d < oo,
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dim N =n < oo and cd(a, M, N) = d+n. Assume that G := N/Tg(a, M,N).
Then

i) HE(M, G) = HET™ (M, N) and so cd(a, M,G) = d +n,

it) G has no non-zero submodule K such that cd(a, M, K) < cd(a, M,G) =
d+mn,

iii) Ass G = {p € Suppy G|cd(a, M, R/p) = d+n} = {p € Assg N|cd(a, M, R/p) =
d+n} C{p € Spec R|dim R/p = n},

) dim G = n,

v) G has no non-zero submodule of dimension less than n.

Proof. i) Set T := Tgr(a, M, N). By using the exact sequence 0 — T —
N — G — 0 we obtain

<o = HPY(M,T) — HE™ (M, N) — HIT™(M, G) — 0.

By Definition 2.2, cd(a, M, T) < d+n and so H¥*"(M,T) = 0. Thus the above
exact sequence implies that HY™" (M, G) = HY™ (M, N).

ii) Assume that, there exists a non-zero submodule K := U/T of G =
N/T such that cd(a, M,K) < cd(a, M,G). By Definition 2.2 and (i) we
have cd(a, M,T) < cd(a,M,N) = cd(a, M,G). On the other hand, from
0 -T - U — K — 0 and by [1, Theorem A] we have cd(a, M,U) =
Max{cd(a, M, T),cd(a, M, K)}. Thus it follows that cd(a, M,U) < cd(a, M,G) =
cd(a, M,N). But T C U and this is a contradiction by definition of 7'

iii) By (ii) G has no non-zero submodule K such that cd(a, M, K) < cd(a, M, G) =
d +n. Thus

AssG C {p € SuppG : cd(a, M, R/p) = d + n}.

Let p € SuppG and cd(a, M,R/p) = d + n. Since d + n = cd(a, M, R/p) <
d+dim R/p and d4+dim R/p < d+dim N = d+n we conclude that dim R/p = n.
Since p € Supp G C Supp N and dim R/p = n it follows that p € Ass N and so

AssG C {p € SuppG : cd(a, M, R/p) = d+n} C {p € Ass N : cd(a, M, R/p) = d+n}.

Now assume that p € Ass N and cd(a, M,R/p) =d+n. If p € SuppT, then
cd(a, M,R/p) < cd(a, M,T) < d+ n by Lemma 2.1 which is a contradiction.
Thus p € SuppG and by the above argument dim R/p = n. Therefore p €
AssG.

iv) By (iii) if p € Assg G, then dim R/p = n. Thus dim G = n.

v) Let U be a non-zero submodule of G. By (ii) we have cd(a, M,U) = d+n.
Now if dimU < n, then HY*"(M,U) = 0 which is a contradiction. Thus
dim U = n, as required. [

Proposition 2.5. Let R be a Noetherian ring and a be an ideal of R. Let M
and N be non-zero finitely generated R-modules. Assume that pd(M) = d < oo
and dimN = n < co. Then HIY"(M,N) is Artinian and HS™™ (M, N) =
Ext&(M,H"(N)).
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Proof. By [8, Proposition 2.2]. O

Proposition 2.6. Let (R,m) be a Cohen-Macaulay Noetherian local ring and
for every p € Assp R the zero-dimensional local ring Ry, is Gorenstein. Let M
be a finitely generated R-module such that Assg M C Assg R. Then there is
an exact sequence 0 = M — @ R for some positive integer n.

Proof. By [7, Theorem 3.5]. OJ
In the following, we prove the main result of this paper.

Theorem 2.7. Let (R,m) be a complete Gorenstein Noetherian local ring. Let
M and N be non-zero finitely generated R-modules and T := Tr(m, M, N). As-
sume that pd(M) = d < 0o, dim N = dim R = n < oo and cd(m, M, N) = d+n.
Also, assume that Assg Exth (M, N/T) C Assg R. Then Anng HET" (M, N) C
Anng Extb (M, N/T).

Proof. By Lemma 2.4 (i), HL"™ (M, N) = H™ (M, N/T). Thus we must
show that Annp HL™™(M, N/T) € Anng Ext%(M, N/T). By Proposition 2.6
there exists a monomorphism

f:Exth(M,N/T) — &!_,R,
for some positive integer t. We claim
Anng(Hompg(Exth (M, N/T), ®i_,R) = Anng Exth (M, N/T).

Ifr e AnnR(HomR(Exth(M, N/T),®!_,R), thenrf = 0. Thus f(r Ext%(M7 N/T)) =
0. Since f is a monomorphism, it follows that r Ext% (M, N/T) = 0 and so
r € Anng Ext‘ligb(M, N/T). On the other hand, since Extji%(M, —) is a right
exact functor we have Exth (M, N/T) ~ Ext% (M, R) ® N/T. Thus by using
Proposition 2.5 we have

Homp(HE (M, N/T), 64, E(R/m))

= Hom p(Exti(M, H (N/T)), &_, E(R/m))

=~ Homp(Ext% (M, R) @ HL(N/T), &', E(R/m))

=~ Homp(Ext%h (M, R) @ H(R) @ N/T,®t_, E(R/m))

=~ Hompg(Ext% (M, R)@N/T, Homg(H% (R), ®'_, E(R/m)))

>~ Hompg(Ext% (M, N/T), Homg (H" (R), ®!_, E(R/m))).

Since R is a Gorenstein ring by [6, Lemma 11.2.3] it follows that HJ, (R) 2

E(R/m) and since R is complete by [6, Theorem 10.2.11] we conclude that

Homp(Hy, (R), ®i—, E(R/m)) = &_, R.
Thus we have
Hompg(HL™ (M, N/T), ®!_, E(R/m)) = Hom g (Ext& (M, N/T), ®t_, R).

Therefore by Lemma 2.4 (i) we have
Anng HE™(M, N) = Anng HE™ (M, N/T)
C Anng(Homp(HG™ (M, N/T), &', E(R/m))
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= Anng(Hompg(Exth (M, N/T),®!_,R)) € Anng Ext4(M, N/T)
and the proof is complete.

Corollary 2.8. Let (R,m) be a complete Gorenstein Noetherian local ring.
Let M and N be non-zero finitely generated R-modules and T := Tr(m, M, N).
Assume that pd(M) = d < oo, dimN = dim R =n < oo and cd(m, M, N) =
d+n. Then

i) If Assp Ext% (M, N/T) C Assgp R, then

\/AHDR ngn(M’ N) - mpeAssR Ext%(M,N/T)p'
i) If Assg Exth(M, N/T) C {p € Spec R|dim R/p = n}, then
Anng HE™ (M, N) C Anng Ext% (M, N/T).
iii) If Assp ExtG (M, N/T) C Assg N/T, then
Anng HYM(M, N) C Anng Ext% (M, N/T).
w) Let Bxt%(M,N/T) be a Cohen-Macaulay R-module of dimension n. Then
Anng HX™ (M, N) C Anng Ext% (M, N/T).
v) Assume that M is projective. Then
Anng Hy, (M, N) C Anng Homp(M, N/T).
Proof. i) The result follows by Theorem 2.7.
ii) Since {p € Spec R|dim R/p = n} C Assg R, the result follows by Theorem

2.7.
iii) By assumption and Lemma 2.4 (iii) we conclude that

Assp Ext% (M, N/T) C {p € Spec R|dim R/p = n},

and so the result follows by (ii).

iv) By assumption and [12, Theorem 17.3 (i)] we conclude that Assp Ext% (M, N/T) C
{p € Spec R|dim R/p = n}. Thus the result follows by (ii).

v) By assumption d = pd M = 0. We have

Assgp Homp(M, N/T) = Suppr M N Assg N/T C Assg N/T.
Thus Part (iii) completes the proof. O

Remark 2.9. In [13, Theorem 3.3], the author has determined the annihilators
of generalized local cohomology modules. But he has made an error in the
proof. In fact, for a system of ideals ® in a Noetherian ring R and two non-
zero finitely generated R-modules M, N such that ¢ := ¢de(M, N), when one
apply the functor He (M, —) to the map N — N where z € R, the result
will not be multiplication by x. But applyig the local cohomology functor to
N — N which is multiplication by z will be again multiplication by .
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