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Abstract. In this paper, first, while introducing multiplicative deriva-

tions, we examine some properties of these derivations and present prop-

erties of multiplicative derivations in ∨-hoop algebras. Then we show
that the set of multiplicative derivations on ∨-hoop algebras forms a dis-

tributive lattice under certain conditions. Also, while examining the rela-

tionship between the square root and the derivation on ∨-hoop algebras
and introducing the critical point by using the composition of them, we

present some characteristics of the critical point. Finally, we show that

the set of critical points forms a distributive lattice.
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1. Introduction

Hoop algebras are naturally ordered commutative residuated integral monoids,
introduced by B. Bosbach [6, 7]. In a manuscript by Büchi and Owens [8] de-
voted to a study of Bosbach’s algebras, written in the mid-seventies, the com-
mutative members of this equational class were given the name hoops. Over
the past 50 years, many scientists and researchers have studied the proper-
ties of these algebras, resulting in numerous published articles. The notion
of derivation, introduced from the analytic theory, is useful for studying the
structure and properties of algebraic systems. Several authors studied deriva-
tions in rings and near-rings [3, 10, 21]. Jun and Xin [14] applied the notion of
derivation to BCI-algebras. In [22], Szász introduced the concept of derivation
for lattices and investigated some of its properties. Also, in [25], Xin et al. im-
proved derivation for a lattice and discussed some related properties. In 2004,
Jun and Xin [14], introduced the notion of derivation on BCI-algebras, which
is defined in a way similar to the notion in ring theory, and investigated some
properties related to this concept. In 2010, Alshehri [2] applied the notions of
(additive) derivations to MV -algebras and discussed some related properties.
She also proved that an additive derivation of a linearly ordered MV -algebra
is isotone. After the work of Alshehri, many research articles have appeared
on the derivations of MV -algebras in different aspects. For example, in 2013,
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Yazarli et al. [26] further investigated several kinds of generalized derivations
on MV -algebras and obtained some interesting results. Ghorbani et al. [12],
generalized the concept of derivation on MV -algebras to (�,⊕)-derivations
and (	,�)-derivations, presenting other results. In the same year, Torkzadeh
and Abbasian [23], also presented results regarding the effect of the derivation
on BL-algebras. In 2019, Wang et al. [24] gave some representations of MV -
algebras in terms of derivations. In [27], Zhang and Xin introduced the notion
of derivation in semihoops algebras and, while investigating some properties,
especially regarding the fixed point, they introduced the concepts of differential
semihoops and differential filters and then studied some of their properties. In
2020, Zhu et al. [28] introduced the notion of generalized derivations on residu-
ated lattices. Also in [15], Yemene et al. presented some types of derivations in
bounded commutative residuated lattices, and in 2025, Nasr Esfahani et al. [19]
investigated some properties of ideals and derivations in BL-algebras.

In this paper, we first define the concept of derivation on hoop algebras and
study some of its properties. Then, we show that the set of fixed points of each
hoop algebra, under certain conditions, forms a hoop algebra. Following this,
we demonstrate that the set of derivations of a hoop algebra, under certain
conditions, forms a bounded lattice. In Section 4, we examine the relation-
ship between square root and derivation on hoop algebras. Additionally, we
introduce the concept of the critical point, provide some examples, and present
some properties of this point. Finally, we show that the set of all critical points
forms a distributive lattice (see Proposition 4.15 below).

2. Preliminaries

In this section, we introduce the definitions and some features of hoop alge-
bras, as well as the types of hoop algebras, including bounded hoop algebras,
cancellative hoop algebras, etc. Then we present some features of the square
root of hoop algebras.

Definition 2.1. [1, 16] A hoop algebra is an algebra (H;�,→, 1) of type
(2, 2, 0) such that

(H1) (H;�, 1) is a commutative monoid with a unit element 1;
(H2) x→ x = 1 for all x ∈ H;
(H3) x� (x→ y) = y � (y → x) for all x, y ∈ H;
(H4) (x� y)→ z = x→ (y → z) for all x, y, z ∈ H.

In a hoop algebra (H;�,→, 1), we define x ≤ y if and only if x → y = 1.
It is easily seen that ≤ defines a partial order relation on H (see also [1]). We
define x0 = 1 and xn = xn−1 � x for every n ∈ N. An element x ∈ H is called
idempotent if x � x = x. The set of idempotent elements in H is denoted
by Id(H). H is called idempotent if each of its elements is idempotent. H is
called bounded if it has a least element denoted by 0. Let H be a bounded hoop
algebra. We define the unary operation “ ′ ” for every x ∈ H as x′ := x → 0.
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We also set (x′)′ = x′′. An element x ∈ H is called regular if x′′ = x. The set
of regular elements in H is denoted by reg(H). If for every x ∈ H, x′′ = x, then
we say that the bounded hoop algebra H has the “double negation property”,
or simply (DNP ).
Let H and G be two hoop algebras. A map f : H → G is called a hoop
homomorphism if for every x, y ∈ H, f(x � y) = f(x) � f(y), f(x → y) =
f(x)→ f(y). Then one can prove that it is order-preserving and f(1) = 1. In
addition, if f is one to one, then it is an order embedding. Indeed, for x, y ∈ H
we have x ≤ y iff x → y = 1 iff f(x → y) = f(1) = 1 iff f(x) → f(y) = 1
iff f(x) ≤ f(y). If, in addition, the hoop algebras are bounded, then we also
assume f(0) = 0.

Proposition 2.2. [17, Proposition 2.3] If (H;�H ,→H , 1H) and (G;�G,→G

, 1G) are two hoop algebras, then (H × G;�H×G,→H×G, (1H , 1G)) becomes a
hoop algebra with the operations (x1, x2)�H×G (y1, y2) = (x1�H y1, x2�G y2),
and (x1, x2)→H×G (y1, y2) = (x1 →H y1, x2 →G y2), for every x1, y1 ∈ H and
x2, y2 ∈ G.

Theorem 2.3. [6, 7, 11] Let (H;�,→, 1) be a hoop algebra. Then, for every
x, y, z ∈ H,

(i) (H;≤) is a ∧-semilattice with x ∧ y = x� (x→ y),
(ii) x� y ≤ z if and only if x ≤ y → z,
(iii) x� y ≤ x, y,
(iv) x� (x→ y) ≤ x, y,
(v) x ≤ y → x,
(vi) 1→ x = x,
(vii) x→ 1 = 1,
(viii) x ≤ y implies x� z ≤ y � z,
(ix) x ≤ y implies z → x ≤ z → y,
(x) x ≤ y implies y → z ≤ x→ z.

Proposition 2.4. [11] For any hoop algebra H, define x ∨ y = ((x → y) →
y) ∧ ((y → x)→ x). Then, the following conditions are equivalent:
(i) The operation ∨ is associative.
(ii) x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z), for all x, y, z ∈ H.
(iii) x ≤ y implies x ∨ z ≤ y ∨ z, for all x, y, z ∈ H.
(iv) The operation ∨ is a join operation on H.

A hoop algebra H is called ∨-hoop, if ∨ is a join operation on H (see [11,
Remark 2.4]).

Proposition 2.5. (See [11, Lemma 2.9]) Let H be a hoop algebra, x, y ∈ H.
If arbitrary joins exist, then

(i) x� (
∨

i∈I yi) =
∨

i∈I(x� yi), for every {yi | i ∈ I} ⊆ H,
(ii) x ∧ (

∨
i∈I yi) =

∨
i∈I(x ∧ yi) for every {yi | i ∈ I} ⊆ H.

Remark 2.6. [11, Proposition 4.6] Let H be a ∨-hoop algebra. Then, (H;∨,∧)
is a distributive lattice.



142 A. Madanshekaf, M.M. Motamedi Nezhad

Recall [4, Definition 1.12] that a Wajsberg hoop is a hoop algebra that sat-
isfies the following condition of antipode (T): (x → y) → y = (y → x) →
x, ∀x, y ∈ H. Any hoop that satisfies (T) is in fact a lattice, and the oper-
ation ∨ is equal to x ∨ y = (x → y) → y for every x, y ∈ H (As mentioned
already x ∧ y = x� (x→ y) for all x, y ∈ H).

Proposition 2.7. [6, 7] Let H be a bounded hoop algebra. Then, for every
x, y ∈ H,

(i) x ≤ x′′, x� x′ = 0, x′′′ = x′, x′ ≤ x→ y,
(ii) If x ≤ y, then y′ ≤ x′,
(iii) x� y = 0 if and only if x ≤ y′.

Definition 2.8. [9] Let L be a bounded lattice with 0 and 1. For a ∈ L, we
say b ∈ L is a complement of a if a ∨ b = 1 and a ∧ b = 0. If a has a unique
complement, we denote this complement by a∗. The set of all complemented
elements in L, denoted by B(L), is called the Boolean center of L.

Lemma 2.9. [20, Lemmas 1.13 and 1.14] Let H be a bounded ∨-hoop algebra,
x ∈ B(H), and x∗ be the complement of x. Then

(i) x′ = x∗ and x′′ = x,
(ii) x� a = x ∧ a, for all a ∈ H.

Lemma 2.10. [20, Proposition 1.17] Let H be a bounded ∨-hoop algebra and
x ∈ B(H). In this case, the following statements hold:

(i) x2 = x and x′′ = x,
(ii) x2 = x and x′ → x = x,
(iii) (x→ a)→ x = x, for all a ∈ H,
(iv) x′ ∧ x = 0.

A hoop algebra H is called cancellative if (H;�, 1) is a cancellative monoid
(see [11]).

Proposition 2.11. [11, Proposition 4.2] Let H be a cancellative hoop algebra.
Then, for any x, y, z ∈ H:

(i) z → x = (z � y)→ (x� y),
(ii) x� y ≤ z � y if and only if x ≤ z.

Definition 2.12. [5] Let H be a hoop algebra. A subset F of H is called a
filter if it satisfies the following conditions:

(F1) 1 ∈ F ,
(F2) x� y ∈ F , for all x, y ∈ F ,
(F3) If x ≤ y and x ∈ F , then y ∈ F , for all x, y ∈ H.

Let H be a hoop algebra and ∅ 6= X ⊆ H. The intersection of all filters of
H containing X is denoted by 〈X〉 and it is equal to

〈X〉 =
{
a ∈ H : ∃n ∈ N, x1, x2, · · · , xn ∈ X, x1 � x2 � · · · � xn ≤ a

}
.

In particular, for each x ∈ H we have 〈x〉 = {a ∈ H : ∃n ∈ N, xn ≤ a}.
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A filter F of H is called proper if F 6= H. It is clear that H and {1} are
trivial filters of H. It can be seen that if H is a bounded hoop algebra, then
a filter is proper if and only if it does not contain 0. A proper filter P of a
∨-hoop algebra H is prime if for every x, y ∈ H, x ∨ y ∈ P implies x ∈ P or
y ∈ P .

Definition 2.13. [13] Let H be a hoop algebra. A mapping s : H → H is
called a square root on H if it satisfies the following conditions:

(S1) For every x ∈ H, s(x)� s(x) = x,
(S2) For all x, y ∈ H, if y � y ≤ x, then y ≤ s(x).

Example 2.14. a) Let I = [0, 1] be the unit closed interval of real numbers.
Define the operations � and → on I as follows: For any x, y ∈ I,

x� y = min (x, y) and x→ y =

{
1 if x ≤ y
y if x > y

.

The structure Goa := (I;�,→, 1) defined with these operations is a hoop alge-
bra. This algebraic structure is known as the Gödel algebra (see [20]). In Goa,
define the unary operation s : I → I as s(x) = x for every x ∈ I. Then, s is a
square root on Goa.
b) Let I = [0, 1] be the unit closed interval of real numbers. Define the opera-
tions � and → on I as follows. For any x, y ∈ I,

x� y = x · y and x→ y =

{
1 if x ≤ y
y
x if x > y

.

The structure Pra := (I;�,→, 1) is a hoop algebra (see [20]). This algebraic
structure is known as the product algebra. In the algebra Pra, define the unary
operation s : I → I as s(x) =

√
x, ∀x ∈ I. Then, it is clear s is a square root

on Pra.

Notice that: 1) Not all hoop algebras have a square root (see Example 3.2(iv)
below) and 2) those that have a square root, then this square root is uniquely
determined (see [17, Theorem 3.5]).

Theorem 2.15. [17, Theorem 3.3] Let H be a hoop algebra and s a square
root on H. Then,

(i) x ≤ s(x), for every x ∈ H. In particular, if H is bounded and s(x) = 0,
then x = 0,

(ii) s(1) = 1.

Theorem 2.16. [17] Let H be a hoop algebra and s a square root on H. Then:
(i) s is one to one,
(ii) x2 = x if and only if s(x) = x, for every x ∈ H,
(iii) x = 1 if and only if s(x) = 1, for every x ∈ H,
(iv) x ≤ y if and only if s(x) ≤ s(y), for every x, y ∈ H,



144 A. Madanshekaf, M.M. Motamedi Nezhad

(v) s(x)� s(y) ≤ s(x� y), for every x, y ∈ H,
(vi) s(x)→ s(y) = s(x→ y), for every x, y ∈ H.

Proposition 2.17. [17, Proposition 3.12] Let H be a ∨-hoop algebra and s a
square root on H. For every x, y ∈ H one has

(i) If s(x) � s(y) = s(x � y), then s(x ∧ y) = s(x) ∧ s(y). So s(x ∨ y) =
s(x) ∨ s(y),

(ii) If s(x)� s(y) = s(x� y), then x = s(x2). In particular, if H is bounded,
then s(0) = 0,

(iii) If H is bounded and s(0) 6= 0, then s(x)� s(y) 6= s(x� y).

Definition 2.18. [17, Definition 4.13] Let H be a bounded hoop algebra and
s be a square root on H. If s(0) = 0, then H is called good.

As shown in Proposition 2.17, if for all x, y ∈ H, we have s(x � y) =
s(x)� s(y), or s(x2) = x, then H is good.

Example 2.19. Let I = [0, 1] be the unit closed interval of reals. In the hoop
 Lukasiewicz algebra, L1 = (I; max,min,�,→, 0, 1), we have a�b = max(0, a+
b − 1) and a → b = min(1, 1 − a + b), for all a, b ∈ I. Define the unitary
operation s : I → I by s(x) = x+1

2 , for every x ∈ I, it is clear that s(x) ∈ I.
It is easy to check that s is a square root on L1. However, we have s(0) = 0.5.
Therefore, the  Lukasiewicz algebra is not good.

3. Derivation on hoop algebras

In this section, while defining the multiplicative derivation on hoop alge-
bras, we examine some of its properties as well as its relationship with filters.
Throughout this section, we assume that H is a ∨-hoop algebra.

Definition 3.1. (See also [18]) A mapping d : H → H is called a multiplicative
derivation or simply a derivation if it satisfies the following condition:

d(x� y) = (d(x)� y) ∨ (x� d(y)).

In addition, a derivation d on a ∨-hoop H is called:

• Isotone if x ≤ y, then d(x) ≤ d(y).
• Contractive if d(x) ≤ x,
• An ideal derivation if d is both isotone and contractive.
• Idempotent if d2 = d, where d2(x) = d(d(x)), for all x ∈ H.

We denote the set of all derivations on H by Der(H).

Example 3.2.
(i) For a bounded hoop H if we define d0 : H → H by d0(x) = 0, for all x ∈ H,
then d0 is a derivation on H, which is called a zero derivation.

(ii) If we define d1 : H → H by d1(x) = x, for all x ∈ H, then d1 is a derivation
on H, which is called an identity derivation.



Multiplicative derivations in ∨-hoop algebras – JMMR Vol. 15, No. 1 (2026) 145

(iii) Let (H = {0, a, b, 1},≤) be a chain. Define the operations � and → on H
as follows:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Then (H;�,→, 0, 1) is a bounded hoop algebra. We now define some deriva-
tions on H as follows:

d1(x) =

{
0 if x = 0,

a if x = a, b, 1,
and d2(x) =

{
0 if x = 0, b, 1,

a if x = a.

Then d1 and d2 are derivations on H. Also, d1 is an idempotent and ideal
derivation. Additionally, d2 is contractive and idempotent, but fails to be
isotone, and hence, it is not an ideal derivation. It is also clearly seen that
d(x) � y = x � d(y) does not necessarily hold. Because we have d2(a) � b =
a� b = a and a� d2(b) = a� 0 = 0.
iv) Let (H = {0, a, b, 1},≤) be a chain. Define the operations � and → on H
as follows:

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then, (H;�,→, 0, 1) is a bounded hoop algebra. We now define map d on H
as follows:

d(x) =

{
0 if x = 0,

a if x = a, b, 1,

Then, d is an ideal derivation on H.
v) Consider the free monoid generated by a single element a such that 0 < a < 1.
Put Ca = {1 = a0, a, a2, · · · } and define the operations � and → on Ca as
follows:

an · am = an+m, an → am = amax(m−n,0)

for any n,m ∈ N∪{0}. It is evident that Ca satisfies Definition 2.1. Therefore,
it is a hoop algebra. We define some mappings as follows:
a) dm(x) = am�x for all x ∈ Ca and m ∈ N∪{0}. It is easy to check that dm
is an ideal derivation.
b)

da(x) =

{
a� x if x = a, a2, a3, · · ·
a2 if x = 1.
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It is easy to check that da is an ideal derivation.
vi) Let (G,+,−, 0,∨,∧) is an Abelian l-group. Then, the positive cone P (G)
of G is the set {x ∈ G : x ∨ 0 = x}. In this case (P (G),�,→, 1P (G)) is a hoop
algebra with the following operations:

x� y = x+ y; x→ y = (y − x) ∨ 0; 1P (G) := 0

Note that the partial order of P (G) is the converse of the partial order inherited
from G. For every a ∈ P (G), define the mapping da as da(x) = a � x for all
x ∈ P (G). It is easy to check that d is an ideal derivation on P (G).

Proposition 3.3. [18, Proposition 3.1] Let H be a ∨-hoop algebra and d a
derivation on H. Then the following properties hold for all x, y ∈ H:

(i) x� d(1) ≤ d(x),
(ii) d(xn) = xn−1 � d(x), for all n ∈ N,
(iii) d(1) = 1 if and only if x ≤ d(x), for all x ∈ H,
(iv) d(x� y) ≤ d(x) ∨ d(y).

Corollary 3.4. Let H be a ∨-hoop algebra with a derivation d. Then for all
x, y ∈ H:

(i) x ≤ d(1)→ d(x),
(ii) d(x ∧ y) ≤ d(x) ∨ d(x→ y),
(iii) x→ y ≤ d(x)→ d(x ∧ y) and d(x→ y) ≤ x→ d(x ∧ y),
(iv) If H is totally ordered and x ≤ y, then y → x ≤ d(y) → d(x) and d(y →
x) ≤ y → d(x).

Proof. (i) According to Proposition 3.3(i) and Theorem 2.3(ii), it is straight-
forward.
(ii) According to Theorem 2.3(i), we have x ∧ y = x � (x → y). Now the in-
equality is a consequence of Proposition 3.3(iv).
(iii) We know x ∧ y = x� (x→ y). So we have d(x ∧ y) = d(x� (x→ y)). By
Definition 3.1, we have x� d(x→ y) ≤ d(x∧ y) and d(x)� (x→ y) ≤ d(x∧ y).
Therefore, by Theorem 2.3(ii), the result is obtained.
(iv) Suppose x ≤ y. Using part (iii), we directly obtain y → x ≤ d(y) →
d(y ∧ x) = d(y)→ d(x) and d(y → x) ≤ y → d(y ∧ x) = y → d(x). �

Proposition 3.5. Let H be a bounded ∨-hoop algebra and d a derivation on
H. Then the following properties hold for all x, y ∈ H:

(i) d(0) = 0,
(ii) d(x)� x′ = x� d(x′) = 0,
(iii) If x ≤ y, then d(x) ≤ y′′,
(iv) d(x) ≤ x′′. If H has (DNP ) or x2 = x, then d(x) ≤ x,
(v) d(x) = d(x) ∨ (x� d(1)) and x� d(1)� d(x)′ = 0,
(vi) If d(x) = 1, then x′′ = 1 and x′ = 0. Moreover, if H has (DNP ) or x2 = x,
then x = 1,

(vii) If x ≤ y′, then d(y) ≤ x′ and d(x) ≤ y′,
(viii) d(x′) ≤ d(x)′,
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(ix) If d(x� y) = 0 or x ∧ y = 0, then d(x)� y = 0 and d(y)� x = 0.

Proof. To prove parts (i) through (viii), see [18, Proposition 3.1]. Note that
the moreover part of (vi) is also true for x2 = x. Indeed, if x2 = x, then
d(x) = d(x2) = x� d(x). Since d(x) = 1, 1 = d(x) = x� d(x) = x� 1 = x.
(ix) Suppose d(x�y) = 0. Using the definition, we have (d(x)�y)∨(x�d(y)) =
0. So the result is obtained. Also, if x ∧ y = 0, By Theorem 2.3(iii), we have
x� y = 0 and then d(x� y) = 0. So the result is obtained. �

Remark 3.6. According to Proposition 3.5(iv), in the following cases, d is a
contraction on H.

1. H is a bounded Wajsberg hoop,
2. H is a bounded hoop algebra with (DNP ),
3. H is idempotent.

Corollary 3.7. Let H be an idempotent ∨-hoop algebra with a derivation d on
H. We define d0(x) = x and for each n ∈ N, dn+1(x) = d(dn(x)), for each
x ∈ H. Then dn(x) = d(x), for all x ∈ H and n ∈ N.

Proof. We show the result by induction on n. If n = 1, then it is clear. Suppose
n = 2. According to the assumption, for each x ∈ H, we have x � x = x and
d(x) � d(x) = d(x). We have, d2(x) = d(d(x)) = d(d(x) � d(x)) = (d(d(x)) �
d(x)) ∨ (d(x) � d(d(x))) = d(d(x)) � d(x) and so, d2(x) ≤ d(x). On the other
hand, one has

d2(x) = d(d(x))

= d(d(x� x))

= d((d(x)� x) ∨ (x� d(x)))

= d(d(x)� x)

= (d(d(x))� x) ∨ (d(x)� d(x))

= (d2(x)� x) ∨ d(x).

and then d2(x) ≥ d(x). Therefore, the equality holds. Now, suppose that the
result is true for n = k. Then we have dk+1(x) = d(dk(x)) = d(d(x)) = d2(x) =
d(x), which shows that the result is true for n = k + 1. �

Theorem 3.8. For a ∈ H, define the map da : H → H by da(x) = a� x, for
all x ∈ H. Then da is an ideal derivation on H, which is called a principal
ideal derivation.

Proof. It is similar to the proof of [27, Theorem 3.8]. �

Remark 3.9. According to Theorem 3.8, for all a ∈ H, da is an ideal derivation
on H. Now we have da(x)� y = a�x� y = x�a� y = x�da(y). So we have,
da(x� y) = da(x)� y = x� da(y), for all x, y ∈ H.



148 A. Madanshekaf, M.M. Motamedi Nezhad

Example 3.10. In Example 3.2, items (v)(a) and (vi), the ideal derivations
are principal. Also, d and da in Example 3.2, items (iv) and (v)(b), respectively,
are ideal derivations that are not principal.

Definition 3.11. Let d : H → H be a derivation on H. Then d is called
regular if d(1) ∈ Id(H).

Example 3.12. (i) In every hoop algebra H, for a = 1, the principal ideal
derivation d1, as defined in Theorem 3.8 is a regular derivation.
(ii) Suppose H is a hoop algebra and a /∈ Id(H). Then, the derivation da is
not a regular derivation.

Proposition 3.13. Let d : H → H be an isotone derivation on H. Then for
all x, y, z ∈ H:

(i) If z ≤ x→ y, then z ≤ d(x)→ d(y) and x ≤ d(z)→ d(y),
(ii) x→ y ≤ d(x)→ d(y) and d(x→ y) ≤ x→ d(y),
(iii) x→ y ≤ d(x ∨ y)→ d(y),
(iv) d(x) ∨ d(y) ≤ d(x ∨ y). If H is totally ordered, then equality holds,
(v) d(x ∧ y) ≤ d(x) ∧ d(y). If H is totally ordered, then equality holds,
(vi) d(x) ≤ d(1),
(vii) x� d(y) ≤ d(x). Therefore, x ≤ d(y)→ d(x),
(viii) dn(x) ≥ d(x)n for all n ∈ N.

Proof. Parts (i) and (ii) are similar to the proof of [27, Proposition 3.14].
(iii) We know that for every x, y ∈ H, we have x ∨ y = ((x→ y)→ y) ∧ ((y →
x) → x). Since d is isotone, it follows d(x ∨ y) ≤ d((x → y) → y). Now,
by part (ii), d(x ∨ y) ≤ (x → y) → d(y). Therefore, using Theorem 2.3(ii),
x→ y ≤ d(x ∨ y)→ d(y).
(iv) and (v) are clear.
(vi) For all x ∈ H, we have x ≤ 1. Since d is isotone, d(x) ≤ d(1).
(vii) We have x� y ≤ x, y. Since d is isotone, d(x� y) ≤ d(x), so (d(x)� y) ∨
(x� d(y)) ≤ d(x). Therefore, x� d(y) ≤ d(x).
(viii) We show by induction on n that dn(x) ≥ d(x)n. For n = 1, it is clear.
Let n = 2. Then, d2(x) = d(d(x) � 1) = d(d(x)) ∨ (d(x) � d(1)). Since d is
isotone, d(x) ≤ d(1) and we have d2(x) ≥ d(x)� d(1) ≥ d(x)� d(x) = d(x)2.

Now, suppose the result is true for n = k. In the light of Definition 3.1, we
have

dk+1(x) = d(dk(x))

= d(dk(x)� 1)

= (d(dk(x))� 1) ∨ (dk(x)� d(1))

≥ dk(x)� d(1)

≥ d(x)k � d(x)

= d(x)k+1.
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Therefore, dn(x) ≥ d(x)n, for n = k + 1. �

Proposition 3.14. Let d : H → H be a contractive derivation on H. Then
for all x, y ∈ H:

(i) d(x)� d(y) ≤ d(x� y),
(ii) If d is isotone, then d(x→ y) ≤ d(x)→ d(y) ≤ d(x)→ y,
(iii) If d(1) = 1, then d is the identity derivation,
(iv) By assumption d0(x) = x, we have dn(x) ≤ dn−1(x), for all n ∈ N,
(v) If d(x) ≤ d(1), for any x ∈ H, then dn(x) ≥ d(x)n, for all n ∈ N.

Proof. Parts (i), (ii), and (iii) are similar to the proof of [27, Proposition 3.15]
and [18, Proposition 4.6].
(iv) Based on the definition of contraction derivation, it is clear.
(v) It is similar to the proof of Proposition 3.13(viii). �

Proposition 3.15. Let d : H → H be a derivation on H. Then the following
conditions are equivalent:

(i) d is an idempotent ideal derivation;
(ii) d satisfies d(x)→ d(y) = d(x)→ y, for all x, y ∈ H.

Proof. It is similar to the proof of [27, Proposition 3.16] and [18, Theorem
4.1]. �

Proposition 3.16. Let d : H → H be a contractive derivation on bounded ∨-
hoop algebra H. If d(1) ∈ B(H), then the following conditions are equivalent:

(i) d is an ideal derivation on H,
(ii) d(x) ≤ d(1), for all x ∈ H,
(iii) d(x) = d(1)� x, for all x ∈ H,
(iv) d(x ∧ y) = d(x) ∧ d(y), for all x, y ∈ H,
(v) d(x ∨ y) = d(x) ∨ d(y), for all x, y ∈ H,
(vi) d(x� y) = d(x)� d(y), for all x, y ∈ H,
(vii) If H is cancellative, then d(x→ y) = d(x)→ d(y), for all x, y ∈ H.

Proof. (i) =⇒ (ii). It is clear, as d is isotone.
(ii) =⇒ (iii). Suppose d(x) ≤ d(1), for every x ∈ H. Because of d(1) ∈ B(H),
using Lemma 2.9(ii) and Theorem 2.3(viii), we have

d(x) = d(1) ∧ d(x) = d(1)� d(x) ≤ d(1)� x.

On the other hand, according to Proposition 3.3(i), we know x� d(1) ≤ d(x).
Thus the result holds.
(iii) =⇒ (iv). Suppose d(x) = d(1) � x, for all x ∈ H. By Lemma 2.9(ii) we
have
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d(x ∧ y) = d(1)� (x ∧ y)

= d(1) ∧ (x ∧ y)

= (d(1) ∧ x) ∧ (d(1) ∧ y)

= (d(1)� x) ∧ (d(1)� y)

= d(x) ∧ d(y),

for all x, y ∈ H.
(iv) =⇒ (i). Suppose x, y ∈ H so that x ≤ y. Based on the assumption
d(x) = d(x ∧ y) = d(x) ∧ d(y). Hence d(x) ≤ d(y). Therefore, d is isotone.
Since d is contractive on H, we have d is an ideal derivation on H.
(iii) =⇒ (v). Suppose d(x) = d(1) � x, for any x ∈ H. Now, by the help
of Proposition 2.5(i), for all x, y ∈ H, we have: d(x ∨ y) = d(1) � (x ∨ y) =
(d(1)� x) ∨ (d(1)� y) = d(x) ∨ d(y).
(v) =⇒ (i). This is similar to (iv) =⇒ (i).
(iii) =⇒ (vi). Suppose that for every x ∈ H, d(x) = d(1) � x. According
to Lemma 2.10(i), for all x, y ∈ H, we have d(x � y) = d(1) � (x � y) =
(d(1)� x)� (d(1)� y) = d(x)� d(y).
(vi) =⇒ (ii). By the assumption, d(x) = d(x� 1) = d(x)� d(1) = d(x) ∧ d(1).
Therefore d(x) ≤ d(1), for all x ∈ H.
(iii) =⇒ (vii). Suppose H is cancellative. It suffices to show d(1)� (x→ y) =
d(1)� x→ d(1)� y, for all x, y ∈ H. This is by (iii) equivalent to d(x→ y) =
d(x) → d(y). We know x � (x → y) ≤ y, so d(1) � x � (x → y) ≤ d(1) � y.
Hence d(1) � (x → y) ≤ d(1) � x → d(1) � y. On the other hand, we have
d(1) � (x → y) ≤ d(1) � (x → y). Then, according to Proposition 2.11(i),
d(1)� (d(1)�x→ d(1)� y) ≤ d(1)� (x→ y). As H is cancellative and d(1) is
idempotent, by Proposition 2.11(ii), we get d(1)�x→ d(1)�y ≤ d(1)�(x→ y).
Therefore, we get the result.
(vii) =⇒ (i). Suppose x, y ∈ H so that x ≤ y. By the assumption d(1) = d(x→
y) = d(x) → d(y). Then, d(x) � d(1) ≤ d(y). Since d(1) ∈ B(H), we have
d(x) � d(1) ≤ d(y) � d(1). Using Proposition 2.11(ii), we obtain d(x) ≤ d(y).
Therefore, d is isotone. Since d is contractive, d is an ideal derivation on H. �

Corollary 3.17. Assume that d : H → H is an ideal derivation on bounded
∨-hoop algebra H. If d(1) ∈ B(H), then:

(i) d(x� y) = d(x)� y = x� d(y), for all x, y ∈ H,
(ii) dn(x) = d(x), for all n ∈ N.

Proof. (i) By Proposition 3.16(iii), d(x�y) = d(1)�x�y = d(y)�x = d(x)�y,
for all x, y ∈ H.
(ii) By Proposition 3.16(iii), d(d(x)) = d(x) � d(1) = x � d(1) � d(1) = d(x),
for all x ∈ H. Now the result follows by induction on n. �
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Definition 3.18. Let d : H → H be a derivation on H. We denote the set of
all fixed points of d in H by Fixd(H). That is, Fixd(H) = {x ∈ H : d(x) = x}.

Example 3.19. In Example 3.2(iii), Fixd1
(H) = {0, a}. Also, in Example

3.2(v)(a), if m 6= 0, then Fixdm(H) = ∅.

Proposition 3.20. Let d : H → H be a derivation on H. Then
(i) Fixd(H) is closed under �,
(ii) If d is an ideal derivation, then Fixd(H) is closed under ∨,
(iii) If d is an ideal derivation and d(1) ∈ B(H), then Fixd(H) = d(H).

Proof. (i) Let x, y ∈ Fixd(H). Then, d(x � y) = (d(x) � y) ∨ (x � d(y)) =
(x� y) ∨ (x� y) = x� y. Thus, x� y ∈ Fixd(H).
(ii) Let x, y ∈ Fixd(H). Then, d(x) = x and d(y) = y. Now, according to
Proposition 3.13(iv), we have: x ∨ y = d(x) ∨ d(y) ≤ d(x ∨ y) ≤ x ∨ y. Hence
d(x) ∨ d(y) = d(x ∨ y) = x ∨ y and x ∨ y ∈ Fixd(H).
(iii) Let a ∈ d(H). There exists b ∈ H such that a = d(b). Now, according
to Corollary 3.17(ii), we have d(a) = d(d(b)) = d(b) = a. Hence a ∈ Fixd(H).
Also, if a ∈ Fixd(H), then it is clear that a ∈ d(H). Therefore, the assertion is
concluded. �

Theorem 3.21. Let H be a bounded ∨-hoop algebra, d : H → H be an ideal
idempotent derivation on H and d(1) ∈ B(H). Then (Fixd(H);�,→d, 0, 1̄)
is a bounded hoop algebra, where 1̄ = d(1) and x →d y = d(x → y), for all
x, y ∈ Fixd(H).

Proof. We will check the conditions of Definition 2.1. As d is idempotent, we
have d(d(1)) = d(1). Therefore, d(1) ∈ Fixd(H). Now, by Proposition 3.16(iii),
we have x � d(1) = d(x) = x and x →d d(1) = d(d(x) → d(1)) = d(1),
for all x ∈ Fixd(H). Therefore, (Fixd(H);�, d(1)) is a commutative monoid
and the condition H1 is satisfied. Also, x →d x = d(x → x) = d(1), for every
x ∈ Fixd(H). Therefore, the condition H2 is satisfied. Suppose x, y ∈ Fixd(H).
By Proposition 3.16(vi), we have

x� (x→d y) = d(x)� d(x→ y)

= d(x� (x→ y))

= d(y � (y → x))

= d(y)� d(y → x)

= y � (y →d x).

Hence, the condition H3 is satisfied. Similar to the proof of [27, Theorem
3.18(3)], the condition H4 is also satisfied. So (Fixd(H);�,→d, d(1)) is a hoop
algebra. By Proposition 3.5(i), 0 ∈ Fixd(H). Also, for all x ∈ Fixd(H), we
have

d(0)→d x = d(0)→d d(x) = d(d(0)→ d(x)) = d(1),

i.e., d(0) ≤ x. Therefore (Fixd(H);�,→d, 0, 1̄) is a bounded hoop algebra. �
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Proposition 3.22. Let d : H → H be a contractive derivation on H. Then
the following conditions are equivalent:

(i) d(1) = 1,
(ii) Fixd(H) = H,
(iii) Fixd(H) is a filter of H.

Proof. (i) =⇒ (ii). Let d(1) = 1. Proposition 3.14(iii) implies d(x) = x, for all
x ∈ H. Thus, Fixd(H) = H. The other implications (ii) =⇒ (iii) and (iii) =⇒
(i) are clear. �

Proposition 3.23. Let d and d′ be two derivations on H. Then, d ∨ d′ given
by (d ∨ d′)(x) = d(x) ∨ d′(x), for all x ∈ H, is a derivation on H.

Proof. Suppose d, d′ ∈ Der(H). We will show that d ∨ d′ ∈ Der(H). B‌y
Proposition 2.5(i), we have

(d ∨ d′)(x� y) = d(x� y) ∨ d′(x� y)

= ((d(x)� y) ∨ (x� d(y))) ∨ ((d′(x)� y) ∨ (x� d′(y)))

= ((d(x) ∨ d′(x))� y) ∨ (x� (d(y) ∨ d′(y)))

= ((d ∨ d′)(x)� y) ∨ (x� (d ∨ d′)(y)),

for all x, y ∈ H. Therefore, the assertion is concluded. �

Corollary 3.24. Suppose H is a ∨-hoop algebra and Derc(H) is the set of all
contractive derivations on H. Then (Derc(H);∨, d1) is a ∨-semilattice with the
following definitions. For d, d′ ∈ Derc(H)

(d ∨ d′)(x) = d(x) ∨ d′(x), d1(x) = x for all x ∈ H.
If H is a bounded, then (Derc(H);∨, d0, d1) is a bounded ∨-semilattice such
that d0(x) = 0.

Proof. For all d, d′ ∈ Derc(H) define

d ≤ d′ if and only if d(x) ≤ d′(x) for all x ∈ H.
Then, it can be easily checked that (Derc(H);≤) is a partially ordered set.
Also, according to Proposition 3.23, Derc(H) is closed under ∨. Because, if
d, d′ ∈ Derc(H), then d(x) ≤ x and d′(x) ≤ x, for all x ∈ H. So (d ∨ d′)(x) =
d(x) ∨ d′(x) ≤ x ∨ x = x. Therefore (d ∨ d′) ∈ Derc(H). Also, if d ∈ Derc(H)
then, we have (d∨ d1)(x) = d(x)∨ d1(x) = d(x)∨x = x = d1(x), for all x ∈ H.
Also if H is bounded, then we have (d∨d0)(x) = d(x)∨d0(x) = d(x)∨0 = d(x).
So d0 ≤ d ≤ d1 and thus (Derc(H);∨, d0, d1) is a bounded ∨-semilattice. �

Corollary 3.25. Suppose H is a ∨-hoop algebra such that for all x, y ∈ H,
x � y = x ∧ y and Derid(H) is the set of all ideal derivations on H. Then
Derid(H) = (Derid(H);∨,∧, d1) is a lattice with the largest element d1 with
the following definitions:

(d ∨ d′)(x) = d(x) ∨ d′(x), (d ∧ d′)(x) = d(x) ∧ d′(x), d1(x) = x
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for all x ∈ H and d, d′ ∈ Derid(H). If H is bounded, then Derid(H) =
(Derid(H);∨,∧, d0, d1) is a distributive bounded lattice such that d0(x) = 0,
for all x ∈ H.

Proof. First, we show that the operations ∨ and ∧ on Derid(H) are well-defined.
Suppose d, d′ ∈ Derid(H) and x ≤ y. Hence d(x) ≤ d(y) and d′(x) ≤ d′(y), for
all x ∈ H. So (d∨ d′)(x) = d(x)∨ d′(x) ≤ d(y)∨ d′(y) = (d∨ d′)(y). Therefore,
d ∨ d′ is an isotone derivation. Now, using Corollary 3.24, it is easy to show
that Derid(H) is closed under ∨. Now, suppose d, d′ ∈ Derid(H). According to
Proposition 2.5(ii), we have:

(d ∧ d′)(x� y) = d(x� y) ∧ d′(x� y)

= ((d(x)� y) ∨ (x� d(y))) ∧ ((d′(x)� y) ∨ (x� d′(y)))

= ((d(x)� y) ∧ (d′(x)� y)) ∨ ((d(x)� y) ∧ (x� d′(y)))∨
((x� d(y)) ∧ (d′(x)� y)) ∨ ((x� d(y)) ∧ (x� d′(y)))

= (d(x)� d′(x)� y) ∨ (d(x)� y � x� d′(y))∨
(x� d(y)� d′(x)� y) ∨ (x� d(y)� d′(y))

for all x, y ∈ H. Note that the last equality is true by the assumption that
x�y = x∧y, for all x, y ∈ H. On the other hand, Proposition 3.13(vii) implies
that d(x)�y�x�d′(y) ≤ d(y)�x�d′(y) and x�d(y)�d′(x)�y ≤ d(x)�d′(x)�y.
Then, we obtain

(d ∧ d′)(x� y) = (d(x)� d′(x)� y) ∨ (x� d(y)� d′(y))

= ((d� d′)(x)� y) ∨ (x� (d� d′)(y))

= ((d ∧ d′)(x)� y) ∨ (x� (d ∧ d′)(y))

for all x, y ∈ H. Therefore, d∧d′ is derivation. It is also easy to show that d∧d′
is an isotone, contractive, and thus an ideal derivation. Hence d∧d′ ∈ Derid(H).
Also, Since the derivations are contractive, we have (d∧d1)(x) = d(x)∧d1(x) =
d(x) ∧ x = d(x). Therefore, Derid(H) = (Derid(H);∨,∧, d1) is a lattice with
the largest element d1. Also H is bounded, then we have (d ∧ d0)(x) = d(x) ∧
d0(x) = d(x) ∧ 0 = 0 = d0(x). So Derid(H) = (Derid(H);∨,∧, d0, d1) is a
bounded lattice. Regarding distributivity of Derid(H), since H is a distributive
lattice, it is easily seen that Derid(H) is a distributive lattice as well. �

Proposition 3.26. Let d : H → H be a derivation and F a filter of H. Then,
(i) If d(1) ∈ F , then d(x)n ∈ F and dn(x) ∈ F , for all x ∈ F and any n ∈ N,
(ii) If d is isotone and d(x) ∈ F , then d(y)n, dn(y), dn(x) ∈ F , for all n ∈ N
and y ∈ H such that x ≤ y,

(iii) If d is contractive, then 〈x〉 ⊆ 〈d(x)〉, for all x ∈ H. If, moreover d(1) = 1,
then the equality holds.

Proof. (i) Suppose d(1), x ∈ F . Then, x�d(1) ∈ F . But by Proposition 3.3(i),
x � d(1) ≤ d(x). Therefore, d(x) ∈ F . Now, by mathematical induction, we
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show that dn(x) ∈ F for all n ∈ N. If n = 1, this is clear by the above. Suppose
n = 2. Now we have d2(x) = d(d(x)) ≥ d(x)�d(1). Hence d2(x) ∈ F . Suppose
dk(x) ∈ F . Now we have dk+1(x) ≥ dk(x) � d(1). Therefore, dk+1(x) ∈ F , as
d(1) ∈ F and F is a filter of H, we are done.

(ii) According to conditions F2 and F3 of Definition 2.12 and Proposi-
tion 3.13(viii), it is clear.

(iii) As d is contractive, 〈x〉 ⊆ 〈d(x)〉, for all x ∈ H. The second statement
is true by Proposition 3.14(iii). �

Proposition 3.27. Let d : H → H be a contractive derivation on bounded
∨-hoop algebra H such that d(1) ∈ B(H) and also F is a filter of H such that
d(1) ∈ F . Then F is prime if and only if, d(x)∨ d(y) ∈ F implies d(x) ∈ F or
d(y) ∈ F , for all x, y ∈ H.

Proof. (⇒) If F is prime, then the statement is clear.
(⇐) Let x ∨ y ∈ F . According to Proposition 3.3(i), we have (x ∨ y)� d(1) ≤
d(x ∨ y). Given the assumptions of the proposition, we obtain d(x ∨ y) ∈ F .
Now according to Proposition 3.16(v), d(x ∨ y) = d(x) ∨ d(y) ∈ F . By the
assumption, we have d(x) ∈ F or d(y) ∈ F . Since d is contractive, as F is a
filter, we have x ∈ F or y ∈ F . Therefore, F is prime. �

Proposition 3.28. Let d : H → H be an ideal derivation on H such that
d(1) ∈ B(H) and put F = {x ∈ H : d(x) = d(1)}. Then, F is a filter of H.

Proof. We check the conditions of Definition 2.12. It is clear that 1 ∈ F . Thus
F1 holds. Suppose x, y ∈ F then we have d(x) = d(y) = d(1). By Proposition
3.16(vi), d(x � y) = d(x) � d(y) = d(1) � d(1) = d(1). Therefore x � y ∈ F .
Hence F2 also holds. Now let x ∈ F and x ≤ y. Since d is an ideal derivation,
we have d(1) = d(x) ≤ d(y) ≤ d(1). Then, d(y) = d(1). Therefore, y ∈ F and
F3 also is satisfied. Thus, F is a filter of H. �

Suppose H is a bounded ∨-hoop algebra. For a derivation d on H, define
ker0(d) = {x ∈ H : d(x) = 0}. It is clear that ker0(d) 6= ∅, because d(0) = 0.

Proposition 3.29. Suppose H is a bounded ∨-hoop algebra and d a derivation
on H. Then:

(i) If x, y ∈ ker0(d), then x� y ∈ ker0(d).
Moreover, if d is isotone, then:

(ii) If x ≤ y and y ∈ ker0(d), then x ∈ ker0(d),
(iii) If x ∈ ker0(d), then x� y ∈ ker0(d) and x ∧ y ∈ ker0(d), for all y ∈ H.

Proof. Suppose x, y ∈ ker0(d). We have d(x � y) = (d(x) � y) ∨ (x � d(y)) =
0 ∨ 0 = 0. Items (ii) and (iii) are direct. �

For a lattice L, recall that a non-empty subset I of L is an ideal of L if
x, y ∈ I implies x ∨ y ∈ I and x ∈ L, y ∈ I and x ≤ y imply x ∈ I. Now, we
have
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Proposition 3.30. Suppose H is a bounded ∨-hoop algebra and d : H → H
an ideal derivation on H and d(1) ∈ B(H). Then ker0(d) is an ideal of the
lattice H.

Proof. According to Remark 2.6, H is a lattice. Then, by Propositions 3.29(ii)
and 3.16(v) and the paragraph before Proposition 3.29, it is easily seen ker0(d)
is an ideal of H. �

Remark 3.31. Let H and G be two ∨-hoop algebras, d : H → H a derivation on
H and f : H → G be a hoop monomorphism. We define the map ρ : Im(f)→
Im(f) by ρ(f(x)) = f(d(x)). We will show that ρ is a derivation on Im(f).
It is clear that ρ is well-defined because f is a monomorphism. Suppose that
a, b ∈ Im(f). There exist unique elements x, y ∈ H such that a = f(x) and
b = f(y). Now, we have

ρ(a� b) = ρ(f(x)� f(y))

= ρ(f(x� y))

= f(d(x� y))

= f((d(x)� y) ∨ (x� d(y))

= f(d(x)� y)) ∨ f(x� d(y))

= (f(d(x))� f(y)) ∨ (f(x)� f(d(y)))

= (ρ(f(x))� f(y)) ∨ (f(x)� ρ(f(y)))

= (ρ(a)� b) ∨ (a� ρ(b)).

Consequently, ρ is a derivation on Im(f).

Corollary 3.32. Let H and G be two ∨-hoop algebras, d : H → H a derivation
on H and f : H → G be a hoop isomorphism. Then ρ : G → G by ρ(f(x)) =
f(d(x)) is a derivation on G.

Proof. It is clear according to Remark 3.31. �

Proposition 3.33. Let (H;�H ,→H , 1H) and (G;�G,→G, 1G) be two ∨-hoop
algebras and dH and dG be two derivations on H and G, respectively. Then
dH×G given by dH×G(x1, x2) = (dH(x1), dG(x2)), for all x1 ∈ H and x2 ∈ G,
is a derivation on H ×G.
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Proof. We show that dH×G holds in Definition 3.1. Suppose x1, y1 ∈ H and
x2, y2 ∈ G. By Proposition 2.2,

dH×G((x1, x2)� (y1, y2))

= dH×G((x1 �H y1), (x2 �G y2))

= (dH(x1 �H y1), dG(x2 �G y2))

= ((dH(x1)�H y1) ∨ (x1 �H dH(y1)), ((dG(x2)�G y2) ∨ (x2 �G (dG(y2)))

= ((dH(x1)�H y1), ((dG(x2)�G y2)) ∨ ((x1 �H dH(y1)), (x2 �G (dG(y2)))

= ((dH(x1), dG(x2))�H×G (y1, y2)) ∨ ((x1, x2)�H×G (dH(y1), dG(y2)))

= (dH×G(x1, x2)�H×G (y1, y2)) ∨ ((x1, x2)�H×G dH×G(y1, y2)).

Therefore, dH×G is a derivation on H ×G. �

Proposition 3.34. With the assumptions of Proposition 3.33, so that H and
G are bounded, we have:

(i) dH×G is contractive (isotone, ideal, idempotent) if and only if dH and dG is
contractive (isotone, ideal, idempotent),

(ii) (0, 0) ∈ FixdH×G
(H ×G),

(iii) (x, y) ∈ FixdH×G
(H ×G) if and only if x ∈ FixdH

(H) and y ∈ FixdG
(G),

(iv) (x, y) ∈ ker0(dH×G) if and only if x ∈ ker0(dH) and y ∈ ker0(dG).

Proof. It is straightforward. �

4. Square root and derivations in hoop algebras

In this section, while examining the relationship and effect of the square root
on the derivation of hoop algebras, we introduce the critical point and examine
some of its properties. Throughout this section, we assume that H is a ∨-hoop
algebra with a square root s : H → H and d : H → H is a multiplicative
derivation on H.

Proposition 4.1. Let H, s and d be defined as above. Then, for each x ∈ H:
(i) d(x) = ds(x)�s(x). Therefore, d(x) ≤ s(x), d(x) ≤ ds(x) and d(x)�s(x) ≤
x,

(ii) ds(x) ≤ s(x)→ d(x) and s(x) ≤ ds(x)→ d(x),
(iii) d(x)2 ≤ x and d(x)� d(y) ≤ s(x� y), for all y ∈ H,
(iv) d(x) ≤ ds(x)∧sd(x) ≤ ds(x)∨sd(x). If d is contractive, then ds(x)∨sd(x) ≤
s(x),

(v) x ≤ ds(x)→ sd(x),
(vi) If s(x) ≤ y, then d(x)� d(y) ≤ d(y2), for all y ∈ H,
(vii) If sd(x) = s(x), then d(x) = x,
(viii) d(xn) = ds(x)� s(x)2n−1, for all n ∈ N,
(ix) If d is contractive, then d(x) ≤ s(x� s(x)),
(x) d(x� s(x)) = x� ds(x),
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Proof. (i) Based on Definitions 2.13 and 3.1, we have:

d(x) = d(s(x)� s(x)) = (ds(x)� s(x)) ∨ (ds(x)� s(x)) = ds(x)� s(x).

By Theorem 2.3(iii), we have d(x) ≤ s(x) and d(x) ≤ ds(x).
(ii) Using part (i) and Theorem 2.3(ii), the result is obtained.
(iii) According to part (i), d(x)2 = d(x) � d(x) ≤ s(x) � s(x) = x. Also, by
Theorem 2.16(v), we have d(x)� d(y) ≤ s(x)� s(y) ≤ s(x� y).
(iv) Based on part (i), we know d(x) ≤ ds(x). On the other hand, by Theo-
rem 2.15, d(x) ≤ sd(x). Therefore, we will have d(x) ≤ sd(x) ∧ ds(x). If d is
contractive, we have d(x) ≤ x and ds(x) ≤ s(x), sd(x) ≤ s(x) from monotonic-
ity of s (Proposition 2.16(iv)). Therefore, sd(x) ∨ ds(x) ≤ s(x) ∨ s(x) = s(x).
(v) By part (i) we have, sd(x) = s(ds(x) � s(x)) ≥ ds(x) � s(x). Therefore,
x ≤ s(x) ≤ ds(x)→ sd(x), as x ≤ s(x).
(vi) Suppose that s(x) ≤ y. Then, by part (i), d(x) � d(y) ≤ s(x) � d(y) ≤
y � d(y) = d(y2).
(vii) According to Theorem 2.16(i), it is clear.
(viii) Suppose x ∈ H and n ∈ N. Based on Proposition 3.3(ii), Definition 2.13
and part (i), we have d(xn) = xn−1 � d(x) = (s(x)2)n−1 � s(x) � ds(x) =
ds(x)� s(x)2n−1.
(ix) Suppose that the derivative d is contractive. In this case, we have d(x) ≤
x ≤ s(x). As a result d(x)� d(x) ≤ x� s(x). Therefore d(x) ≤ s(x� s(x)).
(x) According to Definition 3.1 and part (i), we have:

d(x� s(x)) = (d(x)� s(x)) ∨ (x� ds(x))

= (ds(x)� s(x)� s(x)) ∨ (x� ds(x))

= (ds(x)� x) ∨ (x� ds(x)) = x� ds(x).

�

Proposition 4.2. Let H be a bounded ∨-hoop algebra and s and d be defined
as above. Then, for all x, y ∈ H:

(i) sd(x)� sd(x′) ≤ s(0),
(ii) If sd(x) = 1, then x′′ = 1 and x′ = 0. Therefore, if H has (DNP ) or
x2 = x, then x = 1,

(iii) If H is good and d(x� y) = 0, then sd(x) ≤ s(y)′,
(iv) ds(0)� s(0) = 0.

Proof. (i) Using Proposition 3.5(viii), d(x′) ≤ d(x)′. Now according to The-
orem 2.16(iv,vi), sd(x′) ≤ s(d(x)′) = s(d(x) → 0) = sd(x) → s(0). Then,
sd(x′)� sd(x) ≤ s(0).
(ii) Using Proposition 3.5(vi) and Corollary 2.16(iii), we get the result.
(iii) We know d(x)� y = 0. Then, sd(x)� s(y) = 0. Thus, sd(x) ≤ s(y)′.
(iv) Take x = 0, according to Propositions 4.1(i) and 3.5(i), the result is ob-
tained. �
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Proposition 4.3. Let H and s be defined as above, and d : H → H be an
isotone derivation on H. Then, for all x, y ∈ H:

(i) d(x� y) ≤ s(d(x)� d(y)),
(ii) d(x� y) ≤ d(x ∧ y) ≤ sd(x ∧ y) ≤ sd(x) ∧ sd(y),
(iii) s(x) → s(y) ≤ sd(x) → sd(y). If d is contractive, then sd(x → y) ≤ x →
sd(y) and s(x)→ s(y) ≤ sd(x)→ s(y),

(iv) s(x) ≤ sd(y)→ sd(x).

Proof. (i) Since d is isotone, we have d(x � y) ≤ d(x) and d(x � y) ≤ d(y).
Thus d(x� y)� d(x� y) ≤ d(x)� d(y). Then, by the definition of square root,
we get d(x� y) ≤ s(d(x)� d(y)).
(ii) According to Theorem 2.3(iii), x � y ≤ x ∧ y. Hence d(x � y) ≤ d(x ∧ y).
Also, we know d(x ∧ y) ≤ d(x) and d(x ∧ y) ≤ d(y). Now, according to The-
orem 2.16(iv), we have sd(x ∧ y) ≤ sd(x) and sd(x ∧ y) ≤ sd(y). Therefore,
sd(x ∧ y) ≤ sd(x) ∧ sd(y).
(iii) According to Proposition 3.13(ii), we have x → y ≤ d(x) → d(y). There-
fore, by Theorem 2.16(iv,vi), we conclude that s(x) → s(y) ≤ sd(x) → sd(y).
Suppose now that d is contractive. Then, according to Proposition 3.13(ii)
and Theorem 2.16(iv,vi), sd(x → y) ≤ s(x) → sd(y) ≤ x → sd(y) and
s(x)→ s(y) ≤ sd(x)→ sd(y) ≤ sd(x)→ s(y).
(iv) By applying Proposition 3.13(vii), for all x, y ∈ H, we have x�d(y) ≤ d(x)
and according to Theorem 2.16(iv,v), s(x�d(y)) ≤ sd(x), s(x)�sd(y) ≤ sd(x).
Hence, s(x) ≤ sd(y)→ sd(x). �

Proposition 4.4. Let H and s be defined as above, and d : H → H be an
isotone derivation on H. Then dn(x) ≥ dn−ks(x) � dks(x), for all x ∈ H,
n ≥ 2 and k ∈ N that 1 ≤ k < n.

Proof. We prove the statement by induction on n. For n = 2, by Proposition
4.1(i), we have

d2(x) = d(d(x))

= d(ds(x)� s(x))

= (d2s(x)� s(x)) ∨ (ds(x)� ds(x))

≥ ds(x)� ds(x).

suppose, for n = m ≥ 2 and every k ∈ N such that 1 ≤ k < m, dm(x) ≥
dm−ks(x) � dks(x). Let n = m + 1. Based on Definition 3.1 and Proposition
4.1(i), for every 1 ≤ k < m, we have,

dm+1(x) = d(dm(x))

≥ d(dm−ks(x)� dks(x))

= (d(dm−ks(x))� dks(x)) ∨ (dm−ks(x)� d(dks(x)))

≥ dm+1−ks(x)� dks(x)
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and

dm+1(x) ≥ dm−ks(x)� d(dks(x)) = dm−ks(x)� dk+1s(x).

Consequently, for all n ∈ N, x ∈ H,n ≥ 2 and all k ∈ N such that 1 ≤ k < n,
dn(x) ≥ dn−ks(x)� dks(x). �

Proposition 4.5. Let H be a cancellative ∨-hoop algebra and s and d be defined
as above. Let ds(x) = sd(x), for all x ∈ H. Then d is one to one.

Proof. Suppose that x, y ∈ H such that d(x) = d(y). Then, ds(x) = sd(x) =
sd(y) = ds(y). Now by Proposition 4.1(i), we have ds(x)� s(x) = ds(y)� s(y).
Since H is cancellative, we have s(x) = s(y). Hence, x = y by Theorem
2.16(i). �

Remark 4.6. Let H, s and d be as above. If H is idempotent, then ds(x) =
sd(x). Because, by Proposition 2.16(ii), we have s(x) = x which implies that
ds(x) = d(x) = sd(x). Consequently, if H is idempotent cancellative ∨-hoop
algebra, then by Proposition 4.5, d is one to one.

Proposition 4.7. Let H be a bounded ∨-hoop algebra and s and d be defined
as above. Then in the following cases, the equality ds(x) = sd(x) holds.

(i) d is contractive and d(1) = 1,
(ii) x ∈ Fixd(H) ∩ Id(H),
(iii) x ∈ Fixd(H) and H is cancellative,

Proof. (i) According to Proposition 3.14(iii), d is the identity function.
(ii) If x ∈ Fixd(H) ∩ Id(H), then s(x) = d(x) = x and the equality is clear.
(iii) Suppose x ∈ Fixd(H) and H is cancellative. We have d(x) = x and
know that d(x) = ds(x) � s(x). By multiplying both sides by s(x) we get
x� s(x) = ds(x)� x. Then, ds(x) = s(x) as H is cancellative. �

Example 4.8. (a) Let I = [0, 1] be the unit closed interval of real numbers. In
the product algebra Pra, the operations � and → on I are defined as follows.

x� y = xy and x→ y =

{
1 if x ≤ y
y
x if x > y

.

for any x, y ∈ I. We know Pra = (I;�,−→, 1) is a hoop algebra. In Pra, we
define the unary operation s : I → I as s(x) =

√
x, ∀x ∈ I. Now suppose

a ∈ I and da : I −→ I is a principal ideal derivation on I. Now for all x ∈ I,
we have

das(x) = as(x) = a
√
x and sda(x) = s(a� x) =

√
ax =

√
a
√
x.

We know a ≤
√
a. Therefore we have a

√
x ≤
√
a
√
x and as a result das(x) ≤

sda(x).
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(b) Let I = [0, 1] be the unit closed interval of real numbers. In the Gödel
algebra Goa, the operations � and → on I are as follows

x� y = min (x, y) and x→ y =

{
1 if x ≤ y,
y if x > y

for any x, y ∈ I. We know Goa = (I;�,−→, 1) is a hoop algebra. In Goa, we
define the unary operation s : I → I as s(x) = x, ∀x ∈ I. Now, suppose a ∈ I
and da : I −→ I is a principal ideal derivation on I. For all x ∈ I, we have

das(x) = da(x) = a� x and sda(x) = da(x) = a� x.

In this case, das(x) = sda(x).

Proposition 4.9. Let H and s be defined as above, and d : H → H be a
contractive derivation on H. Then d(x) ≤ ds(x) ≤ sd(x) ≤ s(x), for all
x ∈ H.

Proof. Since d is contractive, we have d(x) ≤ x, for all x ∈ H. Now, by
Proposition 4.1(i), we have d(x) = ds(x) � s(x) ≥ ds(x) � ds(x). Therefore,
by definition of s, it follows ds(x) ≤ sd(x). Hence, we have d(x) ≤ ds(x) ≤
sd(x) ≤ s(x), for all x ∈ H. �

Definition 4.10. Let H, s and d be defined as above. We denote the set of all
fixed points of sd in H by Fixsd(H). That is, Fixsd(H) = {x ∈ H : sd(x) = x}.
We call each element of Fixsd(H) a critical point.

Proposition 4.11. Let H, s and d be defined as above. Then:
(i) If x ∈ Fixsd(H), then d(x) = x2,
(ii) If s(x� y) = s(x)� s(y), for all x, y ∈ H, then the converse of (i) holds.

Proof. (i) Let x ∈ Fixsd(H). By Definition 2.13, we have d(x) = sd(x)�sd(x) =
x� x = x2.

(ii) Suppose that x ∈ H and d(x) = x2 so we have sd(x) = s(x2) = s(x) �
s(x) = x. Hence, x ∈ Fixsd(H). �

Example 4.12. (a) Let H, s and d be defined as above, and s(x� y) = s(x)�
s(y), for all x, y ∈ H. Assume that H is bounded. Then, by Proposition 3.5(i)
and Proposition 4.11(ii), we have d(0) = 0 = 0 � 0. Therefore, 0 ∈ Fixsd(H).
Also, if H is a good hoop, then 0 ∈ Fixsd(H).
(b) In the product algebra, Example 4.8(a), we have s(x � y) = s(x) � s(y),
for each x, y ∈ H. According to Proposition 4.11(ii), it is easily seen that
a ∈ Fixsda(H). Because, if sda(x) = x and x 6= 0, then

√
a
√
x = x. Hence

x = a. Therefore, Fixsda(H) = {0, a}. We have the following diagram:
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Assuming a = 0.5, the curves s(x) =
√
x, sd0.5(x) =

√
0.5 ∗ x, d0.5s(x) =

0.5 ∗
√
x and d0.5(x) = 0.5 ∗ x have been drawn in the above diagram, where

∗ represents multiplication in real numbers. According to Theorem 3.8, d0.5 is
an ideal derivation. As it can be seen, only at points x = 0 and x = 0.5, we
have sd0.5(x) = x and so Fixsda(H) = {0, 0.5}. It is also easy to see that in the
interval [0, 1], we have d0.5(x) ≤ d0.5s(x) ≤ sd0.5(x) ≤ s(x). Finally, suppose
a ∈ [0, 1] such that d0.5s(a) = a. As a result, we have 0.5 ∗

√
a = a. Hence

a = 0.25. Therefore, Fixd0.5s(H) = {0, 0.25}.

Proposition 4.13. Let H, s and d be defined as above and x ∈ Id(H). Then
x ∈ Fixsd(H) if and only if d(x) = x.

Proof. If x ∈ Fixsd(H), then x = x� x = sd(x)� sd(x) = d(x). Now suppose
x ∈ H such that d(x) = x. Then, by Theorem 2.16(ii), we have sd(x) = s(x) =
x. So x ∈ Fixsd(H). �

Proposition 4.14. Let H and s be defined as above and d : H → H be an
isotone derivation and x ∈ H a critical point. Then for all a, y ∈ H:

(i) If a ≤ x ≤ y, then sd(a) ≤ x ≤ sd(y),
(ii) If d is a monomorphism, then the converse of clause (i) holds,
(iii) If d is ideal and y ≤ x, then ds(y) ≤ x,
(iv) If ds(a) = a, then d(a) = s(a)3.

Proof. (i) Suppose x ≤ y. Since d is isotone, d(x) ≤ d(y). Now, in view of
Theorem 2.16(iv), x = sd(x) ≤ sd(y). If a ≤ x, then sd(a) ≤ sd(x) = x.
(ii) Suppose for x, y ∈ H and x = sd(x) ≤ sd(y). According to Theorem
2.16(iv), we have d(x) ≤ d(y). Since d is a monomorphism, d(x) → d(y) = 1
which implies that x ≤ y.
(iii) Suppose y ≤ x. By Theorem 2.16(iv) s is isotone and so, s(y) ≤ s(x).
Since d is ideal derivation, i.e., d is isotone too, and according to Proposition
4.9, we have ds(y) ≤ ds(x) ≤ sd(x) = x.
(iv) Suppose ds(a) = a. Then, d(a) = ds(a)� s(a) = a� s(a) = s(a)3. �
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Proposition 4.15. Let H be a bounded ∨-hoop algebra, s be defined as above,
and d : H → H be an ideal derivation on H. Let x, y ∈ Fixsd(H) and s(a�b) =
s(a) � s(b), for all a, b ∈ H. If d(1) ∈ B(H), then x � y ∈ Fixsd(H). Also,
(Fixsd(H);∨,∧) is a distributive lattice.

Proof. Suppose x, y ∈ Fixsd(H). According to Proposition 3.16, we have

sd(x� y) = s(d(x)� d(y)) = sd(x)� sd(y) = x� y.

Also according to Propositions 2.17 and 3.16, we have

sd(x ∧ y) = s(d(x) ∧ d(y)) = sd(x) ∧ sd(y) = x ∧ y

and

sd(x ∨ y) = s(d(x) ∨ d(y)) = sd(x) ∨ sd(y) = x ∨ y.
Therefore Fixsd(H) is closed under ∧ and ∨. Since H is a distributive lattice,
it is easily seen that Fixsd(H) is also a distributive lattice. �

Example 4.16. (a) In Example 2.19, suppose a ∈ I and da : I → I a principal
ideal derivation. Then for all x ∈ I,

das(x) = a� s(x) = a�
(
x+ 1

2

)
and sda(x) = s(a� x) =

(a� x) + 1

2
.

Suppose, x ∈ Fixsd(L1). We have sda(x) = (a�x)+1
2 = x. We consider the

following situations:
Case 1. a � x = a + x − 1. Therefore, sda(x) = a+x−1+1

2 = x. As a result
a + x = 2x. Hence x = a. So a ∈ Fixsd(L1). For example, assuming a = 0.8,
we have sd0.8(0.8) = s(0.8� 0.8) = s(0.6) = 0.6+1

2 = 0.8.

Case 2. a � x = 0. Therefore sda(x) = 0+1
2 = x. As a result x = 1

2 . Hence
1
2 ∈ Fixsd(L1).

Because assuming a = 0.5, we also have sd0.5(0.5) = s(0.5� 0.5) = s(0) = 1
2 =

0.5. Also, assuming a+x ≥ 1, if a ≤ x, then, sda(x) = s(a�x) = s(a+x−1) =
(a+x−1)+1

2 = a+x
2 ≤ x and if x ≤ a, then sda(x) = s(a � x) = s(a + x − 1) =

(a+x−1)+1
2 = a+x

2 ≥ x.

Assuming a + x ≤ 1, we have sda(x) = s(a � x) = s(0) = 1
2 = 0.5 ≥ x. Also

according to Proposition 4.9, if a ≤ x, then we have das(x) ≤ sda(x) ≤ x.
(b) Let H and s be defined as above, and d : H → H be the identity derivative
on H. If x2 = x, for all x ∈ H, then Fixsd(H) = H. Because, we have
sd(x) = s(x) = x, for all x ∈ H.

Proposition 4.17. Let H and s be defined as above, and d1 and d2 be con-
tractive derivations on H. Let s(x� y) = s(x)� s(y), for all x, y ∈ H. Then:

(i) If x ∈ Fixsd1
(H) and x ∈ Fixsd2

(H), then x ∈ Fixs(d1∨d2)(H),
(ii) If x ∈ Fixs(d1∨d2)(H) and at least one of di, i = 1, 2, is the identity deriva-
tion, then s is the identity function.
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Proof. (i) Using Proposition 3.23, the result is obtained.
(ii) Suppose x ∈ Fixs(d1∨d2)(H). Thus we have s(d1 ∨d2)(x) = x. Therefore

sd1(x) ∨ sd2(x) = x. Let d1 be an identity derivation. Therefore we have
s(x) ∨ sd2(x) = x ≥ s(x). On the other hand, by Theorem 2.15(i), x ≤
s(x). Thus s(x) = x. The case that d2 is the identity derivation is proved
similarly. �

Proposition 4.18. Let H be a ∨-hoop algebra with a square root s and a
contractive derivation d. Let F be the filter of H. Then for all x ∈ H:

(i) If sd(x) ∈ F , Then d(x)n, ds(x)n, xn, s(x)n ∈ F , for all n ∈ N,
(ii) 〈s(x)〉 = 〈x〉 ⊆ 〈d(x)〉 = 〈ds(x)〉 = 〈sd(x)〉,
(iii) If x is a critical point, then in (ii) the equality holds.

Proof. (i) Suppose sd(x) ∈ F . In this case, based on the condition S1 of
Definition 2.13, the assumption of the proposition, and the condition F2 of
Definition 2.12, we have sd(x)�sd(x) = d(x) ∈ F . Therefore, by the condition
F3 of Definition 2.12 and Proposition 4.9, d(x)n, ds(x)n, xn, s(x)n ∈ F .
(ii) Using Proposition 4.9, the result is obtained.
(iii) Since sd(x) = x, therefore 〈x〉 = 〈sd(x)〉. As a result, 〈x〉 = 〈d(x)〉. �

5. Conclusion and Future Research

In this paper, by developing the concept of multiplicative derivation on ∨-
hoop algebras and presenting some properties, we showed that the set of multi-
plicative derivations on a hoop algebra forms a bounded semilattice and, under
certain conditions, forms a distributive bounded lattice. Also, by combining
the square root with the derivation, other properties were presented on these
algebras. In the following, by introducing the critical points in view of the com-
bination of square root with derivation, we presented some properties of these
points and showed that the set of critical points forms a distributive lattice.
Some of our future plans are to investigate the types of multiplicative deriva-
tion on hoop algebras, such as f -multiplicative and fg-multiplicative and the
effect of the square root on the aforementioned derivation. Also, checking the
properties of the created lattices will be one of our other plans.
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