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ABSTRACT. Let u be a generator for a commutative Banach algebra with
unit. It is well known that the spectrum of u is homeomorphic to the
carrier of this algebra. In this paper, we extend this result for a broader
class of complete metrizable topological algebras, particularly those satis-
fying the properties of fundamental strongly sequential(FSS) and linearly
complete algebras. Specifically, we establish that the homeomorphism
between the spectrum Sp(u) and the carrier space holds for FSS-algebras
and linearly complete regular algebras. Thus, we generalize the classical
result known for Banach algebras. Furthermore, by assuming that the
boundedness radius f is subadditive, we prove that the spectrum Sp(u)
is polynomially convex. This assumption also enables us to derive a more
general result on the polynomial convexity of joint spectra in finitely gen-
erated algebras. To demonstrate the significance and nontrivial nature of
these extensions, we provide illustrative examples that highlight how the
introduced conditions substantially broaden the applicability of existing
results.
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1. Introduction

The study of non-normed topological algebras was initiated in 1940 by Arens,
Gel'fand, Kaplansky and others (see [14]). In 1952, Michael conducted a thor-
ough investigation of locally multiplicatively convex (LMC) algebras and high-
lighted the issue of identifying which algebras possess continuous multiplicative
linear functionals [18]. This is commonly known as Michael’s problem. In the
same paper, Michael presented algebras in which the property that every mul-
tiplicative linear functional is continuous holds. This problem plays a crucial
role in the development of research in topological and even normed algebras.
In 1979, Husain introduced the concept of strongly sequential topological alge-
bras [16]. Moreover, in 2008, Honary and Najafi Tavani demonstrated that this
idea holds in another class of topological algebras, known as Q-algebras [15].
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In 1991, Ansari introduced the concept of fundamental algebras as an ex-
pansion of Cohen’s factorization theorem [3]. Ten years later, in 2001, he es-
tablished a new class called fundamental locally multiplicative (FLM) algebras
by imposing an additional condition on fundamental algebras [4]. Finally, in
2010, Ansari proved that every FLM-algebra with unit is also a locally bounded
algebra [6]. For further exploration of locally bounded algebras, see the follow-
ing books [10,11,21].

In 2016, Ansari and Sabet were the first to investigate algebras that are
both fundamental and strongly sequential [8]. In this paper, we refer to such
algebras as FSS-algebras, which strictly contain FLM-algebras. In the same
paper, the authors demonstrated that FSS-algebras are Q-algebras. For fur-
ther discussion on Q-algebras, see [10, p. 149], [17, p. 43], or [14, p. 69]. Many
properties of Q-algebras closely resemble those of normed algebras, with the
main difference lying in proof techniques. For instance, the well-known Glea-
son-Kahane—Zelazko theorem holds in FSS-algebras [9].

This naturally raises the question of which results from the theory of Banach
algebras or locally bounded algebras can be extended to FSS-algebras. First,
in a commutative Banach algebra A with unit, and a generator u for it, we es-
tablish that the spectrum of u, denoted Sp(u), is homeomorphic to the carrier
space of the algebra A, denoted by ® 4. By imposing an additional condition
on FSS-algebras, we demonstrate that this result remains valid. The details of
this extension are presented in Subsection 3.1 of this paper.

Secondly, in a commutative Banach algebra A with unit, and a generator u
for it, the spectrum of w is a polynomially convex set. In Subsection 3.2, we
prove that Sp(u) remains a polynomially convex set by imposing two additional
conditions on FSS-algebras.

2. Preliminaries

First, we mention some of the basic concepts of topological algebras.
A complex algebra A is called a topological algebra if it is equipped with a
Hausdorff topology and satisfies the following conditions:

(1) The function (z,y) — x + y, from A x A to A, is continuous,
(2) The function («a, ) — az, from C x A to A, is continuous,
(3) The function (z,y) — xy, from A x A to A, is continuous.

A topological algebra A is called strongly sequential, if there exists a neigh-
borhood of zero U such that for every x € U, the sequence (z™),, converges to
zero in its topology [16].

The boundedness radius of an element a in the topological algebra A, denoted
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by B(a), is defined as follows [1]
B(a) =inf{r > 0: ;L—n — 0}.

Additionally, the above definition includes the special case where inf ¢ = +o0.
If B(a) < 400, a is said to be a bounded member.

Remark 2.1. Let A be a strongly sequential topological algebra, and let a € A.
Then there exists a neighborhood of zero Uy such that for every x € Uy, the
sequence (z™), converges to zero in the topology of A. Since the sequence
(), — 0, it follows that the sequence (1a), converges to zero in A. Hence,
there exists a natural number N such that for every n > N, we have %a e Up.
In particular %a € Uy. Now, considering the above relations and noting that

+a € Uy, we obtain (1a)" — 0. Therefore

and thus,

B(a) < N.
This shows that every element of a strongly sequential topological algebra is
bounded.

Proposition 2.2. [8] A topological algebra A is strongly sequential if and only
if B is continuous at zero.

Topological algebra A is called fundamental if there exists b > 1 such that,
for every sequence (x,), in A, the convergence of b"(z,4+; —x,) — 0 in A
implies the sequence (x,,), is a Cauchy sequence [3].

Proposition 2.3. If A is a metrizable fundamental algebra and M is a closed
two-sided ideal of it, then quotient algebra ﬁ 18 also a metrizable fundamental
algebra.

Proof. Suppose that the algebra A has an invariant metric d. It is known that
the following metric is invariant metric for the quotient algebra % (see [19, p.
30])
pla+ M,b+ M) :=inf{d(a — b,m): m € M}.
Let b > 1 and (a, + M),, be a sequence in 4 such that
p(b"((ant1 + M) — (anp + M)),0) — 0.

For any ¢ > 0, there exists N such that for all n > N, there exists an element
cn € M satisfying the following relation

d(d™(@nt1 — an +¢5),0) <e.
Now we define the sequence (my,,), in M by the following recurrence relation

m; =0, Mmupy1=cr+ca+..+cp(n>=1).
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By the given condition and the fact A is a fundamental algebra, it follows that
the sequence (a,, +my,), is Cauchy. Consequently, for given € > 0, there exists
N such that for every s > r > N, we have

d(as + ms,a,. +m,) <e,
therefore, it follows that
plas + M,a, + M) = inf{d(as — a,,m): m € M} < d(as — ar,m, —ms) < e.
Thus, the proof is complete. (|
Remark 2.4. Proposition 2.3 was stated in [3,5], without proof.

In this paper, we will use the abbreviation FSS-algebra for the term funda-
mental strongly sequential topological algebra. Additionally, we denote the set
of invertible elements in a topological algebra with unit A by Inv(A), and the
set of non-invertible elements by Sing(A). Finally, a topological algebra with
unit A is called a Q-algebra if Inv(A) is an open set.

Proposition 2.5. [10] In every Q-algebra, a mazimal ideal is closed.

Proposition 2.6. Every mazimal ideal in a complete metrizable FSS-algera is
closed.

Proof. Every complete metrizable FSS-algebra is a Q-algebra [8]. Therefore,
by Prposition 2.5 the result follows. (]

An algebra with unit, in which Inv(A) = A—{0}, is called a division algebra.
The spectrum of a € A, denoted by Sp(A,a), is defined as follows
Sp(A4,a) :={A: X—a € Sing(A)}.
For brevity and without ambiguity, we use the notation Sp(a) instead of Sp(4, a).

Proposition 2.7. If D is a complex division algebra that Sp(a) # ¢ for every
a€ A, then D =1pC.

Proof. Suppose that a € D. Since Sp(a) # ¢, there exists A € Sp(a) such that
A —a € Sing(D) = {0} which implies that a = A p. O

In this paper, we use the symbol A* to denote the set of all continuous linear
functionals on A.

Proposition 2.8. [2] Suppose A is a fundamental complete metrizable algebra,
in which every element is bounded. If A* separates the elements of A, then the
spectrum of every element in A is nonempty.

A linear functional ¢ on A is called a multiplicative linear functional if it
satisfies the following condition: For any two arbitrary elements z,y € A
e(zy) = p(x)e(y).
The set of nonzero multiplicative linear functionals on A, equipped with the
A-topology, is called the carrier space. In this paper, we denote this set by ® 4.
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Proposition 2.9. [7] Let A be a complete metrizable F'SS-algebra. Then, the
following results hold:

(1) If f € Dy, then |f(z)| < B(x), for all x € A.

(2) The carrier space of A is weak™ compact.

Proposition 2.10. [15] If A is a complete metrizable Q-algebra, then every
multiplicative linear functional on A is continuous.

3. Main results
We present and prove the main theorems in two separate subsections.

3.1. On the spectrum of the generators in monothetic algebras.

Definition 3.1. For every topological algebra A, we say that A is a linearly
complete regular algebra if, for every closed subspace M of A and every element
a € A such that a ¢ M, there exists an element A € A* satisfying Aa = 1 and
Ab = 0 for all b € M. For brevity, we use the abbreviation LCR instead of
linearly complete regular.

Remark 3.2. According to the definition of an LCR-algebra, if an algebra A
is an LCR-algebra, then A* separates the points of A. This can be seen in
the fact that every locally convex algebra satisfies the LC R-algebra property
(see [19, p. 59]).

Lemma 3.3. Suppose that A is a complete metrizable F'SS and LC R-algebra.
Moreover, let M be a closed ideal of A. Then the quotient algebra % is a com-

plete metrizable algebra, and the spectrum of every element in % s nonempty.

Proof. 1t is clear that % is a complete metrizable algebra. On the other hand,
for every a € A, the following inequality holds

B a(a+ M) < pBa).
M

From Proposition 2.3, the algebra % is fundamental. Moreover, as noted in

Remark 2.1, every element of this algebra is bounded. According to Proposition
2.8, to establish the result, it suffices to show that (%)* separates the points
of %. Let a + M be an arbitrary element of % such that a ¢ M. Since the
algebra A is LC R-algebra, there exists A € A* such that Aa =1 and Az =0
for all x € M. Based on this, we define the function f : ﬁ — C as follows

F(o+ M) = Az).
To further support this claim, we will prove that f € (%)* To prove that
f € (4)*, we proceed as follows.
Suppose that x1,22 € A and a € C, and assume that 1 + M = zo + M. Then
we have
T1 — T2 GM:>A({E1—1'2):O
= A(z1) = A(z2).
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Thus, we have
flafzy + M) + (z2 + M) = flazi + z2 + M)
= Alaxy + x2)
= al(z1) + A(z2)
=af(z1+ M)+ f(z2 + M).
Now, suppose that xz,, + M — 0 a = M. Then we have
p(xn, + M, M) — 0.

For any € > 0, there exists a natural number N such that for all n > N we
have

p(xn + M, M) <

| ™

By the definition of p(x,, + M) = inf{d(x,, m) : m € M}, there exists m,, € M
such that

d(xn, mp) < p(xn + M, M) + %
Therefore, for every n > N we obtain
d(xy — mp,0) < e.

Thus, the sequence (z, — m,, ), converges to 0. Additionally, since A is both
linear and continuous, we can conclude for all n,m > N, the following holds

flzy —my + M) = Ax,, — Amy,
= Az, —my)

— 0.

Thus, f is continuous, which implies that f € (%)* Consequently, the proof
is complete. O

In the remainder of this paper, we shall assume that A is a commutative
algebra with unit.

Lemma 3.4. If A is a complete metrizable F'SS and LCR-algebra, then the
mazimal modular ideals of A are the kernels of multiplicative linear functionals.

Proof. We know that the two-sided maximal modular ideals of A with codi-
mension 1 are the kernels of multiplicative linear functionals of A (see Theorem
4 in Section 11 of [12]). To prove this lemma, it is sufficient to show that every
maximal modular ideal A in an F'SS-algebra has co-dimension 1. Let M be a
maximal ideal of A with modular unit j. By Proposition 2.6, the ideal M is
closed, therefore, B = % is a topological algebra [10]. In the continuation of

the proof, we show that the only ideals of B are B and {0}. For this purpose,
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suppose J is an ideal of B other than B and {0}.
Let K={ke A: k+ M € J}. Now, if k,k' € K, a € C and a € A, we have

kk' e K<=k+k)+M=(k+M)+ (K +M)eJ,
ak € K <= (ak)+ M =a(k+ M) € J,
ak € K <(ak)+ M = (a+ M)(k+ M) € J.

Therefore, K is an ideal of M. Moreover, the following relations hold
J#B=3a+MecB:a+M¢J=a¢K,
meM=—m+M=M=0g € J,

J#{0p}={M}=Ta+MeB:a+M¢J= (a¢ M,a € K).

Thus, we conclude that

MG K G A

Since M is a maximal ideal of A, the latter result leads to a contradiction.
Moreover, j + M is the unit element of B because

(a+M)G+M)=0GU+M)(a+M)=a+M (since aj—a=ja—acM).

Therefore, B is a division algebra. By Lemma 3.3, the spectrum of every
element in B is nonempty. Consequently, by Proposition 2.7, we have

B=C{+M).
Now, for an arbitrary element a € A, there exists a unique scalar a such that
a—aj=m—a=m-+ aj.

Thus, we can write A = M @ < j >, meaning the co-dimension of M is 1.
Therefore, the proof is complete. O

Lemma 3.5. Assume that A is a complete metrizable F'SS and LC R-algebra,
and let a € A. Then we have

sp(a) ={p(a) : p € s}
Proof. To prove this, we need to show that
Aespla) e Xe{pla):p€ Dy}

If A # 0, the proof follows a similar argument to the one presented in Bonsall’s
book (see Proposition 9 in Section 16 of [12]). Thus, it suffices to demonstrate
that

0¢spla) = 0¢ {pa): Py}

First, assume that 0 ¢ sp(a). This means that there exists an inverse element
a~! such that aa=! = 1. To prove this, we use proof by contradiction. Suppose
that 0 € {p(a) : ¢ € ®a}. Then, there exists a ¢ € P4 such that 0 = ¢(a).
Consequently, we have

1=p(1) = plaa™") = p(a)p(a™) = 0.
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This is a contradiction. Therefore, 0 ¢ {p(a) : ¢ € Pa}. Assume 0 € sp(a).
Since a € aA and aA is an ideal of A, there exists a maximal ideal of A
containing aA. By Lemma 3.4, there exists a ¢ € ®4 such that aA C kery,
implying ¢(a) = 0, which contradicts our assumption. Therefore, the proof is

complete. 0

Let {a1,- - -, a,} be a finite subset of A. The smallest closed subalgebra
containing {a1, -+, ay,} is called the generated subalgebra by {ai,- -, a,} and is
denoted by A(ay,---,a,). The set {a1,--+,a,} is called a set of joint generators
for A if A(a,- -+, a,) = A. In particular, an element a is called a generator

of Aif A(a) = A. An algebra that has a generator is called a monothetic
algebra. An algebra A is called finitely generated if there exists a finite set of
joint generators for it.

Theorem 3.6. Let A be a complete metrizable F'SS and LC R-algebra, and let
u be a generator for it. Then the mapping

= o(u) (peda)
is a homeomorphism from ®4 to Sp(u).

Proof. The mapping G : & 4 — Sp(u), given by
G(p) = ¢(u),

is continuous by definition. Moreover, as stated in Lemma 3.5, this function is
surjective. To establish that G is a homeomorphism, it suffices to show that
it is injective. Indeed, according to Proposition 2.9, since ® 4 is equipped with
the weak-star compact topology, the continuity of its inverse function follows
immediately. Consequently G is a homeomorphism.

Now, suppose @, € ® 4 satisfy G(p) = G(v), meaning that ¢(u) = 1p(u). Let
x be an arbitary element of A. If A(u) = A, then there exists a sequence of
polynomials (p,), with complex coefficients, such that

x = lim py(u).
n—oo
By Proposition 2.10, the functions ¢ and 1 are continuous, so we obtain

() = @( lim_p,(u))

= lim <p( n(w))
:nlgrolo (Pn(u))
= ¢( lim py(u))
= ¢().

Thus, we conclude that ¢ = 1, which proves that G is injective. Therefore, the
proof is complete. O
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The following examples provide evidence for the existence of a complete
metrizable FSS and LCR-algebra. For more details, refer to references [2]
and [8].

Ezxample 3.7. Let A be a commutative locally bounded but mon-locally convex
algebra equipped with the metric dy defined by

di(z,y) = ||z — y|lp, where |||, is the p — norm.

Also, let X be a complete metrizable locally convex but non-locally bounded
topological vector space with the metric ds.

Denote by e the unit element of A. Suppose the mapping (a,z) — za is a
bilinear and continuous mapping from A x X into X, satisfying the following
conditions :

% x(ab) = (xza)b,

% xze=ux,

foralla,b € A and x € X.

Then, X is a topological unit-linked right A-module, with the module multipli-
cation defined by (a,x) — xa. Moreover, the space Y = X X A is a non-locally
bounded, non-locally convez, fundamental topological vector space with point-
wise operations and metric d, where

d((w1,a1), (x2,a2)) = di(a1,a2) + da(x1, 22).
Define the multiplication on'Y by
(x1,01)(z2,a2) = (x102 + T201, G102)

for all x1,x5 € X and a1,a2 € A. Now, Y is an algebra, and since the module
multiplication is continuous, Y is a topological algebra [2].

Ansari, Sabet and Sharifi have shown that the algebra Y is a complete metriz-
able F'SS-algebra with unit [8]. Now, suppose that the algebra A is an LCR-
algebra. We will demonstrate that the algebra Y is also an LC R-algebra.

Let M = Mx x M4 be a closed subspace of Y, and let (z¢,a0) be an element
of Y that does not belong to M, meaning that at least one of the following
conditions fails to hold

% x9 € Mx,

% ag € My.

Assume ag ¢ Ma. Since My is a closed subspace of A and A is an LCR-
algebra, there exists a continuous linear functional As on A such that

Aa(ma) =0 forallma € MaandAa(ag) = 1.
Define A(x,a) = Aa(a). Clearly A is a continuous linear functional on Y.
Moreover, for every element b € M, we have
A(b) =0, while A(xg,a9) =1.
Similarly, if xog ¢ Mx, then since every lovally convex space is an LC R-algebra
the result follows. Hence, the algebra Y is an LCR-algebra.
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Ezample 3.8. Let 0 < p < l,and let T = {t1,t2,---} be a set of symbols. Define
S as the commutative semigroup generated by T with the operation
titj =tmingijy if i#7 and It =t
Thus, the semigroup S consists of elements of the form
S ={t :i,j €N}
Now, define the algebra A as follows

A= Z ijt] Z lai;|P(7 +1)P < o0, a4 € C}
i,=1 ij=1
Let A be a locally bounded non-locally convex algebra, generated by S, with
p-norm defined as

1> ctlll = JeigP (G + 1P
ij=1 i,j=1
Let A = AP C be the unitization of A. Then A is unital, locally bounded, and
non-locally convex algebra.
Now, define the space X by

X =/ Z gt Z | [Ppm (t]) < o0 forallm € N},

ij=1 ij=1
where the function py, is defined as

: i+ 1P, i <m
pm<t3)={” i
1, 1>m

)

and the corresponding seminorm is

o0 o0
pm(z agt]) = Z |cij PP (£])-
i,j=1 ij=1
Thus, py, is a seminorm on X, making X a locally convexr and non-locally
bounded algebra.
Moreover, A is a subalgebra of X, so X is a locally convex right A-module with
module multiplication defined as

z(a,\) =xa+ Az, for a€Axe X, andX € C.

Therefore, the space Y = X x fl, equipped with the algebraic operation defined
in Example 8.7, is an FSS-algebra, which is neither locally bounded nor locally
convez.

Next, we show that A is an LCR-algebra. Let M be a closed subspace of A,
and assume

a= Z aij(a)t] ¢ M.
ij=1
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Suppose that, tzg ¢ M and oy, (a) # 0. It has been shown that the linear
functionals A (for natural numbers k,1) defined by

A a( Z ait]) = ag
i,j=1
are continuous on A [2]. Now, define
1
A= —— A,
Aio,jo (a) 070
Then, A is a continuous functional on A such that
Ala) =1, forallbe M, A(b) =0.

Thus, A is an LC R-algebra.

3.2. On the polynomial convexity of the spectrum of generators and
its extensions.
Proposition 3.9. Suppose A is a strongly sequential algebra, and let a be a

generator for A. If A € C — Sp(a) and P(C) denotes the set of all polynomials
with complex coefficients, then there exists a polynomial p € P(C) such that

(V)] = B(p(a)).
Proof. According to the assumptions, there exists an element b € A such that
(A—a)b = 1. Since a is a generator for A, there exists a sequence of polynomials
pr € P(C) such that py(a) —b — 0. By Proposition 2.2, the function § is
continuous at zero. Hence, there exists a natural number N such that

B(b —pn(a)) <1/(BA - a)).
On the other hand, for all z,y € A the relation S(zy) < S(z)5(y) holds [13].
Thus, it follows that
B(1— (- a)px(a)) = B — )b — (A — a)pw(a))
=B((A=a)(b—pn(a)) <B(A—a)B(b—pn(a)) <1.
Now, if we put p(z) = 1—(A—z)pn(z), then it is clear that, p € P(C), p(A\) =1,
and B(p(a)) < 1. Thus, the proof is complete. O

In the following, we extend Proposition 3.9 to finitely generated algebra.
ntimes ntimes

—~ —_——
Let C" =Cx---xC, A" = Ax---x A and let P(C™) denote the set of all
polynomials in n complex variables. For p € P(C") and a = (a1, a9, ...,a,) €
A™ ) the element P(a) is defined by evaluating the polynomial P at a, replacing
a = (ai,a2,...,a,) by z = (21,22,...,2n). Given a = (a1,as,...,a,) € A",
the joint spectrum of a denoted by Sp(A,a), is the subset of C™ given by

Sp(A;a) = {p(a) : ¢ € Pa},
where p(a) = (¢(a1),...,¢(an)). As in the case n = 1, we write Sp(a) instead
of Sp(A, a) when there is no risk of confusion.
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Proposition 3.10. Let A be a complete merizable F'SS and LC R-algebra. Define
the set

J={> (A —ar)be: b= (b1,by....b,) € A"}
k=1

where a = (a1, ag,...,a,) € A™ and A = (A1, \a, ..., \,) € C™.
Then the following statements are equivalent:

(1) )\ = (Alv)\Qa st 7)\71) 6 Sp(a)

(2) J is a proper ideal of A.

(3) J C SingA.

(4) 1 ¢ J.
Proof. By applying Lemma 3.4, the proof proceeds along lines similar to those
presented in Bonsall’s book (see [12, p. 100]). O

Suppose A is a topological algebra in which every element is bounded. A
real-valued function ¢ is defined on A is called a subadditive function if, for all
x,y € A, it satisfies the inequality

o +y) <)+ o).

Kinani, Oubbi and Oudadess established that the boundedness radius function
B is subadditive in commutative locally convex algebras [13].

Proposition 3.11. Suppose that A is a complete metrizable FSS and LCR-
algebra, and that B is a subadditive function on A. If the set {ai,az,...,a,} isa
generator for A and A € C™ — Sp(a), then there exists a polynomial p € P(C™)
such that

Ip(N)] = B(p(a)).

Proof. See Proposition 9 in Section 19 of Bonsall’s book for a detailed proof
[12]. O

Note, under the assumptions of the above Proposition, the results of Propo-
sition 3.10 remain valid [12].
Let K be a compact subset of a topological space E. The seminorm |- |x on
C(FE), is defined by
|fl = sup{|f(z)|: = € K}.
For a compact subset K of C™, the polynomially convex hull of K is defined as

hull(K) = {z € C": ¥p € P(C"), |p(2)| < [plx}-

Clearly, we always have K C hull(K). Furthermore, if hull(K) C K, then K
is called a polynomially convex set.

Theorem 3.12. Assume that A is a complete metrizable F'SS and LC R-algebra,
and that § is subadditive. If {a1,aq,...,a,} is a set of joint generators for A,
then the joint spectrum Sp(a), where a = (a1, ...,ay), is a nonempty, compact,
and polynomially convex subset of C™.
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Proof. We consider the function G : ® 4 — C™ defined by

Glp) = w(a) = (p(a1), p(az), ..., p(an)).
For each i, let
e; = (0,0,...,1,...,0).
Then we can express G(p) as
Glp) = ai(pler + ax(p)ez + -+ + an(p)en

where each function @; : ® 4 — C is defined by

a;(p) =p(a;), i=12,...,n

Since each a; is continuous, it follows that G is also continuous. By Proposition
2.9, & 4 is a compact set, and by Lemma 3.4, it is nonempty. Therefore, G(® 4)
is a nonempty, compact subset of C". To complete the proof, it remains to
show that Sp(a) is polynomially convex, i.e., that

hull(Sp(a)) C Sp(a).

To this end, we first prove that the inequality |p[sp) < B(p(a)) holds. For
any z € Sp(a) and any polynomial p € P(C™), by the definition of Sp(a), there
exists ¢ € ® 4 such that z = ¢(a). Then by Proposition 2.9, it follows

Ip(2)| = |p(¢(a))| = |p(p(a)| < B(p(a)).
Thus,
IPlsp(a) < B(p(a)).

Now, assume A € hull(Sp(a)). By the definition of hull(Sp(a)), for any poly-
nomial p € P(C™), we have

Ip(M)] < |plsp(a)-
Since [plspa) < B(p(a)), it follows that
Ip(A\)| < B(p(a)).

Finally, by Proposition 3.11, this implies that A € Sp(a), completing the proof.
O

Remark 3.13. Theorem 2.3 presents a class of algebras that can be complete
metrizable F'SS and LCR, where the function § is subadditive, while at the
same time, these algebras are not Banach algebras [20].
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4. Conclusion

In this paper, we extend the classical correspondence between the space of
multiplicative functions and the spectrum of a generator in Banach algebras to
a broader class of topological algebras called complete metrizable FSS-algebras
(i.e., algebras that are both fundamental and strongly sequential). We also
show that, under suitable conditions, the spectrum of a generator in these al-
gebras is polynomially convex. These findings may be useful for understanding
the spectral structure and uniqueness of topology in non-normable algebras. As
a continuation of this research, future investigations may focus on extending
spectral results in the framework of commutative FSS-algebras, particularly
examining the spectra of generators in relation to topological properties such
as convexity and compactness.
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