
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,072 |
Prediction of ovarian cancer in Holstein cattle using machine learning and microarray data | ||
Journal of Livestock Science and Technologies | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 مرداد 1404 | ||
نوع مقاله: Research Article (Regular Paper) | ||
شناسه دیجیتال (DOI): 10.22103/jlst.2025.25281.1626 | ||
نویسندگان | ||
Mostafa Ghaed-Rahmati؛ Farhad Ghafouri-Kesbi* ؛ Ahmad Ahmadi | ||
Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran | ||
چکیده | ||
Abstract The aim was to the network visualization of genes involved in ovarian cancer in Holstein cattle and assess the performance of machine learning (ML) methods for predicting ovarian cancer using gene expression microarray data. Gene expression data with accession number GSE225981for healthy and cancer ovarian stromal cells in Holstein cows were obtained from the GEO database. Differentially expressed genes (up and down-regulated genes, DEGs) were identified with online web tool GEO2R. After identifying DEGs and genes associated with ovarian cancer, the Cytoscape software was used to visualize the gene network. Decision tree (DT), random forest (RF) and support vector machine (SVM) were used to predict the phenotype (healthy or cancer) from the microarray data. The variable importance feature of RF applying the Gini index was used to select and rank the most important genes in the network. Selected genes were then evaluated to determine their contribution in cancer-related pathways. There were 603 differentially expressed genes (DEGs) of which 327 were up-regulated and 276 were down-regulated. Except for the scenario of 2 samples in training data and 4 samples in test data in which the accuracy of DT was 75%, in other scenarios, the ML methods predicted the phenotypes (healthy or cancer) with the accuracy of 100%. The genes GPR65, RHBDF2, TBC1D30, DSG2, H2AC17, AFF3, AGMO, AURKA, CA3 and CA9 were selected by RF as promising potential markers for diagnosis and prediction of ovarian cancer. A literature survey showed the involvement of these genes in the process and cancerous pathways. In conclusion, the studied ML methods were recommended for analyzing microarray data as showed significant performance in predicting ovarian cancer in Holstein cattle. Also, the variable importance feature of RF can be part of any study on microarray data for identifying important genes, those which are highly correlated with the disease in question. | ||
کلیدواژهها | ||
Machine learning؛ Microarray؛ Gene؛ Cancer؛ Gini index | ||
مراجع | ||
Abdelwahab, O., Awad, N., Elserafy, M., Badr, E.A., 2022. Feature selection-based framework to identify biomarkers for cancer diagnosis: A focus on lung adenocarcinoma. PLoS ONE 17, e0269126.
Alabdulqader, E.A., Alarfaj, A.A., Umer, M., Eshmawi, A., Alsubai, S., Kim, T., Ashraf, I., 2024. Improving prediction of blood cancer using leukemia microarray gene data and chi2 features with weighted convolutional neural network. Scientific Reports 14, 15625.
Awad, M.A., Dalal, D., Cho, E., 2006. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. The American Journal of Human Genetics 79, 136-142.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, New York, USA.
Clough, E., Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Sherman, P.M., 2024. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acid Research 52, 138-144.
DesCôteaux, L., Harvey, D., Girard, C., 1989. Tumeur des cellules de la granulosa chez une taure: observations cliniques, endocrinologiques et post-mortem. Canadian Veterinary Journal 30, 501-503.
Díaz-Uriarte, R., De Andres, S.A., 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3.
ElAraby, I.E., Saleh, A.A., Zaghlol, A.W., Hussien, N., 2024. Bioinformatics study of the microarray data set of ovarian carcinoma in cattle. Zagazig Veterinary Journal 52, 367-379.
Gupta, S., Gupta, M.K., 2021. A comparative analysis of deep learning approaches for predicting breast cancer survivability. Archives of Computational Methods in Engineering 29, 2959-2975.
Gupta, S., Gupta, M.K., Shabaz, M., Sharma, A., 2022. Deep learning techniques for cancer classification using microarray gene expression data. Frontiers in Physiology 13, 952709.
Hastie, T.J., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. 2nd Ed. Springer, New York, USA.
Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Simonovic, M., 2009. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acid Research 37, 412-416.
Jiang, H., Deng, Y., Chen, H.S., Tao, L., Sha, Q., Chen, J., Tsai, C.J., Zhang, S., 2004. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 5, 81.
Govindarajan, R., Duraiyan, J., Kaliyappan, K., Palanisamy, M., 2012. Microarray and its applications. Journal of Pharmacy and Bioallied Sciences 4, S310-2.
Lasser, J., Matzhold, C., Egger-Danner, C., Fuerst-Waltl, B., Steininger, F., Wittek, T., 2021. Integrating diverse data sources to predict disease risk in dairy cattle-a machine learning approach. Journal of Animal Science 99, 1-14.
Liaw, A., Wiener, M., 2024. Breiman and Cutler’s random forests for classification and regression. Available at http://cran.r-project.org/web/packages/randomForest/index.html.
Magana, J., Gavojdian, D., Menahem, Y., Lazebnik, T., Zamansky, A., dams-Progar, A., 2023. Machine learning approaches to predict and detect early-onset of digital dermatitis in dairy cows using sensor data. Frontiers in Veterinary Science 10, 1295430.
Mahendran, N., Durai Raj Vincent, P.M., Srinivasan, K., Chang, C.Y., 2020. Machine learning based computational gene selection models: A survey, performance evaluation, open issues, and future research directions. Frontiers in Genetics 11, 603808.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, K., 2024. Misc functions of the department of statistics (e1071), TU Wien. Available at http://cran.r-project.org/web/packages/e1071/index.html.
Nagra, A.A., Khan, A.H., Abubakar, M., Faheem, M., Rasool, A., Masood, K., Hussain, M., 2024. A gene selection algorithm for microarray cancer classification using an improved particle swarm Optimization. Scientific Reports 14, 9613.
Nikonova, A.S., Astsaturov, I., Serebriiskii, I.G., Dunbrack, R.L., Golemis, E.A., 2013. Aurora A kinase (AURKA) in normal and pathological cell division. Cell and Molecular Life Science 70, 661-687.
Nilsson, N.J., 1998. Introduction to machine learning. Stanford University. Stanford, USA.
Parrot, J.A., Kim., G., Skinner, K., 2000. Expression and action of kit ligand/stem cell factor in normal human and bovine ovarian surface epithelium and ovarian cancer. Biology Reports 62, 1600-1609.
Ram, M., Najafi, A., Shakeri, M.T., 2017. Classification and biomarker genes selection for cancer gene expression data using random forest. Iranian Journal of Pathology 12, 339-347.
Rashidi, S., Asadi, A., Abdolmaleki, A., 2021. Cancer stem cells: a narrative review. Journal of Rafsanjan University of Medical Science 20, 226.
R development Core Team., 2024. R: A language and environment for statistical computing. Vienna, Austria. Available at: https://www.R-project.org/.
Reid, B.M., Permuth, J.B., Sellers TA., 2017. Epidemiology of ovarian cancer: a review. Cancer Biology and Medicine14, 9-32.
Rezaee, K., Jeon, G., Khosravi, M.R., Attar, H.H., Sabzevari, A., 2022. Deep learning-based microarray cancer classification and ensemble gene selection approach. IET System Biology 16, 120-131.
Ripley, B., 2024. Package tree: classification and regression tree. Available at: https://cran.r-project.org/web/packages/tree/index.html.
Ritchie, M.E., Phipson, B., Wu, D., 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43, e47.
Roudbari, Z., Mokhtari, M., Ebrahimpour Gorji, A., Sadkowski, T., Sadr, A.S., Shirali, M., 2014. Identification of hub genes and target miRNAs crucial for milk production in Holstein Friesian dairy cattle. Genes 14, 2015.
Rupapara, V., Rustam, A., Amaar, P.B., Washington, E.L., Ashraf, I., 2021. Deepfake tweets classification using stacked bi-LSTM and words embedding. Peer Journal of Computer Science 7, e745.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J. T., Ramage, D., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498-2504.
Saarinen, S., Vahteristo, P., Lehtonen, R., Aittomaki, K., Launonen, V., Kiviluoto, T., Aaltonen L.A., 2012. Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in Tylosis with esophageal cancer. Familial Cancer 11, 525-528.
Svara, T., Gombač, M., Juntes, P., Pogačnik, M., 2009. Malignant ovarian granulosa cell tumour in a ewe. Acta Veterinaria Brno 78, 281-285.
Simes, R.J., 1985. Treatment selection for cancer patients: application of statistical decision theory to the treatment of advanced ovarian cancer. Journal of Chronic Diseases 38, 171-86.
Tarawneh, O., Otair, M., Husni, M., Abuaddous, H.Y., Tarawneh, M., Almomani, M.A., 2022. Breast cancer classification using decision tree algorithms. International Journal of Advanced Science and Computer 13, 676.680.
Turner, K.J., Crew, J.P., Wykoff, C.C., Watson, P.H., Poulsom, R., Pastorek, J., Ratcliffe, P.J., Cranston, D., Harris, A.L., 2002. The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial vs invasive bladder cancer. British Journal of Cancer 86, 1276-1282.
Wang, B., Chen, D., Hua, H., 2021. TBC1D3 family is a prognostic biomarker and correlates with immune infiltration in kidney renal clear cell carcinoma. Molecular Oncology 22, 528-538.
Wang, L., Sun, L., Sun, H., Xing, Y., Zhou, S., An, G., 2023. eGPR65 as a potential immune checkpoint regulates the immune microenvironment according to pan-cancer analysis. Heliyon 9, e13617.
Zhang, G., Chen, Z., Wang, Y., Huang, A., Nie, F., Gao, L., 2024. Up-regulated DSG2 promotes tumor growth and reduces immune infiltration in cervical cancer. Pathology-Research and Practical 262, 15555.
Zeng, Y., Zhang, X., Li, F., Wang., Y., Wei, M., 2022. AFF3 is a novel prognostic biomarker and a potential target for immunotherapy in gastric cancer. Journal of Clinical Laboratory Analysis 36, e24437. | ||
آمار تعداد مشاهده مقاله: 11 |